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ABSTRACT
Background: There are limited data from randomized control trials to support or refute the contention that whole-grains can enhance protein
metabolism in humans.
Objectives: To examine: 1) the clinical effects of a whole-grain diet on whole-body protein turnover; 2) the cellular effects of whole-grains on
protein synthesis in skeletal muscle cells; and 3) the population effects of whole-grain intake on age-related muscle loss.
Methods: Adults with overweight/obesity (n = 14; age = 40 ± 7 y; BMI = 33 ± 5 kg/m2) were recruited into a crossover, randomized controlled
trial (NCT01411540) in which isocaloric, macronutrient-matched whole-grain and refined-grain diets were fully provisioned for two 8-wk periods.
Diets differed only in the presence of whole-grains (50 g/1000 kcal). Whole-body protein kinetics were assessed at baseline and after each diet in
the fasted-state (13C-leucine) and integrated over 24 h (15N-glycine). In vitro studies using C2C12 cells assessed global protein synthesis by surface
sensing of translation and anabolic signaling by Western blot. Complementary epidemiological assessments using the NHANES database assessed
the effect of whole-grain intake on muscle function assessed by gait speed in older adults (n = 2783).
Results: Integrated 24-h net protein balance was 3-fold higher on a whole-grain diet compared with a refined-grain diet (P = 0.04). A whole-grain
wheat extract increased submaximal rates of global protein synthesis (27%, P < 0.05) in vitro. In a large sample of older adults, whole-grain intake
was associated with greater muscle function (OR = 0.92; 95% CI: 0.86, 0.98).
Conclusions: Consuming 50 g/1000 kcal whole-grains per day promotes greater protein turnover and enhances net protein balance in adults.
Whole-grains impact skeletal muscle at the cellular level, and are associated with greater muscle function in older adults. Collectively, these data
point to a new mechanism whereby whole-grain consumption favorably enhances protein turnover and improves health outcomes. This clinical
trial is registered on clinicaltrials.gov (identifier: NCT01411540). Curr Dev Nutr 2021;5:nzab121.
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Introduction

The goal of replacing refined-grains with whole-grains is a pillar of
many national dietary guidelines (1). Strong epidemiological evidence
across diverse populations and cultures suggests whole-grains improve
body composition (2–4). Body composition, as determined by the pro-
portion of lean body mass, is regulated by whole-body protein turnover
(WBPT) (5, 6). A small intervention study intriguingly found that a

whole-grain–rich diet had a favorable effect on protein turnover com-
pared with a refined-grain diet (7). Whole-grains have also been found
to impact blood glucose regulation and insulin secretion (8, 9), with in-
sulin being a key regulator of protein turnover (10). Intervention trial
results on body composition (11, 12), blood glucose and insulin (9, 13),
and metabolomic markers of protein metabolism all point to a poten-
tial acute benefit of replacing refined-grains with whole-grains on pro-
tein turnover and lean mass; however, this remains to be empirically
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confirmed. Indeed, well-controlled clinical trials investigating the effect
of whole-grains on muscle mass or protein turnover are sparse and in-
conclusive (7, 11, 12, 14).

Despite the prevailing epidemiological data that whole-grains im-
prove body composition, it is less clear whether whole-grain intake per
se has a physiologically meaningful impact on muscle function. The age-
related loss of muscle function is an increasing clinical concern and neg-
atively impacts mobility (15), quality of life (16), and mortality (17).
This age-related loss of muscle function results from chronic, imbal-
anced protein turnover, where rates of protein breakdown chronically
surpass rates of protein synthesis, culminating in a negative net protein
balance and loss of body protein (18). Novel approaches to address the
age-related loss of muscle function are a clinical and research need, be-
cause classical nutritional interventions that positively impact protein
turnover (e.g., increasing protein and energy intake) have shown little
effect on muscle function (19–21).

Given the absence of level 1 evidence that whole-grains can posi-
tively impact protein turnover, we implemented a multilevel approach,
which used a randomized controlled feeding trial, mechanistic cell
culture studies, and epidemiology to understand the effect of whole-
grains on protein turnover. We hypothesized a priori that when whole-
grain intake meets the USDA dietary recommendations (22), protein
turnover would be increased along with net protein balance when com-
pared with a macronutrient-matched refined-grain diet. Following with
an in vitro approach, we hypothesized that a whole-grain wheat ex-
tract would increase skeletal muscle protein synthesis at the cellular
level by activating anabolic signaling pathways [e.g., protein kinase B
(Akt)/mammalian target of rapamycin (mTOR)]. We then tested an ex-
ploratory hypothesis that whole-grains would be associated with greater
muscle function in older adults.

Methods

Study design
This human clinical trial involved a double-blind, crossover, random-
ized controlled trial, to determine the effect of a whole-grain or refined-
grain diet on total protein turnover in adults with overweight/obesity
using 2 different stable isotope tracers. The study diets were fully pro-
vided and consumed in free-living conditions. This study was approved
by the Institutional Review Board at the Cleveland Clinic and regis-
tered at clinicaltrials.gov (NCT01411540). The trial included a mul-
tilevel evaluation of cardiovascular (23), glucose metabolism (9, 13),
and protein metabolism outcomes. Cell culture studies were performed
in muscle cell lines (C2C12 myotubes) using the surface sensing of
translation (SUnSET) method (24) in combination with in-cell Western
and dual-channel near-infrared imaging to investigate global protein
synthesis along with standard Western blotting to investigate protein
synthesis signaling pathways. We used the publicly available NHANES
database to examine whole-grain intake in a clinically relevant popu-
lation at risk of developing impaired muscle function, a symptom of
chronic, imbalanced protein turnover.

