
materials

Review

Gel-Based Luminescent Conductive Materials and Their
Applications in Biosensors and Bioelectronics

Jiajin Qi 1,2, Gongmeiyue Su 1,2 and Zhao Li 1,2,*

����������
�������

Citation: Qi, J.; Su, G.; Li, Z.

Gel-Based Luminescent Conductive

Materials and Their Applications in

Biosensors and Bioelectronics.

Materials 2021, 14, 6759. https://

doi.org/10.3390/ma14226759

Academic Editor: Dirk Poelman

Received: 1 October 2021

Accepted: 4 November 2021

Published: 10 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China;
3220201938@bit.edu.cn (J.Q.); gongmeiyue.su@bit.edu.cn (G.S.)

2 Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals,
Beijing Institute of Technology, Beijing 100081, China

* Correspondence: lizhao@bit.edu.cn

Abstract: The gel is an ideal platform for fabricating materials for bio-related applications due to its
good biocompatibility, adjustable mechanical strength, and flexible and diversified functionalization.
In recent decades, gel-based luminescent conductive materials that possess additional luminescence
and conductivity simultaneously advanced applications in biosensors and bioelectronics. Herein,
a comprehensive overview of gel-based luminescent conductive materials is summarized in this
review. Gel-based luminescent conductive materials are firstly outlined, highlighting their fabrication
methods, network structures, and functions. Then, their applications in biosensors and bioelectronics
fields are illustrated. Finally, challenges and future perspectives of this emerging field are discussed
with the hope of inspire additional ideas.
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1. Introduction

With the increasing concern about health by people and large development in science,
technology, and medicine, biosensors and bioelectronics became attractive research fields.
Biosensors are devices used to detect biological substances through convert biological
information into detectable signals [1–3]. Bioelectronics establish the connection between
electronic device and the biological body and enable the device to capture and detect
physiological signals, so that the biological condition of the biological body can be detected
and evaluated [4–7]. Biosensors and bioelectronics experienced tremendous development
in the past few decades, mainly due to the application of flexible materials in the fields.
Different from traditional rigid biosensors and bioelectronics, flexible ones can establish
tighter coupling and better compatibility with soft and dynamically deformed biological
surfaces or internal organs, which makes them ideal candidates in monitoring and treat-
ment of diseases, human body movements, and health indexes [8–11]. Currently, flexible
biosensors and bioelectronics were widely used in the biomedicine, including biodetection
sensors for biomarker detection and wearable bioelectronics devices for monitoring vital
signs or capturing epidermal energy [12–15]. As the emerging frontier fields, it brings more
requirements to the related materials, including performance and function requirements.
On one hand, biosensors and wearable electronic devices are primarily applied in biomedi-
cal related areas, which require the materials with excellent biocompatibility and tunable
mechanical properties [16–18]. On the other hand, the devices are required to convert the
response signal into information that people can easily understand and directly observe.

The gel is an attractive material for research in recent years due to its unique character-
istics such as outstanding biocompatibility, adjustable mechanical properties, quasi-liquid-
solid behavior, scalability, and void structure [19,20]. In addition, functional materials
can be facilely introduced into the gel network to endow it with corresponding functions.
On the other hand, for the function requirement about signals, luminescent and electrical
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signals are two ideal candidates. The light-emitting process can convert the response
into a light signal which owns advantages of high sensitivity and signal-to-noise ratio
(SNR), fast response, easy detection, and pollution free [21]. The conductivity is one of the
electric signals that can convert the response into resistance or conductivity change and
has the superiorities of high selectivity and accuracy, good stability, easy to control, and
high-familiarity [22,23].

Introducing luminescence or conduction function into gel matrix can afforded func-
tional gel-based materials with corresponding characteristics. These functional materials
were widely applied in numerous areas. For example, luminescent gels and conductive
gels, which are widely concerned by people, were extensively used in sensors, bioelec-
tronics, biomedicine, human-computer interaction, and soft robotics [24,25]. However, the
singularity of the function in the gels restricts their further applications in many high-tech
areas because many of the areas require the materials with multiple functions. Gel-based
materials integrating the functions of luminescence and conductivity simultaneously can
show both features of luminescence and conduction and in many cases have unexpected
characteriastics due to the synergistic effect. The function versatility makes the material
closer to the application demands in high-tech areas such as biosensors and bioelectronics.
Therefore, the gel-based luminescent conductive material as an emerging advanced func-
tional material has many superior characters and has made great progress in biosensors
and bioelectronics recently.

The research of gel-based luminescent conductive materials and bio-applications
of them involves multidisciplinary knowledge and technologies. The interdisciplinary
research can give birth to new direction and provide opportunities for more advanced appli-
cations. Although the field of gel-based luminescent conductive materials was developed
rapidly in recent years, the periodical summary of it is lacking. An overview of this field
can not only provide researchers a comprehensive understanding about it and motivate
new ideas, but also showcase the scientific thought about interdisciplinary research. There-
fore, herein a review about recent progress on gel-based conductive luminescent materials
and their applications in biosensing and bioelectronics will be provided (Figure 1). Firstly,
an overview of gels, luminescent materials, and conductive materials is provided. Then,
gel-based luminescent conductive materials, including luminescent conductive gels and
luminescent conductive gel composites, are summarized and reviewed. The preparation
strategies, network structures, and performances about functions of luminescence and
conductivity are highlighted. Subsequently, the application of the gel-based luminescent
conductive materials in the areas of biosensing and bioelectronics is explained. Finally, cur-
rent challenges and future prospects of this field are given, aiming to bring new insights into
the development and commercial applications of biosensing and bioelectronic products.
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2. Gels, Luminescent Materials, and Conductive Materials
2.1. Gels

The gel is a three-dimensional (3D) network filled with a dispersion medium in a
matrix, and it is considered to be intermediate between liquid and solid. So far, various
gels were developed and there are many classification standards to categorize them. For
example, according to the dispersion medium inside the gel matrix, it can be classified
as hydrogel, organic gel, aerogel, and xerogel. According to the constitution, gels can be
divided into the macromolecular gel and supramolecular gel. The main constitution of the
former is covalently formed macromolecules, while the major constituent of the latter is low
molecular-weight gelators (LMWGs). Moreover, the gel can form through either physical
or chemical bonds, indicating that the gels cross-linking by noncovalent physical bonds are
physical gels, whereas crosslinking by covalent chemical bonds refers to chemical gels. In
addition, gels can also be classified according to their size. The gel in macroscopic size is
called macroscopic or bulk gel, and the gel with size in the micron or nanoscale is known
as nano-micro gel [28–33].

