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Summary

Umbilical cord blood is rich in hematopoietic stem and progenitor cells and has recently been
used successfully in the clinic as an alternative source of engrafting and marrow repopulating
cells . With the likelihood that cord blood stem/progenitor cells will be used for gene therapy
to correct genetic disorders, we evaluated if a TK-neo gene could be directly transduced in a
stable manner into single isolated subsets ofpurified immature hematopoietic cells that demonstrate
self-renewed ability as estimated by colony replating capacity. Sorted CD343 + cells from cord
blood were prestimulated with erythropoietin (Epo), steel factor (SLF), interleukin (IL)-3, and
granulocyte-macrophage colony stimulating factor (GM-CSF) and transduced with the gene in
two ways . CD343 + cells were incubated with retroviral-containing supernatant from TK-neo
vector-producing cells, washed, and plated directly or resorted as CD343 + cells into single wells
containing a single cell or 10 cells . Alternatively, CD343+ cells were sorted as a single cell/well
and then incubated with viral supernatant . These cells were cultured with Epo, SLF, IL-3, and
GM-CSF ± G418 . The TK-neo gene was introduced at very high efficiency into low numbers
of or isolated single purified CD343+ immature hematopoietic cells without stromal cells as a
source of virus or accessory cells. Proviral integration was detected in primary G418-resistant(R)
colonies derived from single immature hematopoietic cells, and in cells from replated colonies
derived from G418R-colony forming unit-granulocyte erythroid macrophage megakaryocyte
(CFU-GEMM) and -high proliferative potential colony forming cells (HPP-CFC) . This
demonstrates stable expression of the transduced gene into single purified stem/progenitor cells
with replating capacity, results that should be applicable for future clinical studies that may utilize
selected subsets of stem/progenitor cells for gene therapy.

Foreign genes have been introduced into mammalian cells
(1, 2), and gene therapy has been evaluated as a possible

option in patients for treatment of certain inherited diseases
(3, 4) . Retroviral-vectors have been used most often to stably
transduce genes into cells, and targets for these genes have
included hematopoietic stem/progenitor cells (5-20), lym-
phocytes (21), and tumor cells (22) . Hematopoietic stem and
progenitor cells are found in low frequency in blood forming
tissue, but it is these rare cells that present a viable target
for gene therapy. In humans, although antigenic determinants
specific for stem and progenitor cells have not yet been
identified, these cells contain CD34 antigens and this anti-
genic determinant has been used successfully as a marker to
highly enrich stem and progenitor cells in human adult bone
marrow (23-25), blood (20), and umbilical cord blood (25) .
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Cord blood, which contains hematopoietic stem/progenitor
cells at afrequency equal to or greater than that ofadult bone
marrow (26-29) and has a high quality for proliferation (26-29)
and self-renewal (25, 30, 31) has shown promise clinically,
as an alternative source ofhuman transplantable and marrow
repopulating cells (32-36) . Recently, it has been demonstrated
that cord blood progenitors and long-term culture initiating
cells present in a relatively unseparated population of cells
are more efficiently transduced by retroviral-mediated gene
transfer than are these cells in adult bone marrow (37) . For
logistic reasons, including the amount of viral supernatant
available for gene transduction, purified populations of human
stem, and progenitor cells will most likely serve increasingly
as targets for future clinical gene therapy procedures. In this
context, cord blood is an interesting choice for this source
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of cells especially for autologous transplantation for in utero-
diagnosed genetic disorders. For these reasons we chose to
evaluate the efficiency of retroviral-mediated gene transduc-
tion into highly enriched populations of human cord blood
stem and progenitor cells . Future insights will no doubt allow
for antigenic characterization of distinct subsets of stem and
progenitor cells differing in capacity for self-renewal, prolifer-
ation, and lineage-specific differentiation that could poten-
tially be used for selective transplantation. Since the growth
of isolated single cell-sorted human stem/progenitor cells is
possible (25, 38, 39), we also evaluated the capacity to trans-
duce genes into single isolated CD343+ cord blood cells
with extensive replating capacity (a measure of self-renewal) .
We show that populations of CD343 + cord blood high
proliferative potential colony forming cells (HPP-CFC)1 ,
and multipotential CFU-granulocyte erythroid macrophage
megakaryocyte (GEMM), burst forming unit-erythroid (BFU-
E), and CFU-granulocyte-macrophage (GM) progenitor cells
can be retrovirally transduced with a TK-neo gene at very
high efficiency. This is accomplished also at the single iso-
lated CD343 + cell level, with the gene stably integrated into
cells with high replating capacity.