Human clinical trial
Recruitment and group designations.
Participants (n = 14) were recruited from the Greater Cleveland area
(Cleveland, OH). Inclusion criteria were: age 20–50 y, BMI 25–38

kg/m2, low normal whole-grain intake [<16 g whole-grain ingredients
per day, consistent with the average whole-grain intake of the US pop-
ulation (25)], weight stable within 2 kg over the previous 6 mo, and
a sedentary lifestyle (<1 h physical activity per week). Additionally,
women were premenopausal and measures were obtained during their
midfollicular phase (26). Exclusion criteria included smoking, fasting
blood glucose >126 mg/dL, prior diagnosis of chronic illness (e.g., kid-
ney, liver, pulmonary diseases), alcohol intake >7 drinks/wk, and food
allergies not compatible with the study diets (e.g., peanut allergy). Par-
ticipants were randomly assigned a priori to protein turnover assess-
ments as described below, and were also part of the cardiovascular out-
comes assessment as previously described (23). All participants signed
informed consent prior to the initiation of the study procedures.

Study diets.
Participants were randomly allocated to either a whole-grain–enriched
or refined-grain diet for 8 wk, followed by a washout period of ≥10 wk
prior to receiving the alternate diet. Diets were matched for macronu-
trient composition and were isocaloric for each individual participant.
Caloric needs were calculated from resting energy requirements mea-
sured by indirect calorimetry (Vmax Encore; Viasys SensorMedics)
multiplied by a sedentary physical activity factor of 1.3. The provi-
sional diets consisted of nonwater beverages, fresh produce, prepack-
aged items, and frozen meals. Diet compliance was monitored by food
weigh-backs.

The study diets were designed to meet the dietary guidelines for
macronutrient, vitamin, and mineral intake for adults. Diets were
closely matched for macronutrient intake, differing primarily in the
presence of whole-grains at 50 g/1000 kcal in the whole-grain diet and
0 g/1000 kcal in the refined-grain diet. This level of whole-grain intake
represents the highest level of intake recommended by the USDA (22)
(100 g or 6 servings on a 2000 kcal/d diet). Whole-grain intake was
modified through entrées, breakfast cereals, and cereal bars that dif-
fered in whole-grain or refined-grain content between each diet. En-
trées were sourced from Nestlé Product Technology Center. Macronu-
trient and energy contents of the diets have been previously published
for other study outcomes (13, 23). The main grains included wheat
(57%), rice (21%), and oats (16%). Diet analysis was performed us-
ing the Food Processor Nutritional Analysis Pro version 10.80 (ESHA
Research).

WBPT.
WBPT was determined in both the fasted state and integrated over
24 h. Prior to WBPT assessment, subjects arrived at the Clinical Re-
search Unit for a 3-d inpatient stay. Fasted-state WBPT was determined
from leucine kinetics using a primed, constant infusion of l-[1-13C]-
leucine (0.32 mg/kg/h). Leucine flux was determined from the plasma
enrichment of labeled α-ketoisocaproic acid measured by GC-MS. Ox-
idation of leucine was measured in breath samples using isotope ra-
tio MS following an NaH13CO3 bolus to prime body carbon dioxide
pools. The rate of leucine incorporation into protein was calculated
from total leucine flux minus leucine oxidation (27). Leucine kinetics
were measured from samples obtained during the steady state of the
infusion protocol (5 plasma samples, 3.0 h, 3.25 h, 3.5 h, 3.75 h, 4.0
h) and calculated as described by Matthews et al. (27) by determin-
ing leucine turnover, leucine incorporated into protein (as a measure of
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whole-body protein synthesis), and leucine release from protein (as a
measure of whole-body protein breakdown). These outputs were re-
ported as micromoles leucine per kilogram fat-free mass (FFM) per
hour. Integrated WBPT was determined from glycine kinetics using
a 15N-glycine–enriched glucose solution (80 mg labeled glycine). Fol-
lowing an overnight fast, at 06:30, subjects were weighed and provided
baseline urine samples. At 07:00 subjects consumed the 15N-glycine–
enriched glucose solution and were subsequently provided an isocaloric
breakfast, lunch, and dinner. Urine for integrated WBPT was collected
and pooled. Glycine kinetics were determined by enrichment of urea
and ammonia and calculated using the end-product method (28). Rates
of protein turnover, synthesis, and breakdown are reported as mil-
ligrams protein per kilogram FFM per hour, using the conversion fac-
tor of 1 g nitrogen per 6.25 g protein. Note: due to difficulties in sample
collection and analysis, glycine flux data were not available for 3 of the
participants.

