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Renal fibrosis is final common pathway of end stage renal disease. Irrespective of

the primary cause, renal fibrogenesis is a dynamic process which involves a large

network of cellular and molecular interaction, including pro-inflammatory cell infiltration

and activation, matrix-producing cell accumulation and activation, and secretion of

profibrogenic factors that modulate extracellular matrix (ECM) formation and cell-cell

interaction. Bone morphogenetic protein-7 is a protein of the TGF-β super family and

increasingly regarded as a counteracting molecule against TGF-β. A large variety of

evidence shows an anti-fibrotic role of BMP-7 in chronic kidney disease, and this

effect is largely mediated via counterbalancing the profibrotic effect of TGF-β. Besides,

BMP-7 reduced ECM formation by inactivating matrix-producing cells and promoting

mesenchymal-to-epithelial transition (MET). BMP-7 also increased ECM degradation.

Despite these observations, the anti-fibrotic effect of BMP-7 is still controversial such

that fine regulation of BMP-7 expression in vivomight be a great challenge for its ultimate

clinical application.

Keywords: BMP-7, chronic kidney disease, renal fibrosis, cytokines, inflammation

Introduction

Renal fibrosis, which characterized as glomerulosclerosis and tubulointerstitial fibrosis, is consid-
ered the hallmark of progressive renal injury and the final common pathway of multiple chronic
renal diseases. Regardless of the primary causes, appearance of most “end stage kidney” manifested
as extensive scar formation (fibrotic tubules and sclerotic glomeruli), thickened arteries, and infil-
trated chronic inflammatory cells. Process of renal fibrosis involved activation of intrinsic kidney
cells, infiltrated cells, and led to excessive accumulation and deposition of extracellular matrix and
finally the loss of kidney function. TGF-β has been known as the key modulator of kidney (and that
of other organs) fibrosis, and the role of TGF-β in renal fibrosis has been extensively studied. In
recent years, another protein, BMP-7, that belongs to the TGF-β superfamily, has drawn great atten-
tion for its function in counteracting pro-fibrotic effects of TGF-β. BMP-7 is a homodimeric protein
that with cysteine-knot. It plays an crucial role in renal development and only selectively expressed
in several adult organs including the kidney. It is a natural negative regulator of nephrotic TGF-
β/Smad signaling pathway. The fact that renal BMP-7 disappears during renal fibrogenesis (Wang
et al., 2001; Morrissey et al., 2002; Yang et al., 2007) and, supply of BMP-7 either exogenously or
endogenously results in prevention or even reversal of functional and structural changes of vari-
ous nephropathies in animal models (Vukicevic et al., 1998; Hruska et al., 2000; Wang et al., 2003,
2006; Zeisberg et al., 2003a,b; Chan et al., 2008), strongly promises a renal protective function of
BMP-7 in human kidney disorders. And its anti-fibrotic role in kidney disease has been extensively
studied. A number of review articles have summarized the possible mechanisms and potential
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therapeutic targets of renal fibrosis (Liu, 2006; Boor et al., 2010;
Eddy, 2014; Kawakami et al., 2014; Lee et al., 2014; Munoz-Felix
et al., 2014). This review focuses on role of BMP-7 in fibrotic
kidney disease, and the possible mechanisms involved.

Individual Sections

Mechanisms of Renal Fibrosis
Fibrosis can be considered as ineffective wound healing pro-
cess, in which excessive progression of scarring rather than res-
olution occurs. Fibroblasts play a pivotal role in the process,
which is modulated by multiple cell types and molecules. In this
respect, the cellular and molecular response of the damaged kid-
ney attempted to prevent renal damage and preserve renal func-
tion, and as a matter of fact, almost all cell types of the kidney
and a series of infiltrating cells are involved in the development
of renal fibrosis, indicating the complexity of this process.