Materials and Methods
Cells and Cell Separation.

	

Cells were obtained from normal
human umbilical cord blood scheduled for discard after delivery
of the infant and after prior need for samples for clinical study had
been satisfied. CD343+ cells were obtained after sorting nonad-
herent low density T lymphocyte depleted (NALT- ) cells on a
Dual Laser Flow Cytometer (Epics 753; Coulter Corp., Hialeah,
FL) (25) . This population was >98% pure for cells expressing the
CD34 antigen. CD343 + cells included the 20% of CD34 antigen
expressing cells with the highest density distribution of CD34 an-
tigens. This fraction is richest in stem/progenitor cells (23, 25).
In some experiments, CD343+ cells were sorted or resorted using
an auto-clone device (Coulter Corp.) into single wells, as a single
cell or as 10 cells, containing 0.1 ml semisolid or liquid culture
medium (25, 39).

Colony Assay and Replating Experiments.

	

Cultures contained
IMDM (GIBCO BRL, Gaithersburg, MD), 1% methylcellulose,
30% FCS (Hyclone Laboratories, Inc., Logan, UT), 0.1 mM hemin
(Eastman Kodak Co., Rochester, NY) and recombinant human (rhu)
erythropoietin (Epo) (Amgen Corp., Thousand Oaks, CA), rhu
steel factor (SLF), rhu 11,3, and rhu-GM-CSF (gifts from Immunex
Corporation, Seattle, WA). Colonies were scored after incubation
at 37°C, lowered (5%) Oz, and 5% CO2 for 14 or 21 d. Replat-
ing experiments were performed after removing and dispensing a
single colony into the same type of semisolid medium and growth
factors as the primary culture (25) . Results are given as the mean
or mean ± 1 SEM.

Retroviral Vector.

	

The N2/ZipTKNEO (TKNEO) vector used
in these studies has been described previously (37) . Neo phos-
photransferase sequences are expressed in the sense orientation (rel-

I Abbreviations used in this paper: BFU-E, burst forming unit erythroid;
Epo, erythropoietin; GEMM, granulocyte erythroid macrophage mega-
karyocyte; HPP-CFC, high proliferative potential colony forming cells;
NALT - , nonadherent low density T lymphocyte depleted ; rhu, recomi-
nant human; SLF, steel factor; TKNEO, NZ/ZipTKNEO.
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ative to the 5' long terminal repeat-LTR) via the herpes simplex
virus thymidine kinase promoter. GP+EnvAM 12TKNEO pro-
ducer cells containing the TKNEO retroviral plasmid were cul-
tured in IMDM containing 10% FCS. Viral-containing superna-
tant was collected by adding 10 ml of IMDM plus 20% FCS to
confluent plates overnight. Harvested medium was filtered through
0.45 Am filters and stored at -80°C until use. The TKNEOvirus
was titered at 1 x 105 G418-resistant CFU/ml on NIH 3T3 cells.

Retroviral Transduction Protocol.

	

Two protocols were used in these
studies . In the first protocol, NALT- or CD34 3+ cord blood cells
(<5 x 105 cells/ml) were prestimulated with Epo (1 U/ml), SLF
(50 ng/ml), IL-3 (200 U/ml), and GM-CSF (200 U/ml) at 37°C,
5% CO2, and 20% Oz for 40 h. 2 ml viral supernatant and 8
Ag/ml polybrene were added to cells 4 x at 2-h intervals . Cells were
washed twice and assayed for colony formation or resorted into
single wells containing either a single cell or 10 cells in the pres-
ence of 1 U/ml Epo, 50 ng/ml SLF, 200 U/ml IL-3, and 200 U/ml
GM-CSF ± 1.5 mg/ml or 12 Ag/ml (dry weight) G418 . In the
second protocol, single CD343 + cord blood cells were sorted into
single wells containing 0.1 ml methylcellulose culture in the pres-
ence ofcytokines as described above (25) . 3 or 4 d later, viral super-
natant was added only once at 20 Al/well with polybrene (8 Ecg/ml) .
G418 was added at 1.5 mg/ml or 12 Ag/ml 40 h after addition
of viral supernatant .