In vitro experiments
SUnSET.
Because wheat was the main grain consumed in the clinical trial, we
investigated the effect of a whole-grain wheat extract on skeletal mus-
cle protein synthesis in C2C12 skeletal muscle cells using the SUn-
SET method in combination with the in-cell Western technique (24).
C2C12 cells were placed in growth medium (DMEM, 10% FBS, 1% an-
tibiotic) on a 96-well plate (Nunc MicroWell 96-Well, Poly-D Lysine-
Treated, Flat-Bottom, Optical Polymer Base Microplate; Thermo Scien-
tific) (29). When cells reached ∼80% confluence, growth medium was
replaced with differentiation medium (DMEM supplemented with 2%
horse serum and 1% antibiotic, 0.1% BSA) for 48 h, which is sufficient
to produce myotubes throughout the culture (30, 31). After 48 h dif-
ferentiation, myotubes were serum-starved in DMEM without amino
acids for 1 h followed by an additional 2-h treatment under the follow-
ing conditions: Control (HBSS), Low (DMEM without amino acids),
Medium (DMEM with amino acids), or Max (DMEM with amino acids,
supplemented with 4 mM leucine, 2 mM isoleucine, 2 mM valine, and
1.5 nM insulin). Conditions for stimulating protein synthesis in vitro
were selected based on previously published reports (32–35). All condi-
tions were repeated with the addition of a whole-grain botanical wheat
bran extract for the treatment duration (0.25% v/v, supercritical carbon
dioxide extract of wheat-bran, 180.003; FLAVEX). Experiments were
conducted on 3 separate occasions with 4 technical replicates in each
batch. For the final 30 min of treatment, puromycin was added to a fi-
nal concentration of 1 μM. Cells were washed in PBS and fixed in 150
μL formalin (4% formaldehyde) for 20 min at room temperature. Fixed
cells were washed in PBS and incubated in 200 μL of a permeabilization
and blocking solution [Odyssey Blocking Buffer (OBB) 927-50000; LI-
COR Biosciences) with 0.3% Triton-X for 30 min. Cells were incubated
overnight at 4◦C on a plate shaker (low setting) in the primary anti-
body solution (OBB, 1:5000 antipuromycin, 1:2500 anti-GAPDH). Af-
ter overnight incubation, cells were washed 3 × 5 min in Tris-buffered
saline with 0.1% Tween 20 (TBST) and placed in secondary antibody
solution (OBB, 1:10,000 anti-rabbit, 1:20,000 anti-mouse) for 60 min.
Cells were washed 3 × 5 min in TBST followed by 15 min in TBS to re-
move residual Tween. Puromycin protein labeling was quantified with
near-infrared fluorescence imaging (Odyssey Clx; LI-COR Biosciences)
using Image Studio software (v5.2, LI-COR Biosciences).

Intracellular signaling.
Protein synthesis is regulated at the cellular level through Akt/mTOR
signaling. Akt/mTOR signaling in skeletal muscle was investigated us-
ing standard Western blotting procedures. C2C12 cells were grown, dif-
ferentiated, and treated in the same conditions described above for the
SUnSET assay with the following modifications: cells were cultured in
12-well plates, and experiments were repeated on 4 separate occasions
with 3 technical replicates in each batch. After treatment, cells were har-
vested at 30 and 120 min in ice-cold lysis buffer (C3228; Sigma-Aldrich)
with 1:300 protease and phosphatase inhibitor (Halt Protease and Phos-
phatase Inhibitor Cocktail; Thermo Scientific) using the cell scraping
method. Total protein concentration was determined by BCA Protein
Assay (Pierce Biotechnology). For each condition, 20 μg protein was
separated via SDS-PAGE, transferred to nitrocellulose membranes, and
blocked in OBB prior to incubating in primary and secondary anti-
bodies. Gel electrophoresis, transfer, and blotting conditions were op-
timized individually for each protein of interest and loading controls; a
list of antibodies is provided in Supplemental Table 1. Protein visual-
ization and quantification were performed on the Odyssey CLx System
(LI-COR Biosciences).

Ultra performance liquid chromatography/MS analysis of the
whole-grain wheat extract.
Ultra performance liquid chromatography (UPLC)/MS analysis was
conducted as previously reported (36). Compounds in samples were
separated and analyzed by a UPLC/MS system including the Dionex
UltiMate 3000 RSLC ultra-high-pressure LC system, consisting of a
workstation with Xcalibur v. 4.0 software package (ThermoFisher Sci-
entific) combined with SII LC control software, solvent rack/degasser
SRD-3400, pulseless chromatography pump HPG-3400RS, autosampler
WPS-3000RS, column compartment TCC-3000RS, and photodiode ar-
ray detector DAD-3000RS (all by Dionex). After the photodiode array
detector, the eluent flow was guided to a Q Exactive Plus Orbitrap high-
resolution high-mass-accuracy mass spectrometer. Mass detection was
based on a full MS scan with low-energy collision-induced dissocia-
tion from 100 to 1000 m/z in negative ionization mode with electro-
spray interface. Sheath gas flow rate was 30 arbitrary units, auxiliary
gas flow rate was 7, and sweep gas flow rate was 1. The spray volt-
age was −3500 V with a capillary temperature of 275◦C. The mass
resolution was ≥70,000. Substances were separated on a Kinetex C8
reverse-phase column (Phenomenex), size 100 × 2 mm, particle size
2.6 mm, pore size 100 Å. The mobile phase consisted of 2 compo-
nents: solvent A [0.5% American Chemical Society (ACS) grade acetic
acid in LC-MS grade water, pH 3–3.5), and solvent B (100% acetoni-
trile, LC-MS grade]. The mobile phase flow was 0.20 mL/min, and a
gradient mode was used for all analyses. The initial conditions of the
gradient were 95% A and 5% B; for 30 min the proportion reached
5% A and 95% B, which was kept for the next 8 min, and during the
subsequent 4 min the ratio was brought to initial conditions. An 8-
min equilibration interval was included between injections. The av-
erage pump pressure using these parameters was typically ∼3900 psi
for the initial conditions. Samples were prepared by dissolving 10 mg
wheat oil in 1 mL 90% ethanol. 1 μL of the sample was injected for
the UPLC-MS analysis. Putative formulae of wheat oil components
were determined by performing isotope abundance analysis on the
high-resolution mass spectral data with Xcalibur v. 4.0 software and
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reporting the best fitting empirical formula. Database searches were
performed using www.reaxys.com (Elsevier RELX Intellectual Proper-
ties SA) and SciFinder (ACS).