2.2. Luminescent Materials

Luminescence mainly refers to the process of absorbing external energy inside an
object at the ground state, reaching to the excited state, and finally, releasing the energy
through light emission to get back to the ground state. According to the kind of energy
absorbed, luminescence can be divided into photoluminescence (PL), electroluminescence
(EL), chemiluminescence (CL), and sonoluminescence (SL). PL is a phenomenon in which
an object emits light upon irradiation by ultraviolet light or visible light [34]. EL is the
phenomenon of luminescence when an object passes through an electric current or is in
an electric field [35]. CL refers to the luminescence phenomenon that accompanies the
generation of light in the process of chemical reactions. Electrochemiluminescence (ECL) is
one of a representative type of CL. It produces luminescence by applying a certain electrical
signal to a chemical system containing chemiluminescent substances by electrodes [36,37].
SL occurs in liquids and refers to a kind of “sonic cavitation” phenomenon in the liquid
when the liquid is subjected to strong sound waves. Specifically, bubbles are generated
in the liquid, and the bubbles are instantly reduced to a tiny volume. During the process,
they will emit flashes and release a large amount of heat [38].

Luminescent materials refer to functional materials that convert various forms of en-
ergy absorbed from the outside into light radiation. They usually emit visible light but can
also be ultraviolet and infrared light. There are many types of luminescent materials, such
as organic luminescent materials, transition metal complexes, luminescent nanomaterials,
and zinc sulfide-based materials.

Organic luminescent materials can have luminescent pathways of photoluminescence,
electroluminescence, chemiluminescence and electrochemiluminescence, in which PL
organic compounds are in the majority. Interestingly, some organic PL materials can
only emit light in a dilute solution. Once the concentration of the solution increases to
accumulate the molecules, their luminescence will weaken or even disappear entirely. This
phenomenon is called aggregation-caused quenching (ACQ) [39]. On the contrary, some
organic molecules emit weakly in low-concentration solutions, but their PL is significantly
enhanced after aggregation. This phenomenon is called aggregation-induced emission
(AIE) [40]. PL materials with these phenomena or behaviors may endow their constructed
materials with more diverse functions and stimuli-responsiveness. Currently, organic
luminescence materials are widely used and are among the most critical vital materials
in various application areas, such as fluorescent coatings, flexible optoelectronic devices,
biological probes, information-related areas, and environmental protection. Luminol is
one of the most commonly used organic CL materials, which can be oxidized by peroxides
under alkaline conditions and emit blue light at the same time [41,42].

Transition metal-organic complexes have the advantages of both inorganic and or-
ganic compounds, which drew much attention in the field of luminescence. Iridium (Ir)
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complexes, ruthenium (Ru) complexes, and lanthanide complexes are typical examples of
the metal-organic complexes [43–45]. Ir complexes are luminous bodies with good second-
and third-order nonlinear optical responses. They have excellent properties, such as high
luminescence quantum yield, large Stokes shift, and long luminescence lifetime [46]. Ru
complexes are six-coordinate octahedral configuration complexes, a triplet luminophore
with a long luminescence lifetime, long emission wavelength, and low cytotoxicity [47].
Lanthanum ion complexes are a kind of critical fluorescent material with unique metal-
controlled photoluminescence behavior due to its particular electronic structure, high
intensity, and high purity [48,49].

Fluorescent nanoparticles refer to nanoparticles or nanocrystals with less than 100 nm
diameter that can emit fluorescence [50]. The present fluorescent nanoparticles mainly
include quantum dots (QDs), carbon dots (CDs), metal nanoclusters (NCs), and perovskite
nanocrystals (PNCs), and fluorescent dye-doped silica nanoparticles (DSNPs).

QDs with unique optical and electrical characteristics are semiconductor particles with
nanostructure. Optoelectronic properties of QDs are related to the size, shape, and quantum
physics of the particles [51]. CDs are composed of spherical-like carbon nanoparticles below
10 nm and are a new type of nano-carbon material with fluorescent properties [52,53].
NCs are composed of several to a few hundred atoms. Its size is between atoms and
nanoparticles. NCs have different characteristics from metal nanoparticles, such as discrete
electronic energy levels, high quantum yields, tunable fluorescence emission and good
photostability. [54–58]. PNCs is a unique structure of perovskite, their size is on the order of
nanometers, and the quantum effect is significant [59]. DSNPs are composite luminescent
nanomaterials in which fluorescent dyes are doped into nano-silica [60].

Zinc sulfide (ZnS) is a vital semiconductor material of group II-VI with good optical
and electrical properties, which can be applied in light-emitting diodes, optoelectronic
devices, sensors, lasers, and other fields. ZnS alone is difficult to produce the stable and
excellent performance of luminescence. Indeed, the performance of ZnS nanomaterials
can be significantly improved through doping modification. The current doping mainly
includes rare earth elements, transition metal elements, and other elements, such as zinc
sulfide doped copper (ZnS:Cu) and zinc sulfide doped manganese (ZnS:Mn) [61,62].

2.3. Conductive Materials

Conductive materials are the substance that can provide conductivity under the action
of an electric field. So far, various conductive materials were developed, mainly including
conductive nanomaterials, conductive polymers, ionic conductors, and low-molecular
weight organic compounds with the conjugated structure.

Ionic conductors conduct electricity through the directional movement of ions. Ionic
conductors cannot complete the conductive task independently, and often need to be used
in connection with electronic conductors. Usually, inorganic salt ions are dissolved in the
solution or doped into materials containing the solution (such as hydrogel) to prepare
the ion conductor. Most of the ions are free in the solution, namely free ions. In some
cases, ions have interactions with material matrix. For example, some metal ions can form
coordination bonds with gel network chain and act as both physical cross-linking points
and conductive species [63,64].

Ionic liquids (ILs) are a special kind of ion conductor, which are liquids composed
entirely of ions. It has the characteristics of high conductivity, low vapor pressure, and good
stability. In addition, the melting point of ILs is relatively low, usually below 100 ◦C [65–67].
Deep eutectic solvents (DES) are composed of two or more clean and safe ingredients (urea,
choline chloride, etc.) through hydrogen bond interaction. Deep eutectic solvents usually
remain liquid below 100 ◦C. They have many similarities with ionic liquids but are cheaper
and safer than ionic liquids [68,69].

Some low-molecular weight conjugated organic compounds can also exhibit conduc-
tivity in supramolecular gels. These compounds can assemble to form fibers through
noncovalent interactions such as π-π stacking, donor-acceptor interaction, hydrogen bond,
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electrostatic interaction, and van der Waals interaction. The fibers can form network
through further assemble and intertwine. Electrons can transport through the π-conjugated
fiber chain, which endow the material with conduction [70–72].