To assay the temperature sensitivity of the virus preparation,
1000 NIH 3T3 cells were plated in 35-mm tissue culture dishes .
Viral supernatant was added for 2.5 h with 8 Ag/ml polybrene,
cells were washed, and fresh medium added with 1.5 mg/ml (dry
weight) G418 .

Polymerase Chain Reaction (PCR) Analysis.

	

GenomicDNAwas
isolated from individual colonies as described by others (40) with
modification . Individual colonies were removed from primary or
secondary methylcellulose culture or cells were removed after sus-
pension culture and washed with 1 ml of PBS. Cell pellets were
resuspended in the small volume of remaining PBS to which was
added 200 Ell of a chelex 100 solution (41) . Cells were lysed by
boiling for 5 min, chilled on ice for 5 min, and pelleted for 30 s
at 2,800 g . 10 Al of supernatant from the lysate was used for PCR.
As a positive control, DNAwas obtained from cells incubated with
viral supernatant that contained theTKNEO gene . As a negative
control, DNAwas obtained from cells incubated with supernatant
not containing theTKNEOgene (mock control) . Two 27-bp oli-
gonucleotides were used at 20 pmol in the PCRreaction . The PCR
generated a 792-bp fragment of the TKNEO gene beginning with
the 5' o4go-[27-by]5'CAAGATGGATTGCA000AGGTTCTCCG
and ending with the 3' oligo-[27-by]5'CCAGAGT000GCTCAG-
AAGAACTCGTC. Each sample was amplified for 30 cycles (94°C
for 60 s to denature the DNA, 60°Cfor 2 min for primer annealing,
and 72°C for 3 min for primer extension) as described (17) . 20 Al
of reaction mixture was electrophoresed on a 1% agarose gel and
this was photographed after ethidium bromide staining. Electro-
phoresed DNAwas then transferred to Gene Screen Plus (Dupont-
NEN, Boston, MA) and hybridized with [32 p]dCTP-labeled neo
fragment . Hybridization was performed overnight at 42°C (17) .
Filters were washed with 0.1% SDS, O.lx SSC (SSC = 0.15 M
NaCl, 0.015 Msodium citrate) at 55'C, dried, and exposed to Kodak
XAR film at -80°C.

Results
Gene Transduction into Early Hematopoietic Cells as Evalu-

ated by G418R-Colonies. Before evaluating the transducing
efficiency of TK-neo gene into purified populations of cord



Table 1.

	

Colony Formation by G418'-NALT - or -CD34'' Cord Blood Cells"

" Retroviral gene transfer was performed at <106 cells/ml. 2 ml of viral superntant with 8 Pg/ml polybrene was added for transduction as described
in Materials and Methods. Sorted CD3" cells were transduced and either plated at 250 cells/ml, or subjected to a second sort in which 10 or 1
CD343 " cells were sorted into a single well . Cells were assayed for colony formation in the presence of Epo, SLF, IL-3, and GM-CSF ± G418
at 1.5 mg/ml (dry weight) .
t The numbers in parentheses designate background growth of colonies from mock-infected cells growing in G418 and are based respectively on
results of three, three, one, and one experiment with 5 x 104 NALT - , 250 CD343 *, 10 CD343' and 1 CD343 ' cell(s) .

blood progenitor cells, progenitors present in a NALT -
population of cells were used as targets. As shown in Table
1, 25% of total progenitor cell-derived colonies were G418R .
Over 50 G418R colonies were separately removed and each
one was found by PCR analysis to contain the TK-neo gene.
Similar studies were performed using populations of very
highly enriched progenitor cells present in CD343+ popu-
lations of sorted cells in which at least 50-75% of the cells
are CFU-GEMM, BFU-E, CFU-GM, and HPP-CFC (23,
25) . Incubation of CD343 + cells with the TK-neo gene, fol-
lowed by washing and plating at 250 cells/ml resulted in a
TK-neo gene transduction efficiency similar to that noted for
the NALT- population of cells (Table 1) . Interestingly, the
apparent efficiency of gene transduction was even greater when
the CD343+ cells that were incubated with viral superna-
tant and then washed were resorted as 10 or 1 CD343 +
cell(s)/well (Table 1) . With one CD343 + cell/well, a 49%

Table 2 .