Epidemiological investigation
The NHANES database was interrogated for the effect of whole-grain
intake on muscle function. NHANES is a nationally representative sur-
vey of the US population conducted as approved by the National Cen-
ter for Health Statistics Research Ethics Review Board; subjects pro-
vided informed consent to participate and the data are publicly available
(37). We assessed deidentified data from 2783 older adults (age >65
y) participating in NHANES that provided both 24-h dietary recalls
and gait speed assessments along with demographic and anthropomet-
ric information, including age, weight, sex, and race/ethnicity accord-
ing to NHANES protocols. Based on these criteria, the NHANES co-
horts were limited to the years 1999–2000 and 2001–2002. Participants
were categorized into 2 groups according to gait speed: Impaired Muscle
Function, gait speed <1 m/s; and Healthy, gait speed >1 m/s (38, 39).
Gait speed output was converted to meters per second from NHANES
data (time to complete a 20 ft walk (s): MSXWTIME for 1999–2000
and MSXW20TM for 2001–2002). Due to the well-established effect
of amino acid availability on protein synthesis (40), emerging evidence
that high-protein meal intake impacts skeletal muscle protein turnover
(41), and our in vitro results suggesting whole-grains potentiate re-
sponses to protein (amino acid) stimuli, we selected to control for pro-
tein intake by quantifying habitual high-protein meal intake (>10 g pro-
tein per meal; 3 high-protein meals per day used as the reference). Mul-
tiple logistic regression modeling was used to evaluate muscle function,
while accounting for age, sex, high-protein meal intake, and total energy
intake. Data are reported as ORs with 95% CIs.

Statistical analysis
Statistical analyses were performed using PRISM8 (GraphPad) and SAS
version 9.4 (SAS Institute). Linear mixed model regression was used to
detect the effect of a whole-grain compared with a refined-grain diet on
the outcomes of interest, while adjusting for period, age, sex, race, and
body weight change. A carryover effect was not found to be significant
for any of the outcome variables evaluated. Within-diet effects were as-
sessed using paired Student’s t-test. The effect of a whole-grain extract in
vitro was assessed by 1-factor ANOVA with Fisher’s least significant dif-
ference post hoc test. The effect of whole-grain intake on muscle func-
tion was determined using the NHANES database and multiple logistic
regression modeling. Logistic regression model assumptions were not
externally validated. Data are expressed as mean ± SD. Significance was
accepted at P < 0.05.

Results

Subject characteristics, diet, and compliance
Subject characteristics and baseline measures are presented in Table 1.
Study diets were well matched for total energy, macronutrients, and
sugar content, whereas fiber intake was higher when consuming the
whole-grain diet (Table 2). Compliance was high and equivalent be-
tween both diets. Participants in the 2 diet groups exhibited similar
weight and body composition changes through each diet arm (Table 3).

TABLE 1 Baseline subject characteristics1

Characteristic Value

n (sex) 14 (3M, 11F)
Race H/AA/W 1/9/4
Age, y 40 ± 7
BMI, kg/m2 33.2 ± 4.7
Glucose, mg/dL 95 ± 20
HbA1c, % 5.9 ± 0.7
Total cholesterol, mg/dL 166 ± 20
Triglycerides, mg/dL 98 ± 45
Total protein, g/dL 6.9 ± 0.3
Albumin, g/dL 4.0 ± 0.2
Blood urea nitrogen, mg/dL 13 ± 2
Creatinine, mg/dL 0.7 ± 0.1
Whole-body protein turnover, fasted state, μmol

Leu/kgFFM/h
Synthesis 190 ± 39
Breakdown 217 ± 44
Turnover 222 ± 44
Net balance − 28 ± 6

Integrated,2 mg protein/kgFFM/h
Synthesis 289 ± 105
Breakdown 266 ± 97
Turnover 370 ± 106
Net balance3 23 ± 21

1Data are presented as mean ± SD. Baseline data represent the mean values of
measures collected prior to the initial randomization diet and after the washout
period prior to the crossover diet. AA, African American; H, Hispanic; HbA1c, gly-
cated hemoglobin; kgFFM, kilograms fat-free mass; W, white.
2Data from 3 participants were not available for integrated protein synthesis.
3Net balance is net protein balance determined by subtracting protein breakdown
from protein synthesis rates.

Both diets resulted in a mild weight loss over 8 wk (whole-grain: −1.8
± 2.4 kg; refined-grain: −3.1 ± 3.8 kg; both P = 0.01 compared with
week 0). The magnitude of weight change was not different between the
2 diets (P = 0.36).