In early phase of renal injury, damage cells release cytokines
and chemokines, which attract inflammatory cells infiltrated into
injured sites (You and Kruse, 2002). Although inflammatory
response is an important portion of the body defense mech-
anism, the non-resolving inflammation always become major
driving force of fibrogenic process (Nathan and Ding, 2010;
Schroder and Tschopp, 2010). The process of renal fibrosis is
almost always accompanied with infiltration of inflammatory
cells including macrophages, mast cells, lymphocytes, neutrophil
as well as dendritic cells. After injury, the infiltrated inflammatory
cells activated and release more chemotactic cytokines, vasoac-
tive factors and increase production of profibrotic factors (Fer-
enbach et al., 2007; Ricardo et al., 2008; Vernon et al., 2010;
Chung and Lan, 2011), thus sustained a profibrotic microenvi-
ronment in injured sites, and interacted with kidney intrinsic
cells, which finally caused phenotypic and functional changes
of kidney cells, increase the number of myofibroblast and ECM
formation (Duffield, 2014; Mack and Yanagita, 2015). Therefore,
persistent inflammation which was caused by injury trigger the
onset of profibrotic stage and serve to sustain the profibrotic
pressure in the tissue (Meng et al., 2014).

The sustained increase of profibrotic cytokines in microen-
vironment after renal injury inevitably leads to activation of
matrix-producing cells, which plays a central role in renal fibro-
sis. Fibroblasts are considered as the major source of ECM
in the kindney, besides, other cell types in renal tubulointer-
stitium such as tubular epithelial cells, vascular smooth mus-
cle cells and macrophages are also capable of producing ECM.
Myofibroblasts are terminally differentiated cells that rarely
found in normal renal tissue. It functions for interstitial ECM
synthesis and accumulation including collagen I, collagen III,
fibronectin during wound healing or scar forming at injured sites.
There are at least five source of myofibroblasts have been pro-
posed in experimental kidney models or disease kidneys, includ-
ing activation of endogenous fibroblasts (which was regarded
as classical source of myofibroblasts), differentiation of peri-
cytes, tubular epithelial to mesenchymal transition, bone mar-
row fibroblast infiltration or endothelial phenotypic transition
(Duffield, 2014). Regardless of their origin, the presence of myofi-
broblasts are predictor of fibrotic progression, once detectable,

they are prognostic indicators of fibrotic expansion. Intervening
the activity of myofibroblasts and preventing their accumula-
tion in the kidney has become a therapeutic target of antifibrotic
treatment.

Activated fibroblasts from all sources produce large amounts
of ECM components, leading to excessive accumulation and
deposition of interstitial matrix, which is predominantly com-
posed of collagen I, III, and fibronectin. In the physiological
condition, the production and degradation of ECM is intensely
regulated under a dynamic balance. Under the profibrotic state,
this delicate balance is interrupted. Activation of profibrotic
factors and inactivation of antifibrotic factors tilt the balance,
increasing ECM formation while reducing their degradation,
finally leading to excessive accumulation of ECM. Key fibro-
genic factors include TGF-β1, connective tissue growth factor
(CTGF), angiotensin II, platelet-derived growth factor (PDGF)
and fibroblast growth factor (FGF)2, among which, TGF-β1 has
been regarded as key modulator of renal fibrosis (Bottinger,
2007), and the role of TGF-β in fibrosis has been extensively stud-
ied and well summarized (Branton and Kopp, 1999; Bottinger,
2007; Lan, 2011).

Transforming growth factor-β (TGF-β) is a multifunctional
cytokine, functioned through its cognate receptors (type II and
I) to activate a variety of canonical and non-canonical signal-
ing pathways with large amount of profibrotic target genes (Bot-
tinger, 2007). Although most intrinsic kidney cells can secret and
respond to TGF-β, fibroblasts and myofibroblasts are particu-
larly responsive to TGF-β stimulation. TGF-β1 mediates renal
fibrogenesis by increasing ECM production and reducing degra-
dation, besides, TGF-β1 is strong stimulant to induce phenotypic
transformation of epithelial cells into mesenchymal cells (EMT)
(Lan, 2003; Bi et al., 2012;Moustakas andHeldin, 2012). Blockade
of TGF-β1 by neutralizing antibodies or gene silencing, decorin
have demonstrated to reduce ECM production and ameliorate
renal fibrosis in both in vitro and in vivo studies (Border and
Noble, 1998), whereas overexpression of TGF-β1 in mouse liver
develop progressive liver and renal fibrosis (Sanderson et al.,
1995; Kopp et al., 1996). Studies targeted on TGF-β signaling
have been done by many research groups, mainly focusing on
reducing TGF-β production or blockade of TGF-β signal trans-
duction. Clinical trials have also been done to evaluate efficacy
of anti-TGF-β antibodies in fibrotic diseases (Mead et al., 2003;
Denton et al., 2007), while results were less promising as antic-
ipated. Anti-TGF-β treatment with pirfenidone, an orally active
small molecule that inhibit TGF-β through reducing promoter
activity and protein secretion, showed beneficial effect in dia-
betic mouse model (RamachandraRao et al., 2009) and in human
focal segmental glomerulosclerosis (FSGS) (Cho et al., 2007), a
recently completed placebo-controlled randomized clinical trial
also demonstrated the efficacy of pirfenidone on improving GFR
in overt DN (Sharma et al., 2011). However, due to the multi-
ple pathophysiological functions of TGF-β, systemic administra-
tion of anti- TGF-β antibodies may have significant side effect
given that mice knockout of TGF-β1 developed chronic inflam-
mation in almost all organs (Boivin et al., 1995), and knock-
out of TGF-β2 die soon after their birth (Sanford et al., 1997).
Therefore, strategies also target on TGF-β signaling regulation
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including TGF-β receptor blockade, receptor Smad regulation or
other downstream protein control.

