
1. Introduction
Climate change is fundamentally transforming the Arctic system (Hinzman et al., 2013). These changes have 
particularly impacted northern high latitude (NHL, 40°N–90°N) terrestrial ecosystems and their associated 
carbon cycle dynamics. Widespread Arctic greening (Keenan & Riley,  2018; Myers-Smith et  al.,  2020) and 
shrub encroachment into tundra ecosystems (Loranty & Goetz, 2012; Myers-Smith et al., 2011) are attributed 
to accelerated warming and imply increasing NHL photosynthetic carbon uptake (also known as gross primary 
productivity, GPP). The last 50 years have witnessed a 50% amplification of the NHL CO2 seasonal cycle (Graven 
et al., 2013; Jeong et al., 2018) which has been attributed to increased GPP (Forkel et al., 2016; Liu et al., 2020). 
A key question is whether warming-induced increases in NHL GPP will offset the expected losses in soil carbon 
due to warming-induced permafrost thaw and respiration (Natali et al., 2019); however, current state of the art 
models offer no clear consensus on the future trajectory of NHL carbon cycle dynamics (McGuire et al., 2018). 
Accurate quantification of NHL GPP is therefore critical to help reduce uncertainties in projections of future 
NHL carbon balance.

The NHL region has a significant impact on global vegetation-atmosphere interactions. Reducing the uncertainty 
of the carbon uptake in NHL is an essential step for an accurate estimate of the global carbon cycle (Rogers 
et al., 2021). Absolute values of NHL GPP remain uncertain and there is no solely measurement-based GPP prod-
uct with which to validate model GPP estimates (Anav et al., 2015). There is general agreement that summertime 
(June–August) GPP in NHL ecosystems is ∼80% of summertime GPP in tropical ecosystems (Norton et al., 2019, 
Figure 12) and that summertime NHL GPP peaks near 60N, but recent analyses indicate that NHL GPP estimates 

Abstract The northern high latitude (NHL, 40°N to 90°N) is where the second peak region of gross 
primary productivity (GPP) other than the tropics. The summer NHL GPP is about 80% of the tropical peak, 
but both regions are still highly uncertain (Norton et al. 2019, https://doi.org/10.5194/bg-16-3069-2019). 
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vary by up to 100% (Table 1, estimated from Norton et al., 2019, Figure 12). The spatial distribution of NHL 
GPP is also highly uncertain, with models varying significantly (Fisher et al., 2014, 2018) and recent analyses 
emphasizing GPP increases in the boreal forest rather than tundra ecosystems (Byrne et al., 2018; Liu, Kimball, 
et al., 2020, Liu, Wennberg, et al., 2020). Finally, models struggle to capture seasonal changes in NHL GPP in 
response to climate change (Forkel et al., 2016). Reliable observational constraints of NHL GPP are therefore 
imperative for understanding the changing carbon dynamics of the Arctic.

New global ecology observations from airborne and spaceborne sensors allow estimation of gross and net carbon 
fluxes at regional and global scales (Schimel & Schneider, 2019). These observational constraints are critically 
needed to reduce carbon cycle uncertainties, especially in the Arctic where models are uncertain and ground 
observations are still sparse (Schimel et al., 2015). Remote sensing measurements of solar induced chlorophyll 
fluorescence (SIF) have provided an important proxy for GPP due to the shared relationship with the light reac-
tions of photosynthesis, and the surprisingly invariant linear relationship between spaceborne SIF and eddy 
covariance GPP at flux towers (Sun et al., 2017). This relationship holds promise for using SIF as a snapshot-in-
time proxy for GPP at high latitudes, but satellite remote sensing constraints are more complicated in high lati-
tude ecosystems due to smaller vegetation signals, shorter growing seasons and rapid transition seasons, high 
view and solar angles, infrequent sampling, and single overpass times characteristic of orbital sensors (Parazoo 
et al., 2021).

Carbonyl sulfide (OCS) is another increasingly important proxy for biogenic activity and GPP (Berry et al., 2013; 
Campbell et  al.,  2008), with atmospheric mole fraction measurements complementing remote sensing data 
by providing spatially and temporally integrated constraints (Whelan et al., 2020). OCS uptake gives a direct 
measurement of stomatal conductance and this can be related to CO2 uptake and photosynthetic activity 
(Berry et al., 2013; Campbell et al., 2008; Commane et al., 2015; Maseyk et al., 2014; Seibt et al., 2010; Wehr 
et  al.,  2017), and therefore covaries seasonally with CO2 (Berry et  al.,  2013; Montzka et  al.,  2007; Parazoo 
et al., 2021; Suntharalingam et al., 2008; Wang et al., 2016).