Clinical trial: effect of whole-grains on WBPT
In the fasted state, WBPT, whole-body protein synthesis, and whole-
body protein breakdown were 12.3–13.0% higher when consuming a
whole-grain diet, but did not reach statistical significance (Figure 1A).
The resultant fasted-state net balance showed a trend toward being more
negative when consuming the whole-grain diet (Figure 1B). Similarly,
24-h integrated protein turnover, incorporating both fasted and fed
states, was 16.1–26.5% higher when consuming the whole-grain diet,

TABLE 2 Study diets and compliance1

Whole-grain Refined-grain P value

Food energy, kcal 2029 ± 306 1962 ± 266 0.54
Protein, g 90 ± 12 88 ± 11 0.56
Fat, g 65 ± 11 64 ± 10 0.79

Saturated fat, g 21 ± 4 22 ± 4 0.68
Carbohydrates, g 284 ± 44 270 ± 39 0.35

Sugar, g 130 ± 23 123 ± 25 0.45
Fiber, g 28 ± 4 20 ± 3 <0.01
Whole-grains, g 89 ± 15 — —

Compliance, % 97 ± 4 95 ± 3 0.09
1Data are presented as mean ± SD. Paired t tests were used to assess differences
between diets.
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TABLE 3 Body weight and composition1

Whole-grain Refined-grain
Week 0 Week 8 Week 0 Week 8

Weight, kg 91.1 ± 17.6 89.3 ± 17∗ 93.2 ± 19 90.1 ± 17.4∗
Fat mass, kg 37.1 ± 8.9 35.8 ± 7.9t 38.5 ± 10.3 36.3 ± 8.8∗
Fat-free mass, kg 53.6 ± 10.4 53.3 ± 11.4 54.3 ± 11.1 53.6 ± 10.3t

1Data are presented as mean ± SD. ∗ , t, Different within-diet from week 0: ∗P < 0.05; t, P < 0.10.

but again did not reach statistical significance (Figure 1C). Here impor-
tantly, the resultant 24-h integrated net balance was significantly greater
for the whole-grain diet (Figure 1D). These data suggest that whole-
grains impact WBPT primarily in response to the fed state (an anabolic
stimulus).

In vitro experiments: effect of whole-grains on skeletal
muscle protein synthesis
Global protein synthesis expectedly increased in response to anabolic
stimuli (Low—DMEM without amino acids; Medium—DMEM with
amino acids; and Max—DMEM with amino acids, plus additional
branched-chain amino acids and insulin; Figure 2). With the addi-
tion of the whole-grain wheat extract, global protein synthesis was fur-
ther elevated in the Low condition and showed a trend to increase in
the Medium condition, but no additional increase was observed in the
Max condition. MS analysis allowed us to confirm that the most abun-
dant compounds present in the whole-grain wheat extract were linoleic,
linolenic, and oleic acids along with fatty acid derivatives (Figure 3). We
note that a full characterization of the extract was not carried out and
therefore we cannot exclude that other compounds in the extract might
also impact protein synthesis.

Representative western blots showing the effect of the extract on
the skeletal muscle Akt/mTOR signaling pathway are presented in
Figure 4A. Phosphorylated proteins are presented as the ratio of phos-
phorylated to total signal for each target, with the exception of phospho-
rylated eukaryotic translation initiation factor 4E-binding protein 1 (p-
4EBP1), which was normalized to GAPDH. Acute signaling events (30-
min treatment) increased in stepwise fashion with Low and Max pro-
tein synthesis stimuli and were not further elevated by the addition of
the whole-grain extract (Figure 4B–E) The exception was Akt(Ser473),
which was further elevated in the Max condition with the addition of a
whole-grain extract (Figure 4F). Prolonged signaling events (120-min
treatment) increased in a similar stepwise fashion with Low, Medium,
and Max protein synthesis stimuli and were not further elevated by the
addition of the whole-grain extract (Figure 4G–K).

Whole-grain intake and muscle function in older adults
Physical characteristics and nutrition information for the participants
are presented in Table 4. Records of 2783 individuals were identified
for adults aged >65 y in the NHANES database where diet records and
gait speed data were available for each participant. Average whole-grain
intake in all groups was less than what is recommended in the USDA
Dietary Guidelines for Americans (Male, Healthy: 0.97 ± 1.43 serv-
ings/d; Male, Impaired Muscle Function: 0.79 ± 1.31 servings/d; Fe-
male, Healthy: 0.77 ± 1.11 servings/d; Female, Impaired Muscle Func-
tion: 0.68 ± 1.05 servings/d; conversion factor, 1 serving = 16 g whole-

grains) (22). The logistic regression model to assess the effect of whole-
grain intake on muscle function is presented in Table 5. Expectedly, age
(OR = 1.09; 95% CI: 1.08, 1.11), male sex (OR = 1.20; 95% CI: 1.01,
1.43), and consuming <3 high-protein meals per day [2: OR = 1.64
(95% CI: 1.26, 2.14); 1: OR = 2.17 (95% CI: 1.61, 2.92); 0: OR = 3.83
(95% CI: 2.09, 7.03)] were all associated with slower gait speed, whereas
higher daily energy intake (OR = 0.87; 95% CI: 0.76, 0.99) and whole-
grain intake (OR = 0.92; 95% CI: 0.86, 0.98) were associated with faster
gait speed.

Discussion

Our randomized controlled trial revealed that when adults with over-
weight/obesity consume a whole-grain diet, WBPT and 24-h integrated
net protein balance are increased compared with a carefully matched
refined-grain diet. To support these findings, we obtained in vitro evi-
dence that a whole-grain wheat extract increases skeletal muscle global
protein synthesis rates in response to anabolic stimuli. To complement
these 2 sets of data we found that whole-grain intake is associated with
greater muscle function in older adults. Together, these data corroborate
the view that whole-grain intake positively impacts short-term WBPT
with a potential to impart long-term physiological benefits.