	

Detection of Neo Gene by PCR Analysis of Primary Colonies Growing from CD34'' Cells in the Absence of G418
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transduction efficiency was noted for G418R colonies with
45, 25, and 85% transduction apparent, respectively, for
CFU-GEMM-, BFU-E-, and CFU-GM-derived colonies .
Confirmation of the TK-neo gene in 96% of these G418R
colonies (129 positive from 135 evaluated colonies) was ob-
tained by PCR analysis of the cells from individual colonies.
A breakdown of the different colony types showed that 98%
(60/61) CFU-GEMM-, 89% (24/27) BFU-E-, and 97%
(30/31) CFU-GM-G418R colonies contained the TK-neo
gene. High efficiency transduction was also observed in cells
growing in suspension from single sorted cells (8 of 8 wells
positive by PCR) . As seen in Table 1, only a small percentage
of G418R-HPP-CFC derived colonies were observed ; 7 of
7 G418R-HPP-CFC colonies were documented by PCR
analysis to contain the TK-neo gene .
Gene Transduction into Early Hematopoietic Cells as Evalu-

ated by Plating Cells in the Absence ofG418 .

	

To evaluate the

Numbers in parentheses represent the number of PCR positive colonies/total number of colonies evaluated.

Total No .
Cells Target No . G418R- Percent G418R-colonies
infected cell Plating experi- colonies
with : population cell No . ments evaluated Total HPP-CFC CFU-GEMM BFU-E CFU-GM

TK-neo gene NALT - 5 x 104/ml 4 2849 25 ± 6 (0.5 ± 0.3)t 0 18 ± 11 25 ± 8 50 ± 10
TK-neo gene CD343 ' 250/ml 6 2557 24 ± 7 (0.5 ± 0.5) 2 ± 1 23 ± 8 20 ± 6 53 ± 11
TK-neo gene CD3434 10/well 2 129 39 ± 19 (0 .3) 8 ± 2 52 ± 16 27 ± 17 53 ± 21
TK-neo gene CD343 ' 1/well 2 103 49 ± 6 (0.1) 0 .3 ± 0.3 45 ± 5 25 ± 15 85 ± 5

Cells analyzed from :
Total

No . experiments

Percent HPP-CFC- and CFU-GEMM-colonies
or cells positive for Neo gene

Total HPP-CFC CFU-GEMM

Primary colonies of cells infected with
TK-neo and plated at 250 cells/ml 4 83 (38/46)' 83 (29/35) 82 (9/11)

10 cells/well 3 65 (13/20) 67 (6/9) 64 (7/11)
1 cell/well 3 45 (9/20) 75 (6/8) 25 (3/12)

Suspension cultures produce from 1
cell/well 1 50 (4/8 wells)

Primary colonies from cells cultured
with mock supernatant and plated as
1 cell/well (background) 2 0 (0/8) 0 (0/5) 0 (0/3)



possibility that the transduction ofthe TK-neo gene was greater
than that observed in Table 1, especially for HPP-CFC de-
rived colonies, CD343 + cord blood cells were incubated
with TK-neo genes containing viral supernatant, washed,
and plated as 250 cells/ml or resorted as 10 or 1 CD343+
cell(s)/well in the absence of G418 . Colonies were then as-
sessed for transduction of the TK-neo gene by PCR analysis .
As noted in Table 2, HPP-CFC- and CFU-GEMM-colonies
were transduced at high efficiencies, respectively, of67-83%
and 25-82% . Additionally four of eight wells seeded with
a single CD343 + cell/well generated cells in suspension cul-
ture that contained the TK-neo gene . None of eight colonies
derived from mock-infected CD343 + cells were found posi-
tive by PCR analysis for the TK-neo gene .
Gene Transduction at the Single Isolated CD343+ Progenitor

Cell Level. The experiments shown in Table 1 and 2 in which
CD343 + cells were first incubated with viral supernatant
containing the TK-neo gene and then resorted as a single
CD343 + cell/well demonstrated that progenitor cells trans-
duced with the TK-neo gene could proliferate and differen-
tiate in the presence of growth stimulating cytokines but in
the absence ofother progenitor or accessory cells at the start
ofthe culture . We additionally wished to determine ifa single
isolated CD343 + cell could be transduced with the TK-neo
gene. CD343+ cells were sorted as a single cell/well and viral
supernatant containing the TK-neo gene added as described
in the Materials and Methods with the subsequent addition
to these single cell cultures of either 1.5 mg/ml or 12 hg/ml
G418 (Table 3) . Based on the findings that HPP-CFC in the
absence of G418 could be transduced with the TK-neo gene
at high efficiency (Table 2), but few HPP-CFC-G418R colo-

Table 3 .