Conductive polymers are organic electronically conjugated macromolecules character-
ized by their ability to conduct electrons. They transport electrons through π-conjugated
chains and “doping” processes involving chemical or electrochemical methods. Polyani-
line (PANi), polythiophene, polypyrrole (PPy), and poly(3,4-ethylenedioxythiophene):
polystyrene sulfonate (PEDOT:PSS) are typical conductive polymers. PANi, a chemical
or electrochemical polymerized monomer aniline substance, are commonly used con-
ductive polymers to construct soft conductive materials. It has the advantages of easy
synthesis, antibacterial property, high conductivity, and promotion of cell proliferation and
differentiation [73,74].

Conductive nanomaterials are another large group of conductive materials. They are
mainly divided into two categories, carbon-based nanomaterials, and metal-based nanopar-
ticles. Carbon-based nanomaterials mainly include graphene, carbon black, carbon fibers
(CFs), fullerene, and carbon nanotubes (CNTs). Carbon-based nanomaterials are considered
one of the most promising conductive materials due to their unique high conductivity, en-
vironmental stability, and low production cost. Among the above-mentioned carbon-based
nanomaterials, graphene is a two-dimensional carbon nanomaterial composed of a single
layer of carbon atoms with an sp2 hybrid hydrocarbon skeleton, which has superconductiv-
ity, high surface area, outstanding thermal conductivity, and excellent mechanical strength.
Thus, it is an excellent carbon-based conductive dopant to be widely applied in soft mate-
rials for biosensing and bioelectronics [75,76]. Metal-based nanoparticles are nano-scale
particles, and their optical properties and electrical conductivity are affected by the size.
Metal-based nanomaterials have a high electrical conductivity of bulk metals, and have the
properties of nanomaterials (magnetic properties, catalytic properties, and antibacterial
properties), making them have potential applications in biomedicine. Au nanoparticles
(Au NPs), Au nanoclusters (Au NCs), Ag nanofibers (Ag NFs), and Ag nanowires (Ag
NWs) are typical metal-based nanoparticles usually used in soft conductive materials. In
particular, Au NPs are critical metal nanoparticles with unique conductive, optical, and
magnetic properties, ease synthetic procedure, high stability, and good biocompatibility.

3. Gel-Based Luminescent Conductive Materials

The gel is a remarkably flexible material. In recent years, due to the good biocom-
patibility, flexibility, stretchability, and functionality, it was always at the forefront of
developing smart materials. Gel-based luminescent conductive materials are an emerging
type of multifunctional flexible materials with both luminescent and conductive properties,
which is an ideal choice for wearable electronic devices, sensors, soft robotics, and many
other high-tech field applications [77–80]. This section will review gel-based luminescent
conductive materials, focusing on their preparation, constitution and network structure,
and properties. Two kinds of materials are involved. One is the luminescent conductive gel,
which is a gel with both luminescent and conductive properties. The other is gel composite
with luminescent and conductive properties, composed of luminous or conductive gel
combining with flexible materials such as elastomers.

3.1. Luminescent Conductive Gels

Luminescent conductive gels are generally prepared by introducing conductive ma-
terials and luminescent materials into the gel matrix. Different synthetic methods were
developed to prepare luminescent conductive gels.

Luminescent materials and conductive materials can also be components of the gel
network. Ajayaghosh and Sánchez et al. reported that N-annulated perylenedicarboxamide
(NPDC) (Figure 2A) self-assembled in toluene to form columnar aggregate fibers. Then, the
fibers bound to form an organic gel. Fluorescent property of NPDC endowed the gel with lu-
minescence behavior. The gel can convert between sol and gel under temperature changes,



Materials 2021, 14, 6759 6 of 26

and emit light green fluorescence under 360 nm ultraviolet (UV) light (Figure 2B,C). The
emission spectrum of the gel covers the visible spectrum and shows maximum emission
intensity at about 546 nm (Figure 2D). Atomic force microscopy (AFM) imaging revealed
the gel is composed of fine thread-like fibers (Figure 2E). NPDC is low-molecular weight
conjugated organic compounds, which can form a π-conjugated chain through π-π stack-
ing. Electrons are transported through the π-conjugated chain, making the gel conductive.
The electrical conductivity of the gel is good, and its electrical conductivity measured by
Four-Probe Conductivity (FPC) is 1.92 × 10−4 S·m−1 (Figure 2F) [81].
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Introducing metal ions to coassemble with LMWGs can also affords supramolecular
luminescent conductive gel. Dubey et al. used a citric acid derived ligand (CADL), LiOH,
and Cd(OAc)2 to synthesize a fluorescent metal gel with multistimuli responsiveness
through ultrasound induction in N,N-dimethylformamide (DMF). At the beginning, Cd2+

and CADL complexed without forming a gel. After ultrasonic treatment, the Cd2+ ions
were demetalized and recomplexed, eventually leading to gelation (Figure 2G). The gel
emits blue light when irradiated by UV light. It emits light with AIE and ACQ phenomena.
The fluorescence intensity decreases when the gel is diluted from 10−2 M to 10−3 M, and
the fluorescence intensity increases from 10−3 to 10−4 M (Figure 2H). The gel conducts elec-
tricity through the directional movement of Li+ and Cd2+ in the network. The conductivity
of the gel itself is poor (4.5 × 10−3 S·m−1), but it can be effectively increased by about ten
times after ultrasonication (4.06 × 10−2 S·m−1) (Figure 2I). This is because the inside of
the gel becomes more organized or orderly after ultrasonication, which increases the Li+

mobility [82].
Table 1 summarized that some typical luminescent conductive gels are composed of

self-assembled functional low molecular-weight gelators or low molecular-weight gelators
with ions constitute gel matrix.
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The polymer-based gel can be used as a matrix to construct luminescent conductive
gels. Li and Shan et al. designed an ECL hydrogel for xanthine detection. Firstly, a
conductive polymer hydrogel of polyaniline (PAni) (PAni–ATMP) was prepared from
aniline (Ani), amino trimethylene phosphonic acid (ATMP), and (NH4)2S2O8. Then, the
N-(aminobutyl)-N-(ethylisoluminol) functionalized silver nanoparticles (ABEI–Ag) were
immobilized on the hydrogel (ABEI–Ag@PAni–ATMP) by ATMP. Finally, the gel was
combined with xanthine oxidase (XOD). The electrical conductivity of the gel was provided
by PAni. When xanthine acts on the hydrogel with an electric field, H2O2 is decomposed
by electrochemically reacting with ABEI–Ag, and an ECL signal occurs (Figure 3A). The
Nyquist plot was measured with Ani–ATMP and PAni–ATMP modified glassy carbon
electrodes (GCE). Compared with the semicircle diameter of Ani–ATMP, the semicircle
diameter of PAni–ATMP modified GCE was significantly reduced, indicating that the gel
has excellent conductivity (Figure 3B). In the presence of 20 µM H2O2 on ABEI–Ag@PAni–
ATMP gel, a clear ECL signal was observed, and the ECL signal reached about 6000 au.,
the ECL peak was located at about 0.7 V (Figure 3C) [26].
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permission [83]; copyright 2019, American Chemical Society.
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There are also some other typical examples of luminescent conductive gels with a
polymer-based network as the matrix. The information about them is also summarized
in Table 1.