The comparison of WBPT between whole-grain and refined-grain
diets is novel and important. To the best of our knowledge, this re-
port is the first to characterize fasted- and fed-state WBPT using 2 sta-
ble isotope tracers in combination with a highly controlled, fully pro-
visioned crossover feeding trial design. When consuming the whole-
grain diet, WBPT, whole-body protein synthesis, and whole-body pro-
tein breakdown rates were all consistently elevated by ∼10–20% in both
the fasted-state and integrated over fed-fasted cycles compared with the
refined-grain diet, although none of these differences reached statisti-
cal significance. The resultant net protein balance showed a trend to
be more negative in the fasted-state, but was significantly more posi-
tive when integrated over fed-fasted cycles when consuming the whole-
grain diet. Although this phenomenon might appear counterintuitive,
it is observed in protein turnover studies where exercise was used to
stimulate protein synthesis (42–44), and suggests a physiological re-
sponse, whereby a protein synthesis stimulus increases net protein bal-
ance only when sufficient dietary protein is also available, as is the
case in the fed, but not fasted, states (45, 46). This concept has prece-
dent in the literature, because diets that result in a more positive inte-
grated net balance also display greater fasted-state losses and accentu-
ated fed-state gains (47). Analyzing our results in this context suggests
that whole-grain intake increases WBPT, manifesting in an augmented
positive net protein balance only when the response to meals (fed state)
is considered. It is therefore intriguing to postulate that whole-grain
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FIGURE 1 Fasted-state and integrated whole-body protein turnover. (A) Fasted-state leucine kinetics revealed greater turnover (WG:
235.1 ± 66.2 μM Leu/kgFFM/h; RG: 209.2 ± 39.4 μM Leu/kgFFM/h, P = 0.16, n = 14), synthesis (WG: 202.1 ± 59.8 μM Leu/kgFFM/h;
RG: 179.9 ± 35.2 μM Leu/kgFFM/h, P = 0.22, n = 14), and breakdown (WG: 231.8 ± 66.2 μM Leu/kgFFM/h; RG: 205.1 ± 39.4 μM
Leu/kgFFM/h, P = 0.16, n = 14) on a whole-grain diet, although these did not reach statistical significance. (B) This resulted in a trend for a
more negative net protein balance on the WG diet (WG: −29.7 ± 7.8 μM Leu/kgFFM/h; RG: −25.2 ± 5.7 μM Leu/kgFFM/h, P = 0.07, n =
14). (C) Integrated glycine kinetics revealed a similar pattern for turnover (WG: 390.4 ± 134.0 mg Pro/kgFFM/h; RG: 336.4 ± 70.1 mg
Pro/kgFFM/h, P = 0.14), synthesis (WG: 315.6 ± 134.7 mg Pro/kgFFM/h; RG: 249.5 ± 93.8, P = 0.07, n = 11), and breakdown (WG: 284.5
± 135.5 mg Pro/kgFFM/h; RG: 239.3 ± 71.5 mg Pro/kgFFM/h, P = 0.26, n = 11), again not reaching statistical significance. (D) This
resulted in a substantially more positive net protein balance on the WG diet (WG: 31.1 ± 21.5 mg Pro/kgFFM/h; RG: 10.3 ± 34.3 mg
Pro/kgFFM/h, P = 0.04, n = 11). Data from 3 participants were not available for integrated protein synthesis. Net Balance denotes net
protein balance determined by subtracting protein breakdown from protein synthesis rates. This figure represents data obtained after
consuming each diet for 8 weeks. Data are presented as mean ± SD. P values were obtained from ANOVA with linear mixed model effects
and were adjusted for period, age, sex, race, and body weight change. kgFFM, kilograms fat-free mass; Leu, leucine; Pro, protein; RG,
refined-grain; WG, whole-grain.

intake can increase whole-body protein balance by accentuating the
anabolic response to a meal; however, this remains to be empirically
tested.

The central finding of the clinical trial was the elevation of net pro-
tein balance when consuming a whole-grain diet, in agreement with our
hypothesis. However, these results should be interpreted in the context
of several limitations. Mild weight loss (∼0.3 kg/wk) was observed on
both whole-grain and refined-grain diets, indicating that the partici-
pants were in a slight energy deficit throughout the study. Body com-
position was similar between diets in this trial, and although other
clinical trials support improved body composition when consuming

a whole-grain diet (11, 14), a meta-analysis of relevant clinical trials
was inconclusive (48). Our study population had more females, but
based on available literature (49, 50), we do not anticipate any sex-
related differences on protein turnover. However, due to our small sam-
ple size and the predominance of female participants, we are unable
to assess this directly. We also used an end point analysis for protein
turnover because protein intake of the participants’ habitual diets was
not quantified prior to study enrollment or during the washout pe-
riod; habitual diet protein intake might independently impact WBPT
and urea space (47, 51, 52) (which we assumed to be constant). De-
spite these limitations, this clinical feeding trial provides important

CURRENT DEVELOPMENTS IN NUTRITION



Whole-grains increase protein balance 7

FIGURE 2 Global protein synthesis in vitro. Global protein synthesis quantified by the surface sensing of translation (SUnSET) method
increased in stepwise fashion with Low, Medium, and Max conditions in relation to the HBSS in C2C12 skeletal muscle cells. The addition
of a whole-grain wheat extract at 0.25% v/v further increased global protein synthesis in the Low condition, with a trend for an increase in
the Medium condition, but no additional increase was observed in the Max condition. HBSS, Hanks’ Balanced Salt Solution; DMEM,
Dulbecco’s Modified Eagle Medium; BCAA, branched-chain amino acid; Low, amino acid–free DMEM; Medium, DMEM; Max, DMEM
supplemented with 4 mM leucine, 2 mM isoleucine, 2 mM valine, and 1.5 nM insulin. The whole-grain wheat extract and amino acid doses
were selected based upon results from dose-response curves that showed the greatest signal for global protein synthesis quantified by the
SUnSET method (data not presented). Data represent mean ± SD of the fold-change compared with the HBSS condition. ∗ ,t Different
compared with matched Control condition using 1-factor ANOVA with Fisher’s least significant difference post hoc test: ∗P < 0.05; t, P <

0.10.

advances regarding a novel role of whole-grains on whole-body protein
metabolism.