CTGF is a cytokine with a molecular weight around 36–38
kD, it is thought to be an prominent profibrotic downstream
modulator of TGF-β (Leask and Abraham, 2006). Under patho-
logical circumstances like fibrotic diseases or skin scarring, over-
expression of CTGF was observed (Leask and Abraham, 2004).
Elevated of constitutive CTGF is a hallmark of tissue firbosis,
it acts as co-factor of ECM, growthfactor and cytokines which
created an permissive enviroment for other stimuli to induce
profibrotic response (Leask and Abraham, 2006). Plasma level of
CTGF was independent predictor of ESRD extend and the overall
mortality (Nguyen et al., 2008b). Blockade of CTGF by using anti-
sense oligonucleotides or specific down-regulation with interfer-
ing RNA (siRNA) ameliorates renal tubulointerstitial fibrosis and
the progression of nephropathy (Yokoi et al., 2004; Guha et al.,
2007). Phase I clinical trial of anti-CTGF monoclonal antibody
FG-3019 in type 1 and 2 diabetic patients was well tolerated and
associated with a decrease in albuminuria (Adler et al., 2010).

Efficacy of BMP-7 as a Therapeutic Drug in Renal
Fibrosis
BMP-7, formerly called osteogenic protein-1/OP-1, is a mem-
ber of the BMP-subfamily within the transforming growth fac-
tor β (TGF-β) superfamily. BMP-7 expression in normal kidney
has the highest expression level in adult organs (Dudley et al.,
1995; Luo et al., 1995). Under several disease states like ischemia-
reperfusion injury (Simon et al., 1999), diabetic nephropathy
(Wang et al., 2001), and hypertensive nephrosclerosis (Bramlage
et al., 2010), BMP-7 has been reported to be down-regulated in
the kidney, and increased again during the regenerative phase
(Vukicevic et al., 1998; Simon et al., 1999). Hypothesis that BMP-
7 possesses anti-fibrotic activity was first verified in a rat model of
unilateral ureteral obstruction (UUO) (Hruska et al., 2000), based
on previous observations that BMP-7 was a renal morphogen
(Dudley et al., 1995), such that its loss and re-expression pat-
tern mirrors preservation of renal function in acute renal injury
(Vukicevic et al., 1998). The simplified model of renal intersti-
tial fibrosis was generated by UUO, in which renal injury was
mediated partly through activation of the angiotensin II -TGF-
β cascade (El-Dahr et al., 1993; Diamond et al., 1994; Yoo et al.,
1997; Fern et al., 1999). Exogenous administration of recom-
binant human BMP-7 blocked tubular epithelial cell apoptosis,
reduced tubular cells dropped out and the accumulation of ECM.
This observation suggested a convincing anti-fibrotic effect of
BMP-7 in renal interstitial fibrosis.

Shortly after this observation, researchers sought to explore
the role of BMP-7 in a rat model of STZ-induced diabetes,
which resembles human type 1 diabetes. BMP-7 was given exoge-
nously through i.v. injection. In this model, it was found that
BMP-7 administration delayed the onset of diabetic nephropa-
thy and prevented glomerulosclerosis; and even partially reversed
diabetic kidney hypertrophy and restored GFR in the progres-
sion stage of DN (Wang et al., 2003). Subsequent studies also
demonstrated a protective role of BMP-7 in STZ-induced dia-
betic kidney injury, manifesting as reduced urinary protein
excretion, preserved podocyte nephrin expression (Xiao et al.,

2009). In another STZ-induced diabetic model, the CD1 mouse,
which tends to develop more severe and accelerated diabetic
kidney injury, BMP-7 inhibited glomerular lesion and tubuloin-
terstitial fibrosis (Sugimoto et al., 2007). Besides exogenously
supplemented BMP-7, transgenic overexpression of BMP-7 in
FVB/N mice induced with STZ led to reduced podocyte dropout,
glomerulosclerosis and interstitial collagen accumulation (Wang
et al., 2006).