Long-term atmospheric measurements of OCS from NOAA's Barrow Atmospheric Baseline Observatory (BRW) 
exhibit an increasing seasonal amplitude trend similar to that observed for CO2 (Campbell et al., in press), support-
ing previous evidence of accelerated biospheric activity in northern high latitudes over previous decades (Graven 
et al., 2013; Jeong et al., 2018). The seasonal amplitude of OCS is ∼20% of its background level, compared to 
only 5% for CO2, providing a stronger signal of biospheric activity (Montzka et al., 2007). Additionally, the major 
OCS source comes from the ocean and the dominant OCS sink comes from terrestrial photosynthesis. They are 
spatially well separated. Table 2 summarizes more comparisons of the global budgets for all the sources and 
sinks from the previous studies. While the combination of these factors provides increasing promise that the 
change in OCS mole fraction observed at the towers in Alaska originates from biospheric processes, the challenge 
remains to isolate Alaskan biospheric activity from long-range transport on measured OCS mole fraction (Barnes 
et al., 2016; Parazoo et al., 2016).

The value of regular measurements of atmospheric CO2 and related trace gas vertical profiles in quantifying 
regional scale carbon fluxes is well established (Sarmiento & Wofsy, 1999; Sweeney et al., 2015). These strat-
egies isolate regional biospheric activity from long-range transport by differencing trace gas mole fractions in 
the free troposphere (FT) (background values) from those in the boundary layer (BL) (local values) (Commane 
et al., 2017; Parazoo et al., 2016; Sweeney et al., 2020). There are currently two main strategies for measur-
ing OCS from aircraft within continental interiors: Fixed-point networks versus spatially resolved campaigns. 
The NOAA/Global Monitoring Laboratory (GML) light aircraft network focuses on year-round, fixed location, 
high-precision airborne flask measurements at multiple altitudes from the surface up to 8 km above sea level, 
and multiple locations across North America (Montzka et al., 2007; Sweeney et al., 2020). Network style data are 
reliable and long-term, and are particularly effective for studying regionally integrated processes at seasonal  and 
longer time scales. For example, vertical OCS profiles from the NOAA/GML network in 2005–2012 indicate a 
regional hotspot of photosynthetic activity in the Midwest US, providing an important evaluation for studying 
temporal and spatial patterns in models (Hilton et al., 2017).

Intensive airborne campaigns, on the other hand, typically focus on long-distance transect flights to sample multi-
ple air masses across biologically diverse regions, sometimes multiple times per day, at spatial scales ranging 
from 100 to 1,000 km. Moreover, airborne campaigns that fly into and out of the atmospheric boundary layer 
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(BL) can sample air immediately in contact with the surface for increased 
sensitivity to local processes, as well as provide a periodic sampling of back-
ground air in the FT, thus accounting for the influence of long-range trans-
port (Baier et al., 2020; Parazoo et al., 2016). For example, the Atmospheric 
Carbon Transport (ACT)—America campaign from 2016 to 2019 collected 
flask profiles of OCS and other trace gases across biologically diverse 
regions in the eastern US, filling spatial gaps left by tower and airborne 
networks, and providing novel evidence of late season photosynthetic uptake 
in humid temperate forests in the southern US that is unaccounted for in 
models (Parazoo et al., 2021).

In this paper, we exploit airborne observations of OCS from the Carbon in 
Arctic Reservoirs Vulnerability Experiment (CARVE, Miller et al., 2012) to 
study plant driven carbon uptake in Alaska. CARVE observations of CO2 

and CH4 have previously been used to study seasonal and interannual changes in net biome exchange (NBE) 
and methane emissions across Alaska (Commane et  al.,  2017; Parazoo et  al.,  2018; Zona et  al.,  2016). This 
study leverages CARVE OCS data to gain additional insights into NHL GPP. Our main objective is to use data 
constrained estimates of OCS uptake in Alaska to evaluate model estimates of photosynthetic carbon uptake, and 
then use our optimized model to estimate seasonal photosynthetic carbon uptake across the NHL. To this end, we 
use an optimized OCS simulation with the GEOS-CHEM global transport model to fit aircraft vertical profiles 
of OCS measured over Alaska during the CARVE campaign (2012–2016) for optimized estimates OCS fluxes 
across the NHL (40°N to 90°N).

Many biosphere models use a Leaf Relative Uptake (LRU) scaling factor to relate OCS uptake and GPP on a 
leaf scale (e.g., Hilton et al., 2017). A commonly used value is ∼1.6, although distribution of LRU values has 
been observed (Whelan et al., 2018). The Simple Biosphere Model (SiB3: Baker et al., 2003; Baker et al., 2008; 
Parazoo et al., 2020) calculates OCS uptake based on leaf physiology and soil properties (Berry et al., 2013), and 
has been evaluated against a variety of observational data (Commane et al., 2015; Glatthor et al., 2015; Hilton 
et al., 2017; Hu et al., 2021; Kooijmans et al., 2021; Kuai et al., 2015; Villalba et al., 2021; Wang et al., 2016). 
Similarly to LRU but on an ecosystem scale, we derived linear regression models for each biome from SIB3 GPP 
and SIB3 to calculate OCS plant uptake flux. We applied the linear models based on biome types to an ensem-
ble of other GPP models, which allow us to introduce a framework of using OCS measurements to evaluate a 