Carbon-based nanomaterials can also be used as a matrix to construct luminescent
conductive gels. Jin and Chen et al. prepared an ECL gel based on graphene hydrogel
(GH). The preparation scheme is shown in Figure 3D. Au NPs modified with glucose
transporter 1 antibody (GLUT1–Ab) and bovine serum albumin (BSA) were immobilized
on GH. Human skeletal muscle cells (HSMC) containing GLUT1 and GLUT4 on the surface
are labeled with GLUT4–Ab-functionalized carbon dots (CDs–GLUT4–Ab) by GLUT4.
After the labelled cells were fixed on the GH-based electrode, a gel with ECL is prepared
(GH/AuNPs/GLUT1–Ab/BSA/cell@CDs–GLUT4–Ab). When an electrochemical reaction
occurred, the co-reactant K2S2O8 diffused through the GH and reacted with the CD on the
bottom surface of the HSMC to generate an ECL signal (Figure 3D). GH/AuNPs/GLUT1–
Ab/BSA/cell@CDs–GLUT4–Ab is conductive (Figure 3E). As the concentration of GLUT4
increased, the ECL peak value continued to decrease (Figure 3F) [83].

In addition, some representative examples, which are some luminescent conductive
supramolecular gels constructed from nanomaterials, are summarized in Table 1.

Besides luminescent conductive gels, some photoluminescent supramolecular gels
can respond to the electric field. The medium of the gel is liquid crystal, which has certain
responsiveness to the electric field. Networks of the gels are formed through the self-
assembly of luminescent low-molecular-weight gelators. The liquid crystal can be aligned
by applying the electric field and changing the transmittance of the gel. Under the action
of an electric field, the optical behavior, such as fluorescence intensity [84], switching of
optical transmittance [85], and optical contrast [86], of the luminescent gel can change.
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Table 1. Summary of information of typical luminescent conductive gels involved in this review.

No. Gel Type Network a Dispersing
Medium b Conductive Species Electrical Parameter Luminescent Species λex/λem (nm) c Application Ref.

1 supramolecular bulk
organogel
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Table 1. Cont.

No. Gel Type Network a Dispersing
Medium b Conductive Species Electrical Parameter Luminescent Species λex/λem (nm) c Application Ref.

5 supramolecular bulk
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7 supramolecular bulk
organogel
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9 supramolecular
micro-hydrogel

SnO2 + chemically converted
graphene (CCG) H2O CCG

Conductivity
(S·cm−1):

350
rhodamine B 555/~573 DNA detection [93]

10 supramolecular bulk
hydrogel nitrogen-doped graphene (NG) H2O NG - luminol - Escherichia coli

sensing [94]
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Table 1. Cont.

No. Gel Type Network a Dispersing
Medium b Conductive Species Electrical Parameter Luminescent Species λex/λem (nm) c Application Ref.

11 polymeric bulk
hydrogel polyaniline (PAni) + phytic acid (PA) H2O PAni, PA -

N-(aminobutyl)-N-
(ethylisoluminol)

(ABEI)
- Live cell H2O2

detection [95]

12 polymeric bulk
hydrogel PAni + poly(acrylic acid) (PAA) H2O PAni, AuNP Resistance (Ω):

24
luminol, CdTe,

quantum dot (QD) - cytosensor [96]

13 supramolecular bulk
hydrogel graphene H2O graphene, AuNP - carbon dot (CD) 410/~517

cytosensor,
glucose

transporter 4
expression
evaluation

[83]

14 polymeric bulk
hydrogel PAni + ATMP H2O PAni - ABEI - xanthine detection [26]

15 polymeric bulk
hydrogel BSA + Au/Ag nanocluster (NC) H2O Na+, K+, PO4

3− ,
Cl− , NO3

− - Au/Ag NC 500/~620 detection of
glutathione (GSH) [97]

16 supramolecular bulk
hydrogel AuAXP nanocluster (NC) + Ca2+ H2O Ca2+, Cl− - AuAXP NC ~500 nm ECL detection of

calmodulin [98]

17 supramolecular bulk
hydrogel Ag-melamine metal-organic gel (Ag-MOG) H2O Ag-MOG -

Tri(2,2’-bipyridyl)
dichlororuthenium(II)

(Ru(bpy)3
2+);dichlorotris

(1,10-phenanthroline)
ruthenium (II)
(Ru(phen)3

2+)

- DNA detection [99]

18 supramolecular bulk
hydrogel Au NP H2O

graphite-like carbon
nitride (g-C3N4),

Au NP
- Au NP ~465 ECL Zika Virus

DNA detection [100]

19 supramolecular bulk
hydrogel Ag9 NC H2O Ag9 NC Resistance (Ω):

586 Ag9 NC 234/~575 methyltransferase
Assay [101]

20 supramolecular bulk
hydrogel

tris(4,4′-dicarboxylicacid-2,2′-bipyridyl)
ruthenium (II) dichloride (Ru(dcbpy)3

2+) +
4′-(4-carboxyphenyl)-2,2′ :6′ ,2′’-terpyridine

(Hcptpy) + Tb3+

H2O Tb3+, Ru2+,
Cl− , NO3

− - Ru(dcbpy)3
2+,

Tb complex
-/~608.4;
~679 ECL

epinephrine
detection [102]

21 Supramolecular bulk
aerogel MoS2 nanosheet (NS) air MoS2 NS Resistance (Ω):

115

polydopamine NP
with phenylboronic

acid (PBA)
(PDA-PBA NP)

-/~457
(PDA-PBA NP);

~600, 562, 552 ECL
(PDA-PBA NP)

MiRNA-126
detection [103]

22 polymeric bulk
organogel

poly(ethyl
acrylate-r-styrene-r-divinylbenzene)

(PEA-r-PS-r-PDVB)

1-ethyl-3-
methylimidazolium
bis(trifluoromethy

lsulfonyl) imide
([EMI][TFSI])

[EMI][TFSI] Resistance (Ω):
77,520 Ru(bpy)3(PF6)2 ~612 ECL wearable ionoskin [104]
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Table 1. Cont.