The beneficial effects of BMP-7 are not just restricted to
DN. In MRL/MpJ background and autoimmune disease-prone
MRL/MpJlpr/lpr mice, which developed chronic renal injury
resembling lupus nephritis, BMP-7 dose dependently reduced
interstitial ECM protein accumulation, tubular atrophy, serum
creatinine and improved prognosis (Zeisberg et al., 2003a).
In addition, BMP-7 improved kidney morphology and renal
function in Col4A3 knockout mice that recapitulate Alport
Syndrome, a genetic kidney disease. CD1 mice treated with
nephrotoxic serum to induce acute glomerulonephritis had
decreased ECM secretion and even prompted mesenchymal to
epithelial transition when BMP-7 was administered (Sugimoto
et al., 2007).

Among these studies, a prominent anti-fibrotic effect of BMP-
7 in both glomerulus and tubulointerstitium was observed. Nev-
ertheless, considering that BMP-7 was first discovered as growth
factor that facilitated bone formation, concerns about ectopic
bone formation and vascular calcification of using BMP-7 sys-
temically seem reasonable. To date, no reports suggested these
potential complications in their rodent models. Furthermore,
there was evidence that BMP-7 even prevented vascular calcifi-
cation (Davies et al., 2005; Hruska et al., 2005). Transgenic mice
that over-expressed BMP-7 for 1 year had no observable ectopic
bone formation either (Wang et al., 2006).

However, BMP-7 was not always effective and promising. For
example, BMP-7 conferred no benefits in a rat protein-overload
model (Ikeda et al., 2004). In this study, BMP-7 showed no
effect in reducing ECM accumulation and proteinuria; on the
contrary, BMP-7 tended to increase ECM gene expression in
the kidney. Another study investigated on LDLR-deficient mice
with kidney partial ablation also showed no effect of BMP-7 in
preserving renal function, though BMP-7 corrected hyperphos-
phatemia, osteodystrophy and prevented vascular calcification
(Davies et al., 2005). Most published studies of BMP-7 as a ther-
apeutic intervention in animal models of kidney disease were
listed in Table 1. Furthermore, clinical trials of BMP-7 analog
THR-V-123 has been launched by Thrasos to study its efficacy
on diabetic nephropathy, which results worth anticipated.

Mechanism of Anti-Fibrotic Effect of BMP-7
BMP-7 and TGF-β

TGF-β has been known as the key modulator of kidney (and
that of other organs) fibrosis. TGF-β acts on multiple cell types
in the kidney, including podocytes, mesangial cells, renal prox-
imal tubular epithelial cells and interstitial fibroblasts. TGF-
β induces pro-fibrotic gene transcription, and finally leads to
the overexpression of extracellular matrix proteins, reduction
of cell proliferation and differentiation, and elevation of resi-
dent epithelial cell apoptosis. Moreover, although evidence of

Frontiers in Physiology | www.frontiersin.org 3 April 2015 | Volume 6 | Article 114

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Li et al. BMP-7 in renal fibrosis

TABLE 1 | Published studies of BMP-7 as a therapeutic tool in animal models of kidney disease.

Animal model Species Disease model Effect of BMP-7 References

IRI Rat Acute tubular necrosis Preserved kidney function, increase survival

rate

Vukicevic et al., 1998

UUO Rat Obstructive nephropathy Preserved renal blood flow, prevent tubular

atrophy, reduced tubulointerstitial and fibrosis

Hruska et al., 2000

MRL/MpJlpr/lpr Mouse Lupus nephritis Inhibited tubular atrophy and interstitial fibrosis Zeisberg et al., 2003a

COL4A3−/− Mouse Alport syndrome Inhibited tubular atrophy and interstitial fibrosis Zeisberg et al., 2003a