Analysis
60N GPP (gC m −2 

d −1)
NHL GPP range 

(40–70N)(gC m −2 d −1)

FLUXCOM GPP 5.0 1.5–5.0

TRENDY mean 6.0 2.0–6.0

TRENDY 10th percentile 5.0 1.5–5.0

TRENDY 90th percentile 8.0 3.0–8.0

BETHY-SCOPE 9.0 2.0–9.0

Table 1 
Model Estimates of Summertime (June–August) Northern High Latitude 
Gross Primary Productivity

Sources Kettle et al., 2002 Berry et al. (2013) Kuai et al. (2015) This study Lennartz et al. (2021)

Direct OCS from Ocean 39 39 41 26 110

Indirect OCS as DMS from Ocean 81 81 83 54

Indirect OCS as CS2 from Ocean 156 156 155 100 175

Direct Anthro 64 64 62 295

Indirect Anthro as CS2 116 116 113

Indirect Anthro as DMS 0.5 0.5 0

Biomass Burning 11 136 49 102 60 ± 37 Stinecipher et al. (2019)

Missing Photochemical Ocean Source 0 600 559 588

TOTAL SOURCES 467.5 1192.5 1062 1165

SINKS Kettle et al. (2002) Berry et al. (2013) Kuai et al. (2015) This study

OH Radical −94 −101 −111 −111

Plant Uptake −238 −738 −755 −875

Soil Uptake −130 −355 −176 −176

TOTAL SINKS −462 −1194 −1062 −1162

Net 5.5 −1.5 0 3

Table 2 
Global Budget Estimation of Carbonyl Sulfide Sources and Sinks From Previous Studies (Units: Gg S/yr)
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multi-model GPP data set from distinct sources, using Alaska as a case study. This method is potentially appli-
cable to a global scale study using satellite observations such as TES (Kuai et al., 2014) and MIPAS (Glatthor 
et  al.,  2015,  2017), or combining aircraft campaigns globally including HIPPO, ATOM, and NOAA aircraft 
campaigns over N. America.

2. Methods
The flow chart in Figure 1 illustrates the framework we used in this study. It focuses on optimizing and eval-
uating models against eddy covariance flux data (GPP and OCS plant uptake) and atmospheric mole fraction 
data (OCS). Surface flux and mole fraction data are described in Section 2.1 and summarized in Tables 2 and 3. 
First, we acquire GPP estimates from different model sources (Section 2.2), then convert from GPP to OCS plant 
uptake flux using a linear scaling relationship derived from predictions of GPP and OCS plant uptake in the 
SIB3 diagnostic model (Section 2.3). Next, we use the GEOS-Chem atmospheric transport model as an observa-
tion operator to compare modeled OCS to observed OCS mole fractions (Section 2.4). We then derive CARVE 
optimized fluxes of OCS through minimizing the difference between the predicted and observed mole fractions 

Figure 1. The flowchart for this study to improving gross primary productivity budgets with Carbonyl sulfide (OCS). The 
version of the GEOS-CHEM is developed at JPL for multi-greenhouse gases including CO2, CO, CH4 in addition to OCS. 
TRD4 stands for TRENDY-v4 (dynamic global vegetable model project). The locations for CRV tower, BRW National 
Oceanic and Atmospheric Administration, forest and tundra sites are showed in Figure 2.

Observations OCS concentration GPP flux Period Model comparison

CARVE campaign Regional profiles __________ 2012-2016 April–November Regional scale; Vertical 
gradient; Seasonal variation

NOAA BRW site Surface record __________ 2000–2016 Local scale; Long-term trend; 
Seasonal variation

CRV tower site Surface record __________ 2012–2016 Local scale; Short-term trend; 
seasonal variation

Tundra site ____________ Tower data 2008–2016 Local scale; Seasonal variation

Forest site ____________ Tower data 2008–2016 Local scale; Seasonal variation

Table 3 
Summary of Observation Data and Their Applications in This Study
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(Section 2.5). We furthermore derive optimized GPP fluxes by scaling model GPP as the ratio of optimized to 
model OCS fluxes (Section 2.6).