No. Gel Type Network a Dispersing
Medium b Conductive Species Electrical Parameter Luminescent Species λex/λem (nm) c Application Ref.

23 polymeric bulk
organogel

poly(vinylidene
fluoride-co-hexafluoropropylene)

(P(VDF-co-HFP))

1-alkyl-3-
methylimidazolium
bis(trifluoromethy

lsulfonyl)imide
([AMI][TFSI]

including
[EMI][TFSI],
[BMI][TFSI],

[HMI][TFSI], and
[DMI][TFSI])

[AMI][TFSI]

Conductivity
(S·cm−1):

2.5 × 10−3

([EMI][TFSI]);
1.5 × 10−3

([BMI][TFSI]);
0.60 × 10−3

([HMI][TFSI]);
0.28 × 10−3

([DMI][TFSI])
Resistance (Ω):

226 ([EMI][TFSI])
381 ([BMI][TFSI])
939 ([HMI][TFSI])

2018 ([DMI][TFSI])

2,2′-bipyridyl-bis
[2-(2′ ,4′-

difluorophenyl)pyridine]-
iridium(III)

hexafluorophosphate
Ir(diFppy)2(bpy)PF6;

Ru(bpy)3(PF6)2

green ECL;
red ECL display material [105]

24 polymeric bulk
organogel poly(4-vinyl pyridine) (P4VP) pyridine P4VP

Resistance (MΩ)
9–10 (after

385 nm radiation)
P4VP 280/~364, 440 - [106]

25 polymeric bulk
xerogel

poly(N-[5-(8-
hydroxyquinoline)methyl]aniline) (PNQA)

+ V2O5

air PNQA

Conductivity
(S·cm−1)

(after aging):
3.1×10−3

PNQA 373/~471 - [107]

26 polymeric bulk
organogel poly(methyl methacrylate) (PMMA)

1-butyl-3-
methylimidazolium
bis(trifluoromethane

sulfonyl)imide
([Bmim][N(Tf)2])

[Bmim][N(Tf)2]
Conductivity

(S·cm−1)
10−3

[(Bu’2bpy)
Pt(C≡CC6H4tpy)]

[Eu(hfac)3]2

310/~616 - [108]

27 polymeric bulk
organogel

poly(N-isopropylacrylamide-co-N-
vinylcarbazole)

(P(NVC-co-NIPA))
dioxane P(NVC-co-NIPA)

Conductivity
(S·cm−1)

(treated by CAN):
0.017 (S1); 0.19 (S2);
0.20 (S3); 0.22 (S4);
0.25 (S5); 0.43 (S6)

P(NVC-co-NIPA)

300/- (S1); 300/~373
(S2); 300/~373 (S3);
300/~380, 410 (S4);
300/~380, 410 (S5);

300/~420 (S6)

- [109]

28 polymeric bulk
hydrogel

La-cholate/poly(acrylamimde)
double network H2O La3+, Na+,

CH3COO− , Cl−
Conductivity

(S·cm−1):
3 × 10−3

La complex -/~430 strain sensor [110]

29 polymeric bulk
organogel poly(MMA–HEMA) PC-γ-GBL

mixture TBABF4 - TPETPAOMe
BTOTPAOMe -/~505; -/~551 electrofluorechromic

devices [111]

a network composition of gel; b some abbreviations of solvents: AN: acetonitrile, EG: ethylene glycol; MeOH: methanol; EtOH: ethanol; PrOH: propanol, t-BuOH: n-butanol, DMF: N,N-dimethylformamide,
PC: propylene carbonate, γ-GBL: γ-butyrolactone; c λex: excitation wavelength (for fluorescence), λem: emission wavelength at maximum intensity of main band (for fluorescence).
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3.2. Luminescent Conductive Gel Composites

The luminescent conductive gel composite is a material composed of multiple layers
of materials with the participation of gel. It is mainly composed of a conductive layer and
a luminescent layer [99,112–115]. Park et al. combined methylammonium lead bromide
perovskite nanocrystals (MAPbBr3 PNCs) with aromatic interaction-induced nonpolar
organogels (AINOs) through physical or chemical interactions to prepare luminescent green
nanocomposite gels (PNC@AINOs). Among them, the one that bound MAPbBr3 PNCs to
AINOs through physical interaction is M-PNC@AINOs, and the one that bound chemically
is V-PNC@AINOs. PNC@AINO gel can emit bright green light under UV light (Figure 4A)
originating from PNCs. V-PNC@AINO was used to fabricate a gel composite which was
mainly composed of three layers. The first layer was a LiCl containing polyacrylamide
(PAAm) hydrogel. The second layer was an EL elastomeric layer composed of ZnS:Cu-
BaTiO3 and Ecoflex. The above two layer constituted a stretchable alternating current
(AC) electroluminescence (ACEL) layer. The third layer was the V-PNC@AINO color
conversion layer (Figure 4B). The ACEL layer can emit bright sky-blue light under the
action of an AC electric field. When an AC electric field is applied to the device, the blue
light emitted by the ACEL layer excites V–PNC@AINO to emit bright green light through
photoluminescence (Figure 4C). The composite device has very little loss of brightness
during the color conversion process. Regardless of the applied electric field, the color
conversion efficiency remains around 97% (Figure 4D) [116].
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Figure 4. (A) Schematic of structure of green luminescent perovskite nanocomposite gel. (B) Schematic of design of the
organogel/Ecoflex/organogel composite-based light-emitting device. (C) Photographs of emission color from ACEL layer
without (upper) and with V-PNC@AINO layer (lower). Scale bar = 1 cm. (D) Applied AC electric field dependence of
Luminance of devices without and with V-PNC@AINO layer. Adapted under terms of Creative Commons Attribution 4.0
International License (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/, accessed on 3 September 2021) [116];
copyright 2020, authors, published by Springer Nature.
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For another example, Fan and Zhi et al. reported a self-healable electroluminescence
gel composite device with a sandwich structure. The top and bottom layers are composed
of self-healable conductive polyacrylic acid hydrogel, and the middle layer is composed of
self-healable phosphor polyurethane. The device emitted blue light after being energized.
Because of the self-healing property, the luminescence performance of the devices can be
recovered with high healing efficiency. [117]. Yuan et al. reported an electroluminescence
gel composite device with the same sandwich structure. LiCl/agar/polyacrylamide double
network hydrogel gel was used as the top and bottom electrodes. The electroluminescent
emissive middle layer was composed of polydimethylsiloxane (PDMS) and ZnS:Cu. The
device emits blue light when it is energized. The device made of the ion hydrogel as the
conductive layer could obtain better luminous brightness than the indium tin oxide (ITO)
as the conductive layer [118].