We also hypothesized that the underlying biological mechanism by
which whole-grains impact protein turnover should involve skeletal
muscle protein synthetic responses to anabolic stimuli. Using a rep-
resentative whole-grain wheat extract we found that global protein
synthesis was increased when a nutritional stimulus of protein synthe-
sis was applied in combination with the extract. Notably, the extract did
not augment skeletal muscle protein synthesis when both amino acids
and insulin were used as stimuli. This suggests maximal protein synthe-
sis rates were not further increased by whole-grains and that the effect
of whole-grains on protein synthesis could have an upper limit. We con-
ducted these experiments using an immortalized C2C12 skeletal mus-
cle cell line, which might limit the translation to human skeletal muscle
cells due to phenotypic and metabolic differences between C2C12 and
primary human skeletal muscle cells (53). Still, these findings are impor-
tant, because the classical view of the nutritional regulators of skeletal
muscle growth and protein synthesis are macronutrient-focused (total

energy and protein intake) (54–56), whereas our data suggest that non-
macronutrient factors present in whole-grains could also play a role.

Whole-grains are composed of 3 primary components: the bran,
germ, and the starchy endosperm (57). The bran and germ are rich
sources of proteins, lipids, fiber, and a wide range of phytochemicals.
The bran and germ are removed from whole-grains during conven-
tional milling practices in the processing of refined-grain products,
leaving only the starchy endosperm. Phytochemicals present in the
whole-grain’s bran and germ are also removed in this milling pro-
cess. However, because fiber is the most abundant nutrient lost during
the processing of whole-grain to refined-grain flour, research attention
on whole-grains has focused on health effects associated with dietary
fiber (23, 58–60). A provocative implication is that our results support
the view that phytochemicals present in whole-grains impact protein
turnover. Our rationale is built on evidence from the clinical trial, which
matched diets for protein and energy content, and the in vitro experi-
ments, which used phytochemicals from a whole-grain wheat extract.
There are hundreds of phytochemical components in whole-grains, and

CURRENT DEVELOPMENTS IN NUTRITION



8 Mey et al.

FIGURE 3 Chromatogram of whole-grain wheat extract. A sample of the whole-grain wheat extract was run in negative ionization mode
[(−)ESI]. Molecules were identified putatively: 1, C26H44O6, or C27H48O5, glycosylated sesquiterpene, and/or polyhydroxylated steroid; 2,
C8H12O5, shikimic acid, or quinic acid derivative; 3, C39H66O9, glycosylated sesquiterpene, or a steroid; 4–6, C18H34O5, polyhydroxylated
fatty acids; 7, C18H30O2, linolenic acid; 8, C16H30O2, hexadecenoic acid/palmitoleic acid; 9, C18H32O2, linoleic acid; 10, C16H32O2,
palmitic acid; 11, C18H34O2, octadecenoic acid/oleic acid; 12, C18H36O2, stearic acid; 13, C20H38O2, eicosenoic acid; 14, C25H44O2,
alkylresorcinol; 15, C27H48O2, alkylresorcinol; ESI, electrospray ionization.

these can be broadly categorized into: alkylresorcinols, benzoxazinoids,
phytosterols, sphingolipids, lignans, flavonoids, phenolic acids, tocols,
carotenoids, fatty acids, betaines, and glycolipids (61). Some of these
phytochemicals have shown a positive impact on lean body mass and
skeletal muscle protein turnover (62, 63). In parallel, a growing body
of literature evidences that many previously unexplored nutritional fac-
tors impact health and disease (64–68). However, due to a paucity of
well-controlled research in this area, it is currently unclear which spe-
cific whole-grain components might contain the biological activity nec-
essary to impact protein turnover. For this reason, additional research is
warranted to identify the specific whole-grain phytochemicals that
might impact protein turnover and the cellular mechanisms that gov-
ern this effect.

Because our human and in vitro data suggest that whole-grains pos-
itively impact protein turnover, we turned to an epidemiological ap-
proach to assess the clinical relevance of these results in the context
of a contemporary issue in older adults—the age-related loss of mus-
cle function consistent with sarcopenia (69). Loss of muscle function
is well characterized in aging (70), and results primarily from imbal-
anced protein turnover (71) and reduced protein synthesis signaling
(72, 73). Here, we show that whole-grain intake is independently asso-