Nephrotoxic serum nephritis CD1 Mouse Acute glomerulonephritis Induced MET, decreased ECM secretion Zeisberg et al., 2003b, 2005

STZ induced diabetes Rat Type 1 diabetic nephropathy Reversed kidney hypertrophy, restored GFR,

reduced albumin excretion

Wang et al., 2003

Kidney Cx or 5/6 Nx (RRKM) SD rat CKD Increased tubular regeneration in early stage of

repair process

Dube et al., 2004

STZ induced diabetes CD1 Mouse Type 1 diabetic nephropathy Inhibit glomerular lesion, and tubulointerstitial

fibrosis

Sugimoto et al., 2007

STZ induced diabetes FVB/N Mouse Type 1 diabetic nephropathy Reduced podocytes dropout, glomerular

fibrosis and interstitial collagen accumulation

Wang et al., 2006

LDLR−/− Mouse CKD/VC/Atherosclerosis/ Down regulated osteocalcin expression Davies et al., 2003

Unx + kidney partial

ablation LDLR−/−

Mouse Metabolic syndrome/Insulin

resistance

Corrected hyperphosphatemia,

osteodystrophy, and prevent VC, but no

improvement of renal function

Davies et al., 2005

STZ induced diabetes Rat Type 1 diabetic nephropathy Reduced urine protein excretion, preserved

podocyte number and nephrin expression

Xiao et al., 2009

Protein overload Rat Kidney disease Failed to reduced proteinuria and even showed

increase of ECM gene expression

Ikeda et al., 2004

IRI, Ischemia-reperfusion injury; UUO, unilateral ureteral obstruction; STZ, streptozotocin; Unx, uninephrectomy; CKD, chronic kidney disease; VC, vascular calcification; Kidney Cx,

decapsulation; 5/6 Nx, 5/6 nephrectomy; RRKM, rat remnant kidney model.

epithelial-to-mesenchymal transition (EMT) in human kidney
remains insufficient, TGF-β have been shown to super-induce
fibrotic progression in dozens of in vitro studies of tubular epithe-
lial cells, by causing epithelial phenotypic lost and gain of fibrob-
last phenotypes. As a member of the TGF-β superfamily, BMP-7
was first speculated to promote fibrosis progression in the kid-
ney, but interestingly, an abundance of researches concluded an
opposite view.

Besides the anti-fibrotic effect of BMP-7 in all the animal mod-
els mentioned above, a variety of in vitro studies have suggested
the anti-fibrotic effect of BMP-7 to be heavily (although may not
exclusively) TGF-β-dependent. This raised the hypothesis that
the anti-fibrotic effect of BMP-7 was mediated via counterbal-
ancing the TGF-β signaling pathways. A mass of in vitro find-
ings showed evidence to support this notion, and the interaction
between BMP-7 and TGF-β in the kidney has also been discussed
previously (Meng et al., 2013).

TGF-β induced extracellular matrix and other pro-fibrotic
gene overexpression in mesangial cells. Although mesangial cells
did not express BMP-7, BMP receptors were detectable on
mesangial cells with active signals. Co-incubating murine mesan-
gial cells with TGF-β and BMP-7 reduced TGF-β-stimulated
collagen IV, fibronectin and CTGF overexpression. It is worth
mentioning that BMP-7 reduces ECM accumulation without
concomitant changes of their mRNA levels, suggesting that BMP-
7 might act through affecting ECM protein degradation. Besides,
TGF-β stimulation decreased matrix metalloprotease (MMP)-
2 expression and this action could be abolished by BMP-7,

possibly via reducing the activation of the plasminogen activator
inhibitor (PAI-1) (Wang and Hirschberg, 2003). Furthermore,
BMP-7 reduced nuclear accumulation of Smad3 and blocked
the transcriptional up-regulation of CAGA-lux. Knock-down of
Smad5 impaired the ability of BMP-7 to interfere with CAGA-lux
activation (Wang and Hirschberg, 2004).

The effects of BMP-7 on tubular epithelial cells have also been
extensively studied. The emerging importance of tubular epithe-
lial cells (the most abundant cell type in the kidney) in kidney
diseases cannot be overemphasized. Most studies in the animal
models stated abovemainly focused on tubulointerstitial damage,
fueling attention of how BMP-7 functions on TECs.