	

G418R-Colonies Derivedfrom Single CD343' Cord Blood Cells Transduced with Neo Gene at the Single Cell Level and
Neo Gene Detection by PCR Analysis ofIndividual Primary G418R-Colonies

nies formed in the presence of 1.5 mg/ml G418 (Table 1),
we had evaluated the sensitivity of HPP-CFC to inhibition
by G418. This had not been previously done. HPP-CFC were
found to be ultrasensitive to inhibition by G418 such that
as little as 12 jAg/ml G418 was sufficient to greatly reduce
colony formation by mock-infected HPP-CFC, while this con-
centration of G418 had little or no effect on CFU-GEMM,
BFU-E, or CFU-GM. At 1.5 mg/ml G418, 4.2, 72.0, 82.0,
and 97%, respectively, ofHPP-CFC, CFU-GEMM, BFU-E,
and CFU-GM formed colonies (Table 3 A) . 26 of 27 of these
G418R-colonies were positive by PCR analysis for the TK-neo
gene (Table 3 B, Fig. 1) . At 12 p.g/ml G418, 85% of the
HPP-CFC survived to form colonies (Table 3 A) and 11 of
12 of these colonies were positive to PCR analysis for the
TK-neo gene (Table 3 B, Fig. 1) . Also, as shown in Table
3 B, suspension cultures derived from single progenitors in-
cubated with virus supernatant containing the TK-neo gene
and grown in the presence of 1.5 mg/ml G418 were positive
in 6 of 6 wells for the TK-neo gene by PCR analysis .

Since we found that it was not possible to wash single cells
after sorting the cells into single wells without losing the
cells, the single sorted cells were not washed free of the viral
supernatant containing the TK-neo gene . Other means were
thus used to evaluate whether the virus added to the single
cells was transducing the TK-neo gene into the original sorted
progenitor cell, or whether the possibility existed that im-
mediate or subsequent daughter cells were being infected after
the progenitor or daughter cells had divided . To this end,
we first evaluated the transducing stability of the viral super-
natant containing the TK-neo gene at 37°C (incubation tem-
perature) . Viral supernatant was incubated at 37°C for 6, 24,

2092

	

Gene Transduction into Isolated Stem/Progenitors

* Single CD343 " cells were sorted into single wells in either methylcellulose culture or suspension culture with Epo, SLF, IL-3, and GM-CSF and
incubated for 3 or 4 d . Viral supernatant was then added as 20 al/well with polybrene . G418 was added at either 1.5 mg/ml or 12 hg/ml 24 h
after gene transduction . Neo gene was detected by PCR analysis of G418Á colonies cells.
t The numbers in parentheses designate the number of colonies growing in G418 per total number of colonies growing without G418 .
$ The numbers in brackets designate the number of colonies positive for the new gene per total number of colonies evaluated .
II ND, not done .

A Primary colonies or cells growing
with G418 at concentrations of: Total

Percent G4181-colonies

HPP-CFC CFU-GEMM CFU-GM BFU-E

1.5 mg/ml 58 (85/147)# 4 .2 (2/48) 72 (26/36) 97 (35/36) 81 (22/27)
1 .2 P,g/ml 80 (117/147) 85 (41/48) 69 (25/36) 86 (31/36) 74 (20/27)

B Cells analyzed from Percent colonies positive for Neo gene by PCR analysis

Primary colonies growing with G418
at 1 .5 mg/ml 96 [26/27]s NDII 100 [9/9] 100 [9/9] 89 [8/9]

Primary colonies growing with G418
at 12 jig/ml 92 [11/121 92 [11/121 ND ND ND

Suspension cultures with G418 at 1 .5
mg/ml 100 [6/61



Figure 1.