Typical examples of some luminescent conductive gel composites constructed by
combining gel with other materials are summarized in Table 2.
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Table 2. Summary of information of typical luminescent conductive gel composites involved in this review.

No. Layer I Layer II Layer III Conductive
Species Electrical Parameter Luminescent

Species
Luminescent

Parameter Application Ref.

1
polystyrene organic gel +

MAPbBr3 PNC
(luminescent layer)

Ecoflex + ZnS:Cu + BaTiO3
(luminescent layer)

PAAm hydrogel + LiCl
(ionic conductive layer) Li+, Cl− - MAPbBr3 PNC;

ZnS:Cu

λex(PL)/λem(PL):
365/~525

(V-PNC@AINO);
EL color:

blue
(ZnS:Cu-based layer)

soft EL devices [116]

2 PAA hydrogel + NaCl
(ionic conductive layer)

polyurethane + ZnS particle + boron
nitride nanosheet

(luminescent layer)

PAA hydrogel + NaCl
(ionic conductive layer) Na+, Cl−

Conductivity
(S·cm−1):
2 × 10−3

ZnS particle λem(EL):
~450; ~500; ~588

light-emitting
device [117]

3 Ecoflex + ZnS:Cu
(luminescent layer)

PAA hydrogel + NaCl
(ionic conductive layer) Ecoflex Na+, Cl− - ZnS:Cu λem(EL):

~520
wearable smart

skin [27]

4
agarose-polyacrylamide
(PAAm) hydrogel + LiCl
(ionic conductive layer)

polydimethylsiloxane (PDMS)
elastomer + ZnS:Cu
(luminescent layer)

agarose-
polyacrylamide
hydrogel + LiCl

(ionic conductive layer)

Li+, Cl− Resistance (Ω):
~20,000 ZnS:Cu EL color:

blue

wearable sensor;
flexible

EL device
[118]

5
PAAm hydrogel + LiCl

(ionic conductive
fiber core)

PSPI elastomer + ZnS;
PSPI elastomer + CdTe/ZnS QD

(luminescent sheath)
- Li+, Cl−

Conductivity
(S·cm−1):

0.16
ZnS; CdTe/ZnS QD

EL color:
blue

(ZnS-based sheath);
PL color:

pink
(QD-based sheath)

wearable
motion sensor [119]

6
PDMS +

carbon nanotube (CNT)
(conductive layer)

red: Ru(bpy)3(PF6)2 + [EMI][TFSI] + polymethyl
methacrylate (PMMA) +

polyethylene glycol (PEG);
green: bis-[2-(2,4-difluorophenyl) pyridin

ate](2,2′-dimethyl-4,4′-bipyridine)iridium(III)
hexafluorophosphate ([Ir-(Fppy)2(dmb)]PF6) +

[EMI][TFSI] + PMMA + PEG;
blue: 9,10-diphenylanthracene
(DPA) + PMMA + LiCF3SO3

(luminescent conductive organogel layer)

-
CNT;

[EMI][TFSI;
LiCF3SO3

Resistance (Ω·sq−1):
805.2–73.5 (CNT
solution volume

250–2000 µL)
(conductive layer)

Ru(bpy)3(PF6)2,
[Ir-(Fppy)2(dmb)]

PF6, DPA

λem(EL):
~616 (red layer);

~532 (green layer);
~430 (blue layer)

wearable sensor [120]

7
single-walled carbon

nanotube (SWNT)
(conductive fiber core)

supramolecular organic gel of
pyrene-based LMWG

(luminescent middle layer)
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4. Applications in Biosensors and Bioelectronics

Gel-based luminescent conductive materials are a combination of conductive materials,
luminescent materials, and gels. They were widely applied in biology-related areas. In this
section, the applications in the areas of biosensors and bioelectronics are reviewed.

4.1. Biosensors

A biosensor refers to a device that can convert the concentration information of
biological substances into signals such as light and electricity. The development of high-
sensitivity, fast response, convenient manipulation, and low-cost biosensors is important
for modern biomedicine. Luminescent conductive gels with features of gels, luminescent
and conductive materials are suitable platforms for biosensor development. Particularly,
luminescent conductive gels with ECL are widely used as biosensors to detect biomolecules,
cells, and microorganisms.

Guo et al. reported a hydrogel biosensor that can be used to detect glutathione (GSH).
The hydrogel comprises BSA and Au/Ag alloy nanoclusters (Au/Ag NCs). The sensing
system detects GSH through the decrease of ECL intensity in the presence of triethylamine
(TEA). This mechanism is due to the reaction between GSH and TEA•+ radicals produced
from electro oxidation of TEA, which inhibits the reaction between TEA•+ radicals and
Au/Ag NCs, leading to the quenching of ECL (Figure 5A). The ECL intensity of the sensor
decreases as the GSH concentration increases. When the GSH concentration is between 20
and 200 × 10−6 M, the ∆ECL signal (∆ECL = I0 − I) has a linear relationship with the GSH
concentration, and the correlation coefficient is 0.982. The detection limit is 8.7 × 10−6 M
(Figure 5B). In addition to detecting GSH, the sensing system also has anti-biofouling and
self-healing properties. These characteristics make it suitable for long-term biosensing
applications [97]. Wang et al. reported a hydrogel biosensor that can be used to detect
calmodulin (CaM). The gel network was formed by connecting Au AXP and Ca2+. The gel
has both AIE and aggregation-induced electrochemiluminescence (AIECL) behaviors, and
its AIECL signal is 10-times that of AIE (Figure 5C). CaM can specifically bind to the Ca2+

inside the gel to effectively regulate AIECL dynamics, and the ECL signal decreases with
the increment of CaM concentration (Figure 5D). Within 0.3–50 µg·mL−1, the ECL intensity
of the biosensor has a linear relationship with the CaM concentration. The detection limit
of the sensor is 0.1 µg·mL−1 (Figure 5E) [98].