Like mesangial cells, proximal tubular epithelial cells showed
no expression of BMP-7, but constitutively express BMP recep-
tors as described in the previously section. On the other hand,
distal tubular cells express both BMP-7 and BMP receptors.

In a setting that study of BMP-7 on NP-1 cell (mouse distal
tubule cell line) which stimulated with TGF-β (Zeisberg et al.,
2003b), BMP-7 preserved epithelial cell phenotype and helped
re-express E-cadherin and ZO-1 in NP-1 cells. They constructed
a ligand-independent system with construct expressing ALK5
and a plasmid expressing Smad3 to mimic TGF-β intracellu-
lar signal, and a plasmid expressing Smad5 to mimic BMP-7.
Mimicry of BMP-7 increased activity of E-cadherin promotor
activity, while mimicry of TGF-β showed the opposite, suggesting
Smad-dependent counteractions of TGF-β and BMP-7.

Researches have also been done in human proximal tubu-
lar epithelial cell line (HK2). BMP-7 dose dependently reduced
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TGF-β-induced overexpression of a-SMA, fibronectin, collagen I
and CTGF in HK2 cells (Xu et al., 2009). Similar effects repro-
duced elsewhere by other group (Luo et al., 2010) with fur-
ther research. BMP-7 was found to reduce Smad3 DNA binding
to a consensus Smad binding element probe without alteration
of Smad3 phosphorylation or degradation. Co-incubation with
TGF-β revealed that BMP-7 reduced Smad3 binding to the PAI-
1 promotor in HK2 cells. Moreover, BMP-7 prevented TGF-β-
induced SnoN lost. siRNA interference suggested that the effect
of BMP-7 on Smad3 was SnoN-dependent.

Cyclosporine A (CsA) has been reported to induce EMT in
HK2 cells with involvement of TGF-β and CTGF (McMorrow
et al., 2005). BMP-7 inhibited CsA-induced TGF-β and CTGF
overexpression in a dose dependent manner (Xu et al., 2010).
BMP-7 also reduced aristolochic acid (AA)-induced TGF-β and
collagen 3 secretion, preserved cell phenotype and cell viability in
HK-2 cells (Wang et al., 2010). These findings suggested a strong
TGF-β-dependent anti-fibrotic role of BMP-7.

However, not all the studies with BMP-7 in TGF-β-induced
fibrosis showed a positive result. Dudas et al., used TGF-β as
a stimulant to study the role of BMP-7 in both human and
murine tubular epithelial cells. Contrary to the other results listed
above, they failed to demonstrate an anti-fibrotic role of BMP-7
in human tubular cells (both primary cell and immortalized cell
line). BMP-7 per se decreased E-cadherin expression (Veerasamy
et al., 2009) and increased vimentin, CTGF and TGF-β1 expres-
sion. However, in TCMK-1 cell (mouse renal tubular epithe-
lial cell), BMP-7 preserved E-cadherin expression in TCMK-1
cells (Dudas et al., 2009), suggesting different modulatory role of
BMP-7 in different species.

BMP-7 and CTGF

CTGF is considered as inhibitor of BMP-7 signaling. In dia-
betic CTGF+/+mice, phosphorylation of smad1/5, expression of
BMP-7 target gene Id1 and MMP activity was significantly lower
than in CTGF+/− mice (Nguyen et al., 2008a). The secreted
CTGF can directly binds to BMP and TGF-β through its CR
domain, which prevent BMP binds to its receptors and con-
trarily enhance TGF-β-receptor binding (Abreu et al., 2002), by
which, CTGF act as fibrogenic switch that shifting balance from
anti-fibrosis to fibrosis (Gressner and Gressner, 2008). However,
there are also evidences suggested BMP-7 alone increase gene
expression of CTGF in tubular cells (Dudas et al., 2009; Li et al.,
2015), which make interactions between BMP-7 and CTGF more
complicated and pending for further investigation.