2.1. Flux Tower and Atmospheric Data

2.1.1. Eddy Covariance Derived GPP Flux

We examine two flux tower sites in Alaska that provide partitioned GPP data over forest and tundra (Figure 2). 
The in situ NEE measurement is partitioned into GPP and ecosystem respiration by using the sensitivity of 
ecosystem respiration to temperature from night time to day time (Reichstein et al., 2005). The night-time meas-
urements of NEE indicates night-time respiration, which can further be used to derive the day-time respiration by 
considering the temperature sensitivity of ecosystem respiration. Thus, day-time measured NEE and estimated 
day-time ecosystem respiration can be applied to partition GPP. We analyze clusters of three towers each for the 
tundra and interior forest regions. The tundra towers are located at the Imnavait Creek watershed in the northern 
foothills of the Brooks Range in northern Alaska (Euskirchen et al., 2017). The forest towers are located at the 
Bonanza Creek Long-Term Ecological Research station (https://lternet.edu/site/bonanza-creek-lter/) in a boreal 
peatland lowland of the Tanana Flats, ∼30 km southeast of Fairbanks (Euskirchen et al., 2014). All three forest 
towers are located within 0.5  km of each other. Data were collected from each of the six towers from 2008 
to 2016 and partitioned into GPP and TER components using the relation between NBP during the nighttime 
(PAR <50 lmol/m 2/s) and air temperature (Euskirchen et al., 2017; Reichstein et al., 2005). These datasets were 
used in a previous model GPP evaluation in Alaska (e.g., Parazoo et  al.,  2018). For this analysis, we create 
across-tower monthly averages for the tundra and forest clusters (leaving two monthly time series for each site), 
then produce climatological seasonal cycles using multi-year monthly averages from 2008 to 2016 (leaving 12 
monthly data points at each site).

2.1.2. Tower OCS Measurements

Another tower-based measurements of atmospheric trace gas mole fraction (“mole fractions”) of OCS are taken 
from the CARVE tower (CRV; −147.6°E, 65.0°N, 643.1 m ASL; Figure 2) in Fox, Alaska from 2012 to 2016 as 
part of the EV-S1 CARVE investigation (Karion et al., 2016). The CRV tower location was chosen for its high 
elevation compared to the immediate surrounding mean ground level and its relatively large region of influence 
in interior Alaska. CRV OCS data were derived from NOAA's Global Monitoring Laboratory (NOAA/GML) 
measurements of whole air samples collected by a Programmable Flask Package (PFP) from the top of the tower 
at 32 m agl (Miller et al., 2016; Montzka et al., 2007). Flasks were collected daily from April to October and 
weekly from November to March each year. This resolved the seasonal OCS uptake dynamics in fine detail as 
well as provided accurate coverage of the shoulder seasons and cold season atmospheric OCS mole fractions. The 

Figure 2. Complex vegetation coverage at Arctic Alaska. Two ground sites for Carbonyl sulfide concentration observations 
(BRW site by National Oceanic and Atmospheric Administration and CRV tower site). Two flux tower sites for gross primary 
productivity (tundra site and forest site).

https://lternet.edu/site/bonanza-creek-lter/
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CRV data provided a quasi-continuous time series data record with which to 
contextualize the periodic CARVE airborne OCS measurements.

We also use long-term flask measurements from the Barrow tower (BRW; 
−156.6°E, 71.3°N, 11 m ASL) along the northern coast of Alaska from 2004 
to 2016 (see Figure 2). These data are collected and analyzed by NOAA/GML, 
which has provided a reliable source of validation data for models and studies 
of both seasonal variability and global budgets (Montzka et al., 2007). The 
NOAA measurements include 12 individual sites over the world taking flask 
sampling data approximately weekly at most sites since 2000.

2.1.3. Airborne OCS Measurements

CARVE flights occurred monthly from April to November (roughly DOY 
100–300) from 2012 to 2016 during which PFP samples were collected in the 
BL (>900 hPa) and FT (700–400 hPa) across the Arctic and boreal Alaska 
(Figure  3), and later analyzed at NOAA/GML for OCS and other GHGs 
(Miller et  al.,  2016). CARVE flights covered the growing season (DOY 
150–240) in all years, with later years increasingly focused on the spring/fall 
transition seasons. Airborne profile measurements provide vertical, horizon-
tal, and temporal information.

2.2. Model GPP Estimates

We leverage a range of GPP estimates from two process models (SIB3, 
CLM), the TRENDY model intercomparison project, and three model-data 

fusion systems (CARDAMOM, GOPT-GOME2, GOPT-GOSAT). We carefully choose them because they esti-
mate GPP with the three different mechanisms mentioned above. The diversity of such selection could represent 
a reasonable range of the GPP uncertainties.

The Simple Biosphere Model version 3 (SIB3) involves the use of explicit biophysical mechanisms to directly 
calculate carbon assimilation by photosynthesis, and prognostic calculations of canopy air space and struc-
tural properties (Baker et al., 2003, 2008) and has been updated to calculate OCS as discussed in Section 2.3. 
The Community Land Model (CLM) version 4.5 includes a full representation of plant biogeochemistry and 
prognostic carbon dynamics (Oleson et al., 2013). We also include model ensemble averages from version 4 of 
the TRENDY (TRD4) model intercomparison project (http://dgvm.ceh.ac.uk) (Sitch et al., 2015), which only 
includes prognostic models.