ciated with a faster gait speed, suggesting better muscle function. This
is consistent with the literature, because dietary patterns high in whole-
grains (e.g., Mediterranean diet) have been associated with greater mus-
cle function across aging populations throughout the developed world
(74–76). Taking these epidemiological findings together with our clin-
ical trial and in vitro data, it is reasonable to speculate that the habit-
ual consumption of whole-grains contributes to preservation of mus-
cle function by favorably impacting WBPT by augmenting the protein
synthetic response to dietary protein. Current nutrition approaches to
counter the age-related loss of muscle function are focused on protein
and energy intake. These recommendations are effective and consis-
tent with our classical understanding of the nutritional regulators of
muscle mass and function (77). Unfortunately, habitual protein and en-
ergy intake in older adults remains low (78) and it has been speculated
that the latter likely contributes to impaired muscle function in aging
(18). Meanwhile, whole-grain intake in older adults is relatively low and
less than half of the minimum amount recommended by the USDA
(22). In contrast, refined-grain intake remains high, both in our subset
from NHANES and in larger analyses (79). Replacing habitually con-
sumed refined-grain foods with whole-grain foods is a practical dietary
strategy, even in older adults (80), because it does not require major
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FIGURE 4 Intracellular Akt/mTOR signaling pathway. (A) Representative western blot images for proteins of interest. (B–F) Acute (30-min)
Akt/mTOR signaling. (G–K) Prolonged (120-min) Akt/mTOR signaling. The effect of a whole-grain extract in vitro was assessed by 1-factor
ANOVA with Fisher’s LSD post hoc test. ∗, P < 0.05 compared with the same condition without whole-grain wheat extract. WG,
whole-grain wheat extract supplemented at 0.25% v/v; HBSS, Hanks’ Balanced Salt Solution; DMEM, Dulbecco’s Modified Eagle Medium;
BCAA, branched-chain amino acids supplemented at 4 mM leucine, 2 mM isoleucine, 2 mM valine; Low, DMEM without amino acids;
Medium, DMEM; Max, DMEM supplemented with BCAA and 1.5 nM insulin; Akt, protein kinase B; mTOR, mammalian target of rapamycin;
p70s6k, ribosomal protein S6 kinase beta-1; 4EBP1, eukaryotic translation initiation factor 4E-binding protein 1; p-, phosphorylated.

modifications to dietary habits. Therefore, the elucidation of adjuvant
nutritional approaches to increase protein balance could offer valuable
flexibility to optimize dietary recommendations for certain populations.
However, protein and energy intake were greater effectors on muscle

function than whole-grain intake in our report. It remains possible that
in settings of more robust anabolic stimuli, like optimal protein and en-
ergy intake (81), resistance exercise training (82), or anabolic steroids
(83), whole-grain intake could have less potential.

The premise behind our clinical-translational conclusions is
that skeletal muscle protein turnover is represented in our WBPT
assessments. It should be noted that WBPT is a weighted average of
protein turnover from all body tissues and organs; it has roughly equal
contribution from 3 major sources: gut, liver, and skeletal muscle (28,

84). Skeletal muscle protein turnover comprises 25–30% of WBPT, thus
differences in WBPT cannot fully be attributed to skeletal muscle as
detailed by Deutz et al. (85). Still, skeletal muscle accounts for ∼40%
of total body mass (86) and remains the body’s largest malleable reser-
voir for protein mobilization or storage. This is evident in negative net
protein balance (catabolic) conditions, where increased amino acid
needs contribute to a net amino acid extraction from muscle (87),
leading to muscle loss (88); and in positive net protein balance (an-
abolic) conditions, where anabolic stimuli in combination with in-
creased amino acid availability contribute to a net amino acid assim-
ilation into muscle (42), leading to muscle growth (89). Therefore,
using our in vitro data as rationale that whole-grains can stimulate
skeletal muscle protein synthesis, we conclude that the positive net
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TABLE 4 NHANES subject characteristics1

Male Female

Healthy
Impaired

muscle function Healthy
Impaired

muscle function

n 558 829 461 935
Age, y 68.5 ± 6.6 72.9 ± 7.8 68.1 ± 6.5 72.7 ± 8.1
BMI, kg/m2 27.9 ± 4.4 27.8 ± 5 27.5 ± 5.1 29.2 ± 6.5
Gait speed, m/s 1.2 ± 0.1 0.8 ± 0.2 1.2 ± 0.2 0.7 ± 0.2
Protein intake, g/d 82.8 ± 36.6 74.0 ± 36.0 61.5 ± 26.8 56.3 ± 24.5
Energy, kcal/d 2116.7 ± 800.5 1859.1 ± 882.1 1583.1 ± 586.5 1445.9 ± 566.6
Whole-grain intake, servings/d 0.97 ± 1.43 0.79 ± 1.31 0.77 ± 1.11 0.68 ± 1.05
1Data are presented as mean ± SD.

balance observed with the whole-grain diet in our clinical trial is likely
to be realized, in part, within skeletal muscle. Nevertheless, direct skele-
tal muscle protein turnover assessments using arteriovenous difference
techniques with skeletal muscle biopsies are needed to confirm this
assumption.

In conclusion, our data suggest that when whole-grain intake aligns
with USDA recommendations (50 g/1000 kcal, equivalent to 5–6 serv-
ings), WBPT is enhanced in adults with overweight/obesity. We provide
proof-of-concept that whole-grain components augment global protein
synthesis in skeletal muscle, and that greater whole-grain intake might
preserve muscle function in older adults. Taken together, these data im-
plicate a novel role for whole-grains in human protein metabolism and
related health outcomes.
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TABLE 5 Effect of whole-grain intake on impaired muscle
function1

Factor OR (95% CI)

Age 1.09 (1.08, 1.11)
Sex 1.20 (1.01, 1.43)
BMI 1.06 (1.04, 1.08)
Daily meal(s) with high protein intake (>10 g)

Three meals Reference
None 3.83 (2.09, 7.03)
One meal 2.17 (1.61, 2.92)
Two meals 1.64 (1.26, 2.14)

Energy 0.87 (0.76, 0.99)
Whole-grains 0.92 (0.86, 0.98)
1Male sex and 3 daily meals with high protein intake (>10 g) were used as reference
values for categorical variables.
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