BMP-7 and ECM

Another possible hypothesis is that BMP-7 exerts anti-fibrotic
effect by affecting ECM formation and degradation. BMP-7
reduced TGF-β induced overexpression of ECM proteins in
mesangial cells without affecting their gene levels, besides, BMP-
7 preserves MMP2 activity and blocks PAI-1 promoter activa-
tion in TGF-β-stimulated mesangial cells (Wang and Hirschberg,
2003), however, there were also studies suggested that MMP2
and -9 may play minor roles in ECM degradation (Holmbeck
et al., 1999; Visse and Nagase, 2003; Lee et al., 2006). Study of
BMP-7 in protein-overloaded rats showed a slight decrease of FN

and collagen protein levels (not reaching statistical significance)
but an increase of TGF-β gene expression, while in this study,
endogenous BMP-7 expression was increased (Ikeda et al., 2004).
Studies done by our group also observed increase of FN and
collagen gene expression in PTECs that incubated with BMP-7.
On the other hand, applied BMP-7 to human renal adult fibrob-
lasts cell line reduced collagen I expression and promote cell
mesenchymal-to-epithelial phenotypic transition (Zeisberg et al.,
2005). Considering BMP-7 as a morphogen in bone formation,
and the promotion of ECM composition was also reported in
other study (Tacke et al., 2007) that increase of BMP-7 concen-
tration was correlated with liver fibrosis. Thus, whether BMP-7
reduce or increase ECM remains controversial, there might be
fine regulation of BMP-7 level in vivo, which may affected its role
shifting between anti-fibrotic or pro-fibrotic.

BMP-7 and Inflammation

Inflammatory response can be considered as the onset of wound
healing, while non-resolution inflammation is a relentless driver
of fibrogenesis that forms a vicious cycle to finally lead to irre-
versible fibrosis. Anti-inflammatory treatment on the onset and
progression stage of renal fibrosis also attracted highly atten-
tion. Current studies of BMP-7 in the kidney mainly focused
on its anti-fibrotic role, though many studies have suggested the
possible anti-inflammatory effect of BMP-7. In the IRI model,
BMP-7 reduced ICAM-1 expression and accumulation and activ-
ity of neutrophils (Vukicevic et al., 1998). Latter study with UUO
model suggested BMP-7 reduced monocyte/macrophage infil-
tration in the tubulointerstitium (Hruska et al., 2000). Study
that done by Stephen E Gould et al showed that co-incubated
of TNF-α-stimulated human tubular cells with BMP-7 reduced
overexpression of pro-inflammatory cytokines, including IL-6,
IL-8, IL-1β, and MCP-1 (Gould et al., 2002). In vitro study with
humanmesangial cells suggested BMP-7 inhibited IL-1β-induced
overexpression of MCP-1 expression in mesangial cells, which
might exert by suppressing the JNK signaling pathways (Lee
et al., 2003). BMP-7 also reduced overexpression of TNF-α, IL-
6 that induced by polymeric IgA in mesangial cells (Chan et al.,
2008). Moreover, there was study of BMP-7 on monocyte polar-
ization, which found BMP-7 enhanced THP-1 polarized to M2
macrophage, and the increase of anti-inflammatory cytokines IL-
10 and IL-1ra (Rocher et al., 2012). Our data also demonstrated
BMP-7 reduced overexpression of proinflammatory cytokines in
advanced glycation end products (AGEs)-stimulated PTECs (Li
et al., 2015) and IgA-induced mesangial cells (Chan et al., 2008).
This anti-inflammatory effect of BMP-7 might exert through
suppressing activation of multiple signaling pathways including
p38 and p44/42 MAPK, as well as reduction of ROS formation.
Table 2 listed most published studies of BMP-7 as a therapeutic
intervention in different cell types of the kidney.

BMP-7 and Oxidative Stress

Role of oxidative stress in tissue fibrogenesis has been discussed
extensively (Poli, 2000; Aragno et al., 2008; Zhao et al., 2008b;
Nie and Hou, 2012). In the kidney, oxidative stress contributed
to the onset and progression of renal fibrogenesis in different dis-
ease models (Zhang et al., 2004; Zhao et al., 2008a; Kim et al.,
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TABLE 2 | Published studies of BMP-7 as a therapeutic tool in different cell types of kidney disease.