	

Neogene expression determinedby PCR analysis of individual
colonies derived from single CD343+ cord blood cells transduced with
TK-neo gene directly at the level of 1 cell/well . (A) Cells that grew in
suspension culture withG418 at 1.5 mg/ml and primary HPP-CPC colo-
nies growing with G418 at 12 Ftg/ml; (B) Primary colonies from CFU-
GEMM, CFU-GM, and BFU-E derived from CD343+ cells growing in
presence of G418 at 1.5 mg/ml. Products of a standard amplification reac-
tion of30 cycles separated by electrophoresis on a 1% agarose gel, trans-
ferred to Gene Screen Plus, and hybridized with 32P-labeled neo fragment
formed 1 band of 792 bp. (+) Indicates DNA extracted from NIH3T3
cells infected with TK-neo gene as a positive control . (-) Indicates DNA
extracted from NIH3T3 cells without TK-neo infection as a negative mock
control.

and 48 h and these treated viral samples were compared to
viruses not subjected to 37°C for their capacity to transduce
NIH 3T3 cells as assessed by the growth of G418R (1.5
mg/ml)-NIH 3T3 colony forming cells. Virus incubated for
6, 24, and 48 h at 37°C, respectively, produced 50, 0, and
0 G418R colonies compared with the >150 colonies formed
from NIH 3T3 cells incubated with nonheat-treated virus.
Thus, the transducing capacity of the virus was completely
lost between 6 and 24 h incubation of the virus at 37°C .
Examination of CD343+ cells sorted as a single cell/well
demonstrated that at a time that was equivalent to 24 h after

Table 4.

	

Neo Gene Detection by PCR Analysis of Secondary Colonies Deriving from Primary G418R-HPP-CFC
and -CFU-GEMM Colonies'
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Figure 2.

	

(A)Neo gene expression determined by PCR analysis of cells
in secondary colonies derived from G418R-CFU-GEMM. Primary CFU-
GEMM colonies growing from single CD343+ cells with G418 at 1.5
mg/ml and were replated into secondary cultures without G418 . (B) Neo
gene expression determined by PCR analysis of secondary colonies de-
rived from G418R HPRCFC . Primary HPP-CFC-colonies growing from
a single CD343+ cell with G418 at 12 ,ug/ml were replated into secondary
cultures without G418. Individual secondary colonies were picked for PCR
analysis . (+) Indicates DNA extracted from NIH 3T3 cells infected with
TK-neo gene as a positive control. (-) Indicates DNA extracted from NIH
3T3 cells without TK-neo infection as a negative mock control .

the addition of virus to the single cells, >97% of the wells
still contained only single cells. The remainder of the wells
contained doublets . Together, the above information suggests
that in >97% of the cases, the TK-neo gene was likely trans-
duced into a single isolated CD343 + progenitor cell .

Stable Gene Transduction into Replatable HPP-CFC and CFU-
GEMM. We have previously demonstrated that colonies de-
rived from single isolated CD343 + cord blood HPP-CFC/
well have extensive replating capacity (25) and that cord blood

CD343+ cells transduced with the Neo gene were sorted at 1 cell/well in the presence of the above concentrations of G418 . G418R-HPP-CFC
and -CFU-GEMM colonies were replated into 20 dishes in the absence of G418 and the resultant 20 colonies were analyzed for the Neo gene .
NA, not applicable because HPP-CFC colonies did not give rise to BFU-E or CFU-GEMM colonies and CPU-GEMM colonies did not give rise

to HPP-CFC colonies when replated into 20 dishes .

No . of secondary
colonies from :

HPP-CFC growing with

Total
No . experiments

No . 2" colonies
evaluated

Number

Total

of secondary

HPP-CFC

colonies

CFU-GM

with Neo

BFU-E

gene integrated

CFU-GEMM

G418 at 12 hg/ml 1 8 8 5 3 NAt NA
CFU-GEMM growing with
G418 at 1 .5 mg/ml 2 30 30 NA 13 5 12



CFU-GEMM can be replated with high efficiency (30,
31) . Single colonies in primary plates derived from single
CD343+ HPP-CFC/well and incubated with viral super-
natant containing the TK-neo gene and cultured with 12
hg/ml G418, and single colonies from single CD343+ CFU-
GEMM/well incubated with viral supernatant containing the
TK-neo gene and cultured with 1.5 mg/ml G418 were replated
into secondary culture plates. 50 primary HPP-CFC-colonies
were individually placed into secondary dishes with a replating
efficiency of 62%. Secondary plates contained HPP-CFC-colo-
nies, which were at least as large as the primary colonies from
which they were derived, containing tens of thousands of
cells, and also CFU-GM colonies. 98 primary CFU-GEMM
colonies were individually placed into secondary dishes with
a replating efficiency of69%. Secondary plates included CFU-
GEMM-, BFU-E-, and CFU-GM-colonies. Results in Table
4 and Fig. 2 demonstrated that the TK-neo gene was detected
in 100% of the secondary colonies demonstrating stable in-
tegration into subsets of stem/progenitor cells that have re-
plating capacity.