We used the version of CARbon Data Assimilation Model Framework (CARDAMOM; Bloom et al., 2016) GPP 
that only applied the GOME-2 relative variability but the GPP magnitude is from FLUXCOM mean values. For 
the GPP derived from satellite observed SIF data, we leverage the CARbon Data Assimilation Model Framework 
(CARDAMOM; Bloom et al., 2016), which provides spatially explicit optimization of terrestrial carbon cycle 
models using a simplified modeling framework constrained by diverse satellite remote sensing observations. We 
also use a Bayesian analysis framework to estimate monthly average GPP that optimally accounts for uncertain-
ties in predictions of GPP from terrestrial biosphere models, estimates of GPP inferred from satellite observations 
of SIF, and biome specific linear relationships between SIF and upscaled flux tower GPP from FLUXCOM 
(Parazoo et al., 2014). We use level 2 ungridded SIF data from two separate instruments to constrain the TRD4 
ensemble, including the Greenhouse Gases Observing SATellite (GOSAT), which has small footprints (∼10 km 
diameter) at midday (∼1:30 p.m.) but sparse data collection, and the Global Ozone Monitoring Instrument 
onboard Metop-A (GOME2), which has coarse footprints (∼40 × 80 km 2 prior to 15 July 2013 and 40 × 40 km 2 
afterward) from mid to late morning (∼9:30 a.m.–noon; e.g., Joiner et al., 2020) but nearly continuous spatial 
mapping. SIF is retrieved following Frankenberg et al. (2011) for GOSAT, and following Kohler et al. (2015) for 
GOME2. In the following discussion, we will use SIB, CLM, GOSAT, GOME, TRD4, and CARDAMOM to 
refer to the above GPP models we studied.

Figure 3. A map illustrating the locations and years in which the CARVE 
airborne Programmable Flask Package samples were acquired. The Carbonyl 
sulfide mole fractions from these measurements sample across Alaska's 
Arctic and boreal ecosystems as well as across four different growing seasons 
(Sweeney et al., 2016).

http://dgvm.ceh.ac.uk/
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2.3. Estimating OCS Fluxes From GPP Models

It is challenging to validate model GPP due to our limited ability to directly measure GPP at the canopy and 
ecosystem scales (Baldocchi et al., 2018). Multiple empirical estimates are available, which make use of vegeta-
tion optical remote sensing, but these require models and/or ancillary information to predict GPP from absorbed, 
reflected, or emitted light. Current best estimates of ecosystem GPP use Eddy covariance (EC) tower fluxes and 
remotely sensed land cover maps in a machine learning framework to upscale GPP estimates from the site level 
to landscape and regional scales; however, these estimates require partitioning methods relying either on light 
response curves (Lasslop et al., 2010), artificial neural networks (Papale et al., 2006), and/or models of temper-
ature sensitivity (Reichstein et al., 2005), which are highly uncertain. Reliable tower measurements are increas-
ingly available throughout the Arctic and sub-Arctic, but represent very different spatial scales and environments 
compared to most models (Ueyama et al., 2013).

Plant uptake of atmospheric CO2 and OCS are directly related to photosynthesis through diffusion by stomatal 
conductance and consumption by collocated reaction in the chloroplasts of leaves (Rubisco and carbonic anhy-
drase (CA), respectively) (Berry et al., 2013; Campbell et al., 2008). As such, atmospheric OCS observations 
provide an opportunity to more direct evaluation of the model estimates of GPP at multiple temporal and spatial 
scales. However, even though most terrestrial biosphere models include a representation of stomatal conductance, 
most models don't simulate leaf-level OCS uptake. To circumvent this limitation, we developed a simplified 
biome specified linear regression method that converts the GPP into the OCS plant uptake globally from the 
mechanism in the SIB model. Diffusion of gases including CO2, OCS, and water vapor along the pathway from 
the atmosphere to the leaf cell where biochemistry takes place is controlled by boundary layer, stomatal, and 
mesophyll conductance (Berry et al., 2013). The prognostic canopy air space in SIB, and the addition of meso-
phyll conductance scaling to Vcmax (and modulation by environmental conditions), enable direct calculation of 
plant OCS uptake (Baker et al., 2003; Stockli & Vidale, 2005).

Analysis of monthly mean plant uptake of OCS and GPP output from SIB shows a biome-dependent linear 
relationship (Figure A1). Therefore, we compute the linear regressions from GPP to OCS flux for the regional 
ecosystems. We compute the slope “𝐴𝐴 𝐴𝐴 ” and interception “𝐴𝐴 𝐴𝐴 ” in Equation 1 using SIB3's GPP (𝐴𝐴 𝐴𝐴GPP ) and OCS 
plant uptake (𝐴𝐴 𝐴𝐴OCS ) data for each biome.

���� (�, �) = �(��) × ����(�, �) + �(��) (1)

where “(x,y)” represents the index for latitude and longitude. “ib” is the index for the biome type.

By applying the consistent biome specified regression model, we derive OCS plant uptake from any other GPP 
data set. We hereafter refer to estimates of OCS using the linear regression model as “model OCS flux.”