Cell type Stimulants Effect of BMP-7 References

Murine podocyte HG 25mM

TGF-β 100 pM

Reduced capase-3 activity, reduced apoptosis Mitu et al., 2007

Murine podocyte HG Restored synaptopodin and podocin De Petris et al., 2007

Rat mesangial cell HG 30 nM Decreased ROS and TGF-β Yeh et al., 2009

Mesangial cell polymeric IgA Reduced expression of TNF-α, IL-6, TGF-β, fibronectin Chan et al., 2008

Mesangial cell TGF-β 50–200 pM Reduced ECM accumulation, maintained activity of MMP2 Wang and Hirschberg, 2003

Mesangial cell TGF-β 12.5–200 pM BMP-7-induced opposition to TGF-β required Smad5 Wang and Hirschberg, 2004

Human PTECs HSA 5mg/ml Repressed NIK dependent chemokine synthesis Lim et al., 2014

HK2 cell AA

30, 60, 120 umol/L

Preserved cell phenotype and cell viability, reduced TGF-β and collagen 3

secretion

Wang et al., 2010

HK2 cell TGF-β 1 ng/ml Suppressed PAI-1, CTGF and TGF-β expression, preserved SnoN expression Luo et al., 2010

HK2 cell CsA 4.2µM Preserved epithelial cell phenotype, restored E-cadherin and decreased ECM

secretion

Xu et al., 2010

HK2 cell TGF-β 3 ng/ml Reversed EMT decreased ECM expression Xu et al., 2009

HK2 cell and RPTEC

and TCMK-1 cells

TGF-β

10 ng/ml (RPTEC);

3 ng/ml (HK2)

Failed to attenuate EMT in RPTEC or HK-2 cells, BMP-7 alone decreased

E-cadherin expression and increased vimentin, CTGF and TGF-β1 expression;

Preserved E-cadherin in TCMK-1 cells

Dudas et al., 2009

HK2 cell MCP-1

0.1, 1, 10, 50 ng/ml

Inhibited MCP-1 induced EMT through TGF-β-Smad 3 pathways Tan et al., 2005

TK173 N/A Increased fibroblast E-cadherin, Pax2, Wnt4 expression and E-cadherin

promoter activity (MET)

Zeisberg et al., 2005

HK2 cell U937 cell condition media

TNF-a 10 ng/ml

Reduced U937-dependent TGF-β promoter activity and TGF-β synthesis

through interaction with cell surface hyaluronan;

Zhang et al., 2005

NP-1 cell TGF-β 3 ng/ml Preserved E-cadherin and ZO-1 expression Zeisberg et al., 2003b

TK173, human renal fibroblast cell line; NP-1, mouse distal tubular epithelial cells; HK2, human tubular epithelial cells; RPTEC, human primary tubular epithelial cells; TCMK-1, mouse

renal tubular epithelial cells; HAS, human serum albumin; HG, high glucose; AA, Aristolochic.

2009; Singh et al., 2011). On the other hand, previous stud-
ies have demonstrated that BMP-7 protected cultured neurons
from oxidative stress, and BMP-7 reduced H2O2 toxicity to the
neuron and lipopolysaccharide (LPS) stimulation (Tsai et al.,
2007; Sun et al., 2011), which indicated an anti-oxidative role
of BMP-7. Subsequently, Yeh et al. (2009) showed that BMP-7
decreased HG-induced ROS in mesangial cells, and that neutral-
izing BMP-7 with anti-BMP-7 or knockdown BMP-7 expression
would increase superoxide generation in the cells. This antioxida-
tive activity of BMP-7 might be exerted through suppressing JNK
and c-jun phosphorylation and the reduction of PKCζ.

Summary and Perspectives

Increasing evidence from different independent experiments has
approved the anti-fibrotic effect of BMP-7 in renal fibrotic disease
regardless of its primary causes. BMP-7 exerts anti-inflammatory,
anti-fibrotic and anti-oxidative responses caused by various stim-
uli, reduces ECM production by suppressing matrix-producing
cell activity and inducing MET, enhances ECM degradation by
increasing the activity of MMP and reducing activation of PAI-1.
Clinical trials have also been launched to investigate the efficacy
of BMP-7 (analog) in both acute and chronic kidney disease.
However, despite the increasing understanding of BMP-7 sig-
naling transduction and regulation, there are also controversial
results in its efficacy. For instance, there was no effect of BMP-7

in skin, lung or renal fibrosis, and some studies even showed that
BMP-7 is a promoter of fibrosis. Based on the overall results from
all in vitro and in vivo studies to date, the anti-fibrotic effect of
BMP-7 seems promising, whereas the diverse regulatory effect
of BMP-7 in ECM protein and gene expression, and its inter-
action with profibrotic mediators like CTGF indicates that the
precise role of BMP-7 could shift between anti-fibrosis or pro-
fibrosis and the fine regulation of its level in vivomight be amajor
challenge in the systemic use of BMP-7 in clinical application.
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