Ding and Luo et al. reported the construction of an ECL hydrogel cell sensor for
detecting cancer cells. PAni-based conductive polymer hydrogel (CPH) was modified with
aptamer-tagged Au NPs and was deposited on ITO electrodes. CdTe QDs tagged with
the aptamer (CdTe-Apt 2) of cancer cells were used to label cancer cells. The aptamer
part facilitated the capture of the cancer cells by the hydrogel electrode surface and the
QD part acted as the detection signals. Luminol as another luminogen embedded in CPH
was used as internal standards. The electrochemiluminescence of the formed ratiometric
sensor system has double peaks, one is the signal of CdTe-Apt 2 on cancer cells and the
other is the luminol signal as the internal standard (Figure 6A) to quantify cancer cells by
comparing the sensitivity difference of the bimodal ECL signals with that of target analytes.
The ECL intensity of CdTe QDs increases with the increment of cell concentration from
100–6500 cells mL−1, while the ECL intensity of luminol keeps unchanged (Figure 6C).
The ratio of ∆ECLCdTe and ∆ECLluminol has a linear relationship with the concentration of
target cells in the cell concentration range. The detection limit of the sensor is 80 cells mL−1

(Figure 6D) [96].



Materials 2021, 14, 6759 17 of 26Materials 2021, 14, x FOR PEER REVIEW 19 of 28 
 

 

 415 
Figure 5. (A) Schematic of mechanism of GSH sensing by Au/Ag NCs@BSA hydrogel. (B) Calibration plot about ΔECL 416 
intensity as a function of GSH concentration with inset being linear relationship between ΔECL intensity and GSH 417 
concentration. Adapted with permission [97]; copyright 2020, Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim. (C) 418 
Schematic of ECL calmodulin sensor based on bivalent cations-NCs hydrogel. (D) Relationship between ECL intensity 419 
and CaM concentration. (0–50 μg mL−1 from left to right) (E) ECL intensity as a function of CaM concentration. Adapted 420 
with permission [98]; copyright 2019, Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim. 421 

Ding and Luo et al. reported the construction of an ECL hydrogel cell sensor for 422 
detecting cancer cells. PAni-based conductive polymer hydrogel (CPH) was modified 423 
with aptamer-tagged Au NPs and was deposited on ITO electrodes. CdTe QDs tagged 424 
with the aptamer (CdTe-Apt 2) of cancer cells were used to label cancer cells. The aptamer 425 
part facilitated the capture of the cancer cells by the hydrogel electrode surface and the 426 
QD part acted as the detection signals. Luminol as another luminogen embedded in CPH 427 
was used as internal standards. The electrochemiluminescence of the formed ratiometric 428 
sensor system has double peaks, one is the signal of CdTe-Apt 2 on cancer cells and the 429 
other is the luminol signal as the internal standard (Figure 6A) to quantify cancer cells by 430 
comparing the sensitivity difference of the bimodal ECL signals with that of target 431 
analytes. The ECL intensity of CdTe QDs increases with the increment of cell 432 
concentration from 100–6,500 cells mL−1, while the ECL intensity of luminol keeps 433 
unchanged (Figure 6C). The ratio of ΔECLCdTe and ΔECLluminol has a linear relationship 434 
with the concentration of target cells in the cell concentration range. The detection limit of 435 
the sensor is 80 cells mL−1 (Figure 6D) [96]. 436 

Figure 5. (A) Schematic of mechanism of GSH sensing by Au/Ag NCs@BSA hydrogel. (B) Calibration plot about
∆ECL intensity as a function of GSH concentration with inset being linear relationship between ∆ECL intensity and
GSH concentration. Adapted with permission [97]; copyright 2020, Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim.
(C) Schematic of ECL calmodulin sensor based on bivalent cations-NCs hydrogel. (D) Relationship between ECL intensity
and CaM concentration. (0–50 µg mL−1 from left to right) (E) ECL intensity as a function of CaM concentration. Adapted
with permission [98]; copyright 2019, Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim.

For the microorganism sensing, Wang et al. reported an ECL Escherichia coli (E. coli)
aptasensor which was prepared by luminol, AgBr NPs, 3D nitrogen-doped GH (3DNGH),
and amine-functionalized E. coli aptamer (NH2-aptamer) (Figure 7A). This sensor can
respond E. coli by decreasing the ECL intensity. As the concentration of E. coli increases,
the ECL intensity gradually decreases (Figure 7B). The sensor has good performance with
the linear sensing range of 0.5–500 cfu·mL−1 and the detection limit of 0.17 cfu·mL−1

(Figure 7C) [94].



Materials 2021, 14, 6759 18 of 26Materials 2021, 14, x FOR PEER REVIEW 20 of 28 
 

 

 437 
Figure 6. (A) Schematic of ratiometric ECL cytosensor working principle. (B) EIS characterization of sensing interfaces in 438 
0.1 PBS (pH 7.4) with 0.1 KCl and 5.0 mM [Fe(CN)6] 3–/4–. (C) Time dependence of ECL intensity of CdTe nanoprobes with 439 
different MCF-7 cell concentrations (100–6500 cells·mL−1). (D) Calibration ΔECLCdTe/ΔECLluminol−cell concentration curve. 440 
Adapted with permission [96]; copyright 2019, American Chemical Society. 441 

For the microorganism sensing, Wang et al. reported an ECL Escherichia coli (E. coli) 442 
aptasensor which was prepared by luminol, AgBr NPs, 3D nitrogen-doped GH (3DNGH), 443 
and amine-functionalized E. coli aptamer (NH2-aptamer) (Figure 7A). This sensor can 444 
respond E. coli by decreasing the ECL intensity. As the concentration of E. coli increases, 445 
the ECL intensity gradually decreases (Figure 7B). The sensor has good performance with 446 
the linear sensing range of 0.5–500 cfu·mL−1 and the detection limit of 0.17 cfu·mL−1 (Figure 447 
7C) [94]. 448 

Figure 6. (A) Schematic of ratiometric ECL cytosensor working principle. (B) EIS characterization of sensing interfaces
in 0.1 PBS (pH 7.4) with 0.1 KCl and 5.0 mM [Fe(CN)6] 3–/4–. (C) Time dependence of ECL intensity of CdTe nanoprobes
with different MCF-7 cell concentrations (100–6500 cells·mL−1). (D) Calibration ∆ECLCdTe/∆ECLluminol−cell concentration
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4.2. Bioelectronics

In recent years, bioelectronics has gradually changed human-computer interaction,
such as wearable electronic devices, implantable electronic devices, and human motion
detection systems. Flexible bioelectronics can accurately respond to various stimuli in the
environment in real-time and output in the form of electrical signals. Moreover, it plays a
critical role in intelligent sports, software robots, biomedical monitoring, and diagnosis
confirmation. Gel-based luminescent conductive materials combine the flexibility and
good biocompatibility of gels with conductivity and fluorescence that can respond to
environmental stimuli, making them have excellent application prospects in the field of
flexible bioelectronics.
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BSA/aptamer/GA/CHIT/luminol/AgBr/3DNGH/GCE nanocomposites before (b) and after (c) E. coli reaction. Adapted
with permission [94]; copyright 2017, Elsevier Ltd.