2.4. Atmospheric OCS Mole Fraction Simulations

While we focus on OCS uptake by Alaskan ecosystems, we must account for all ocean, terrestrial, and anthropo-
genic OCS fluxes and be able to convert these fluxes into accurate estimates of atmospheric OCS mole fractions 
to compare simulated against measured values. GEOS-CHEM is a well-established atmospheric transport mode-
ling system and has been used previously for global OCS analyses (Kuai et al., 2015; Suntharalingam et al., 2008; 
Wang et al., 2016). Recently, Sweeney et al. (2020) demonstrated that GEOS-CHEM provided accurate atmos-
pheric transport for regional studies of atmospheric CO2 focused on Alaska.

In this study, we use GEOS-CHEM to simulate global atmospheric OCS mole fractions at 2° × 2.5° spatial reso-
lution using GEOS-5 reanalysis data, with output analyzed at 3 hr time steps. Model simulations use common 
emission inventories including global ocean flux (Kettle et al., 2002; Kuai et al., 2015), the soil sinks from SIB 
(Berry et al., 2013), anthropogenic emission (Campbell et al., 2015) and biomass burning (Kuai et al., 2015). We 
also implement a common sink due to soil and OH but test different model-based estimates of OCS plant uptake 
derived from our OCS-GPP linear model. The atmospheric OCS predictions from these tests refer as “model OCS 
mole fraction.” Unlike CO2, which is driven by the imbalance between GPP and respiration, the OCS seasonal 
signal is driven predominantly by GPP. The magnitude and timing of summer GPP determine the magnitude and 
timing of the seasonal OCS minimum, which is offset by maximum GPP flux due to the atmospheric transport 
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lag (Parazoo et al., 2016). The onset of the growing season, the timing, and the length of the senescent period all 
affect OCS seasonality.

2.5. CARVE Optimized OCS and Pan-Arctic GPP

We also used GEOS-Chem as a forward model to constrain predicted OCS flux against seasonally resolved 
CARVE OCS vertical profiles and then evaluated optimized simulation with the observations from CRV and 
BRW towers. The optimized OCS flux is inverted by fitting the model vertical profiles with the CARVE observed 
OCS profiles especially over summer seasons. The SIB plant uptake was used as a prior flux and one constant 
scaling factor was optimized and applied to the prior flux from 60°N to 90°N. This scaling factor was repeatedly 
used for the year since 2004 to 2016.

2.6. Optimized GPP

The optimized posterior OCS flux was used to infer an optimized GPP product at a regional scale. We estimated 
the annual plant uptake over the region 40°N to 90°N for all GPP-based flux and the optimized flux as well as the 
annual GPP over the same region (summarized in Table 4). Equation 2 was used to estimate the optimal annual 
GPP (GPP��� ) over the region by scaling the GPP ensemble (GPP��� ) with the ratio of the optimized plant OCS 
uptake flux (𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 ) to the ensemble plant OCS uptake flux (𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 ).

GPP��� =
����

����
× GPP��� (2)

3. Results
Figure 4 shows the temporal variation of the atmospheric OCS mole fraction observed at the CRV site (boreal 
forest) and at NOAA's BRW site (tundra). We compare the profiles of different modeled atmospheric OCS mole 
fractions to CARVE airborne data (Figure 5) and the vertical drawdown seasonal variations (Figure 6). Then we 
evaluate the modeled simulations by comparing the surface model fractions in the long term seasonal variability 
to the tower observations at CRV and BRW (Figure 7).

With the verification of improved agreements between the optimized OCS mole fractions and the observations 
from different platforms, we can use the optimized OCS fluxes to infer regional scaled GPP and evaluate both 
OCS fluxes and GPP we studied here. This study is first summarized in comparisons of all kinds of GPP based 
OCS plant uptake fluxes to the optimized OCS fluxes across the pan-Artic, focusing on the Northern Hemisphere 
mid-latitude to polar region from 40° to 90°N (Figure 8).

Next, we compare the ensemble of GPP seasonality with the observation-based GPP from tower sites at the 
local scale (Figure 9). At last, we evaluate the GPP datasets with the OCS optimized GPP at the pan-Arctic scale 
latitudinally and globally (Figures 10 and 11), which cannot be addressed sufficiently with limited tower data.

Table 4 
The Global and Regional Integrated Annual Carbonyl Sulfide Flux and Gross Primary Productivity (Green: Low-Value 
Group; Red: High-Value Group; Blue: Benchmark Value)
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3.1. The Comparison of OCS Between Model Simulations and Observations

3.1.1. Simulated OCS Comparison to Aircraft and Tower Data

We show the raw OCS observations (dots in Figure 4) at both BRW site (top) and CRV site (bottom) and overplot 
the data with their monthly mean time series in the black lines. Measurements have been reported from the BRW 
site from an inlet 8 m above ground three times per month on average from the year 2000 to the present. There is 
some inter-annual variability in the amplitude of the seasonal cycle but no obvious trend in the long term record.