Discussion
Gene therapy may be an option for the treatment of cer-

tain genetic disorders (3, 4) and in this context retroviral con-
taining vectors have been used to transduce genes into hema-
topoietic stem and progenitor cells (1, 2, 5-20, 37) . Cord
blood stem/progenitor cells have been used to clinically trans-
plant and correct a number of blood disorders (32-36), and
this source of cells may be especially useful for gene therapy
in an autologous situation for newborns and young children .
The use of cord blood cells for such purposes is highlighted
by the enhanced frequency and quality of immature stem/pro-
genitor cells in cord blood compared to adult bone marrow
(25-31), and the more efficient transduction of progenitors
and long-term culture initiating cells in relatively unseparated
cord blood by retroviral-mediated gene transfer (37) . It is our
feeling that the future of gene therapy in the setting of
stem/progenitor cells will not only entail the use of highly
enriched fractions of these cells, but also, as technology for
characterizing and isolating subsets of these cells based on
their self-renewal, proliferative, and lineage differentiation ca-
pacities becomes available, it will be these isolated and dis-
tinct subsets that will be used as target cells for this purpose.
Currently, antigenic profiles available for human stem-pro-
genitor cells only allow for very small degrees of separation
of subsets of these cell populations (23, 25) .

In the present study, we have not only demonstrated a very
high degree ofefficiency of stable gene transduction into very
highly purified stem/progenitor cells from cord blood, but

we have shown this capability at the level of a single isolated
CD343+ cell . This opens up the possibility in the future that
as different subtypes of stem/progenitors become recogniz-
able antigenically, single such cells can be efficiently trans-
duced with genes. That the genes were put into immature
cells is suggested by the fact that the cells containing the genes
were stimulated to proliferate by multiple growth factors that
are necessary to induce early subsets of cells to grow (25,
39, 42), and by the extensive replating capacity of the trans-
duced HPP-CFC and CFU-GEMM . The high efficiency of
gene transduction may relate to the combination of potent
growth factors used in the pretreatment phase, and also the
use of few cells per volume of vector-containing supernatant .
An especially high transduction efficiency was apparent when
single CD343 + cells were used. Interestingly, we had to use
no G418, or low amounts of G418 to demonstrate the high
rate ofgene transduction ofHPP-CFC, due to the hypersen-
sitivity ofHPP-CFC to inhibition by G418. Our studies dem-
onstrate that high efficiency gene transduction is feasible in
the absence of vector-producing stromal cells, an extremely
important consideration if one wishes to use the transduced
cells for transplantation without worry of potential graft vs .
host reactions that may occur from infusion into patients of
contaminating vector-producing stromal cells. Also, our studies
demonstrate high efficiency gene transduction in the com-
plete absence of accessory cells as rigorously determined by
the single cell studies.

Engraftment and repopulation of the hematopoietic system
appears to require marrow repopulating cells as well as more
mature short-term engrafting cells. Unfortunately, there is
no assay yet available that definitively characterizes human
marrow repopulating cells. Stem as well as progenitor cell
populations entail a hierarchy of cells within each category
from more immature to more mature . A human cell that
has the expected characteristics ofearly subsets of stem cells
has been identified (43) but whether this human cell popula-
tion contains long-term marrow repopulating cells remains
to be determined . The cells assessed in this current report
are not considered to be long-term marrow repopulating cells,
but HPP-CFC and CFU-GEMM can be considered to be
at least subsets ofmore mature stem cells based on the exten-
sive replating capacity of the primary colonies derived from
these cells (25, 30, 31) . From bone marrow transplantation
studies using CD343+ cells (34) it is likely that our popula-
tion of sorted CD343 + cells contain long-term marrow en-
grafting cells . It remains to be determined, as soon as an ap-
propriate assay is available, whether the human marrow
repopulating cells are also transducible with genes at the
efficiency noted in our study for HPP-CFC, CFU-GEMM,
BFU-E, and CFU-GM.
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