Chen et al. designed and fabricated a luminescent conductive La-cholate/PAAm
double network (DN) hydrogel with La3+-cholate-based supramolecular network as the
first network and chemically cross-linked polyacrylamide (PAAm) as the second network
(Figure 8A). The hydrogel emits blue fluorescent light, and the emission intensity decreases
as the stretched length increases (Figure 8B). The ionic conductivity of the gel is 0.3 S·m−1,
and it decreases as the stretched length increases. The gel was used as a strain sensor
to monitor human movements. The results showed that the DN hydrogel can detect the
movement of fingers, wrists, and knees. When the finger attached by the gel was bent at
different angles from 0 to 120◦, the resistance ratio of the gel could be observed to increase
and recover at different angles (Figure 8C,D). The gel could also show resistant signal
changes under the cyclic wrist bending from 0◦ to 45◦ (Figure 8E) and the knee bending
0◦ to 90◦ (Figure 8G). In addition, La-cholate/PAAm DN hydrogel can also detect human
breathing and speech. When the gel was applied to the abdomen, the gel sensor could
clearly record the small changes in the abdomen during breathing (Figure 8I,J). At the
same time, the gel sensor located in the throat can change the resistance according to the
vibration of the throat when speaking (Figure 8K,L) [110].
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Figure 8. (A) Schematic of La-cholate/PAAm DN hydrogel network structure. (B) Fluorescent photographs of hydrogel
under different strains. (C) Photographs show hydrogel adhered on a finger with different bending angles. (D) Change
of resistance ratio of hydrogel with different bending angles. Photographs showing cyclic bending of wrist from 0 to
45◦ (E) and relative resistance ratio change (F). Photographs showing cyclic bending of knee from 0 to 90◦ (G) and relative
resistance ratio change (H). (I,J) Recording breathing during inspiration and expiration. (K,L) Detection of vibration of
human throat during speaking. Adapted with permission [110]; copyright 2019, Elsevier Ltd.

Zhi et al. developed a multifunctional wearable smart skin device with touch-sensing,
exteroception-visualizing, and energy-harvesting capabilities. The device consisted of
three layers of dielectric elastomer (Ecoflex), conductive polyacrylic acid (PAA) hydrogel
containing NaCl, and Ecoflex-ZnS EL layer (Figure 9A). To study the function of smart
skin, a 3 pixels × 3 pixels sensor array was made with every constituted block of a size
of 1 × 1 cm. The sensor array was attached to the hand, and when a single pixel was
pressed in chronological order, the corresponding voltage signal output could be observed
(Figure 9B,C). When a T-shaped acrylic plate was placed on the smart skin pixel, the
force of the T position could be effectively detected (Figure 9D). The luminescence of the
smart skin can respond to changes in force, and the luminous intensity has a nonlinear
positive correlation with the applied force (Figure 9E). In addition, by randomly drawing
various shapes on the smart skin, the real-time luminescence signal of the skin could be
immediately visualized (Figure 9F). The smart skin can also collect mechanical energy,
which can light up the LED circuit by tapping the smart skin with hand (Figure 9G). The
mechanical energy of the smart skin can be converted into electrical energy for continuous
output and can charge the electronic watch (Figure 9I). Figure 9H is the equivalent circuit
of this process [27].
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Figure 9. (A) Structural configuration of Ecoflex/hydrogel/Ecoflex gel composite-based smart skin device. (B) Photograph
of the smart skin containing nine hydrogel pixels on back of a hand. (C) Electric signals at different pixels for detection of
pressure location. (D) Voltage signals of nine pixels with a “T” shaped acrylic plate placed on skin. (E) Mechanoluminescent
intensity of skin at various pressure magnitudes. (F1–4) Photographs of a real-time tracking of ML signals by external
force. (G) Photograph of smart skin to power LEDs to demonstrate energy-harvesting property. (H) Equivalent circuit of a
self-charging system to power an electronic watch (I). Adapted with permission [27]; copyright 2019, Wiley-VCH Verlag
GmbH & Co. KGaA, Weinheim.

5. Conclusions and Perspectives

The gel-based luminescent conductive material is a perfect combination of various
properties such as adjustable mechanical strength, biocompatibility, luminescence, and
conductivity. The synergistic collection of these properties means that gel-based lumines-
cent conductive materials benefit from these properties in the application and have the
advantage of synergistic properties. Compared with that of traditional rigid sensors and
electronic devices, the flexibility, good mechanical properties, and biocompatibility of gel-
based luminescent conductive materials enable them to be used in nonplanar and various
complex biological environments. Moreover, gel-based luminescent conductive materials
have the advantages of conductive functions in sensing and electronic devices, such as
easy control, high accuracy, and mathematics of signals. Also, they have the advantages of
high sensitivity and wide linear range in the detection of luminescence functions. Mean-
while, dual-signal detection and comparison make them more reliable and accurate than
single-signal sensors and electronic devices. Diverse gel-based luminescent conductive
materials were developed due to the diversity of choices on gels, luminescent materials,
and conductive materials. With excellent optoelectronic features and biocompatibility, the
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gel-based luminescent conductive materials have shown great potential in applications in
biosensors and bioelectronics.

Although gel-based luminescent conductive materials have many excellent character-
istics, there are still many challenges to be faced. Firstly, excellent mechanical properties are
significant to wearable bioelectronics. The mechanical properties of current luminescent
conductive gels need to be improved. Their mechanical properties can be increased by
using advanced high-strength gel structures such as double network and nanocomposite
network. Secondly, the biocompatibility of the gel-based luminescent conductive mate-
rials needs to be comprehensively evaluated in clinical application. Thirdly, although
gel-based luminescent conductive materials were developed and applied in biosensors and
bioelectronics, their luminescent and electrical properties are generally used independently.
Therefore, it is necessary to design the gel network structure reasonably and intelligently at
the microscope level (molecular level or aggregation level) to realize the synergistic effect
of the two properties and significantly improve the material properties. Finally, although
gel-based luminescent conductive materials were applied in the fields of biosensors and
bioelectronics, their application is still in its infancy, and further research and development
are needed to enable commercial applications.

Overall, gel-based luminescent conductive materials are anticipated to serve as a pow-
erful platform for development of advanced biosensors and bioelectronics. It is hoped that
this review could inspire more interest in this emerging field. In addition, the illustration of
the research approach about this interdisciplinary field is hoped to showcase the thought
to exploit new interdisciplinary fields.
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