The periodical CRV data from 2012 to 2016 were taken more frequently every year from late spring until fall 
than from winter to early spring. The measurements are recorded daily from April to October and weekly from 
November to March each year. Raw data vary from ∼550 ppt (peak in spring until the growing season starts) to 
∼350 ppt (in late summer until drawdown ends). The peak to peak difference is more than 35% of the OCS mole 
fraction.

We compare the OCS monthly mean vertical profiles between model simulations and CARVE airborne meas-
urements in Figure 5. Both model simulations and CARVE airborne OCS measurements are multi-year monthly 
averaged for the 2012–2016 period. The gray lines represent vertical profiles from the six simulations driven 
by GPP based OCS plant uptake fluxes plus the Parameterized Chemical Transport Model (PCTM) simulation 
from Berry et al., 2013. Their ensemble means' vertical profile is shown in black dash line. The forward model 
simulations have larger variations in boundary layer than in the upper troposphere but show the consistently 
weaker vertical differences than the CARVE observations, especially when the vertical gradient is large in the 
summer months. In the boundary layer, the OCS-optimized profile (red dash line below 900 hPa) shows improved 

Figure 4. Top: The Carbonyl sulfide (OCS) concentration time series from the BRW tower extends from 2004 to the present. 
Measurements are made twice per month on average. Bottom: The OCS concentration measurements from the CRV tower 
were recorded daily from April−October and weekly from November−March each year from 2012 to 2015. Gray dots are the 
raw data. The black line is the monthly mean, which is used for the next model validation. The OCS seasonal cycle in each 
location varies from ∼550 to ∼350 ppt each year, with a peak drawdown of more than 35%.
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Figure 5.
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agreement with the CARVE observed profiles (black solid line) than the model ensemble profiles in most months, 
especially during the summer season with strong surface uptake in the boundary layer.

The April CARVE data show a nearly constant vertical profile consistent with minimal photosynthetic activity 
in the late cold season. The large variability (∼150 ppt) of near surface (P ∼ 1000 hPa) in CARVE observation 
is noticed in May because of the start of the growing season in the south (OCS drawdown), while more northerly 
portions of the domain are still frozen and senescent. Drawdown continues through the June-July-August peak 
of the growing season, with near surface OCS clustering into values that drop ∼50 ppt per month from 500 ± 50 
ppt in June to 400 ± 50 ppt in August. During this period the free tropospheric OCS mole fractions also decrease, 
from ∼525 ± 50 ppt in June to ∼475 ± 50 ppt in August, creating gradients in the vertical profile. The shoulder 
season months of September and October show increased near surface variability, with measurements below 350 
ppt, partially driven by long-range transport from lower latitudes (e.g., Parazoo et al., 2016; Sweeney et al., 2020) 
while free tropospheric values drop to ∼450 ± 50 ppt. Vertical gradients are strongly diminished by November 
with reduced biological activity.

Compared to the CARVE observations, we find that the vertical drawdown is still too weak in most OCS models, 
especially in boreal summer. This weak vertical drawdown is also found in SIB based simulations of OCS within 
an offline Parameterized chemistry transport model (PCTM) similar to GEOS-Chem (Berry et al., 2013). This 
suggests the discrepancy is common in the simulations from two models with the same plant uptake. However, 
the optimized run in GEOS-Chem has notably stronger vertical drawdown than above model ensemble runs, in 
much better agreement with CARVE observations.

The strongest vertical drawdown of the year occurs in August and September, with individual CARVE samples 
showing depletion in the boundary layer of 50–150 ppt over a vertical depth of 100 hPa from the surface to 
900 hPa. The optimized vertical profiles in these months show broad agreement with CARVE profiles, owing to 
enhanced boundary layer OCS depletion by optimized plant uptake to stronger values in growing and summer 
seasons. On average, models underestimate plant drawdown during peak summer months, but the model spread 
is high and there is a subset of models with a strong vertical drawdown in August and September.

We find the low amount of FT OCS is another important reason for the remaining weaker vertical gradients than 
the CARVE measurements. Since the optimized run only constrains plant uptake which only effectively impacts 
the surface level, the existing low background level in the FT was not solved in the optimized simulation, lead-
ing  to remain insufficient enhancement to free tropospheric OCS, especially during June–August. Therefore, 

Figure 5. The comparisons of the monthly Carbonyl sulfide (OCS) vertical profiles between the optimized and gross primary productivity (GPP)-based simulations 
and the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) observations. Gray crosses mark the CARVE raw data and their averaged profiles are shown in 
black solid lines. The red dash lines are the optimized profiles. The gray solid lines are the profiles from the GEOS-chem simulations driven by SIB, GOME, GOSAT, 
CLM, TRD4, or CARDAMOM GPP-based OCS plant uptake fluxes individually and plus one from Parameterized Chemical Transport Model simulation. Their 
ensemble mean profiles are plotted in black dashed lines.

Figure 6. (a) Comparisons of the seasonal variations of Carbonyl Sulfide in the boundary layer (BL, averaging below 
900 hPa, plotted in red) and the free troposphere (FT, averaging between 700 and 400 hPa, plotted in blue) between the 
simulations and Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) observations. The solid red and blue lines 
are the mean CARVE values for the BL and FT, respectively while the orange and light blue shaded regions represent one 
standard deviation about those means. The red and blue dashed lines are our optimized BL and FT simulations. The thin 
lines are from other simulations and their ensemble means are plotted in lines with diamonds. (b) Comparisons of the vertical 
gradient (=BL – FT).
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even though the boundary layer is improved in the optimal run, the vertical drawdown remains too weak. The low 
background level in all model simulations may suggest the need for a stronger ocean source and consequently an 
enhanced sink for balanced global budget. Our study suggests where the land OCS uptake can be stronger.

We further show the observed and simulated anomalies in the OCS vertical gradient through a comparison of 
the seasonal variations of the BL (below 900 hPa level), the FT (above 700 hPa level) and their differences in 
Figure 6. The CARVE observations reveal a gradient of 10–25 ppt in April and May, prior to the growing season 
onset. The difference increases throughout the growing season, peaking at ∼75 ppt from September and October.

Our optimized run agrees with the observed seasonal OCS variability in the BL within 1 𝐴𝐴 𝐴𝐴 of observed varia-
bility (Figure 6a). The optimized run systematically underestimates free tropospheric OCS mole fractions by 
20–30 ppt, the same as the model ensemble mean. In fact, the optimized run tracks closely with the seasonal 
variability from the model ensemble mean. The differences between the optimized run and FT measurements 
are also reflected in  the seasonal values of the BL and FT gradient (Figure 6b), where the difference between the 

Figure 7. The comparisons of the monthly mean time series between the simulations (colored lines for different Carbonyl Sulfide-based Carbonyl Sulfide simulations) 
and observations (black lines) at BRW site (left column) and CRV site (right column). Note that the black lines in the same column are replicate of the observations at 
the site. The two black lines for BRW site and CRV site are also the same black lines at two sites shown in Figure 4.
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optimized run and the CARVE measurements is dominated by inaccuracies 
in the FT after April and increases over time.

Looking across the model ensemble we find that on average model OCS 
mole fractions are biased high in BL, although several model BL estimates 
are within the uncertainty of CARVE BL seasonal variation. However in 
the FT, individual GPP-based model estimates and the ensemble mean are 
both biased significantly low. As a result, the ensemble mean even shows a 
positive vertical gradient in the spring and early summer from April – July, 
which is of the opposite sign to CARVE data and optimized runs (Figure 6b). 
Moving deeper into the growing season, we find the model “OCS uptake 
period,” when OCS is depleted in the BL relative to the FT, only lasts for 
3–4 months from August - November. In contrast, optimized runs show the 
deeper magnitude and a longer period of BL depletion from April through 
November or later, suggesting longer and more active plant activity within 
Alaska than predicted by most models. The observed early spring onset is 
consistent with spaceborne SIF and tower-derived GPP estimates in Alaskan 
boreal forests (Parazoo et al., 2018).

Then we compare the observed monthly mean atmospheric OCS time series 
at the BRW site (tundra, left column) and CRV (boreal forest, right column) 

towers against our optimized run and simulations with the different GPP models in Figure 7. In these simulations, 
we used the same total annual flux for each simulation year. Therefore, the interannual variability in the simula-
tions is driven solely by meteorology. Our optimized run produces reasonable seasonal amplitude and phase at 
both the tundra (BRW) and boreal forest (CRV) sites. The GOSAT, CLM, and TRD4 models also simulate the 
measured OCS seasonal amplitudes at both sites with some fidelity; however, SIB, GOME, and CARDAMOM 
significantly underestimate summer OCS drawdown and hence the OCS seasonal cycle amplitudes are too weak 
at both sites and show not enough drawdown in summer. We show later that their GPP values are systematically 
underestimated, while GPP estimates from the GOSAT, CLM and TRD4 models are more consistent with the 
OCS observational constrained GPP.

3.2. OCS Plant Uptake Flux Comparisons

We compare the seasonal variation of the regional scaled monthly mean OCS plant uptake values from our 
optimized fluxes and different GPP based OCS plant uptake fluxes that used for the different model simulations 
in Figure 8. Fluxes were integrated over 40–90°N in each case. Owing to the limited knowledge on plant OCS 
uptake at these high northern latitudes, the regional comparison between different products and optimized fluxes 
helps to access the plant OCS uptake in this region. GOSAT, CLM, and TRD4 have more comparable uptake 
magnitude with the optimized fluxes over the year than CARDAMOM, SIB and GOME, which show relative 

Figure 8. A comparison of monthly mean integrated Carbonyl Sulfide 
(OCS) plant uptake reveals that the models investigated fall into two distinct 
groups: high and low OCS uptake. The high OCS uptake models (versions 4 
of the TRENDY, Community Land Model and Greenhouse Gases Observing 
SATellite) agree much better with our optimized run than do the low OCS 
uptake models (CARDAMOM, SIB, GOME). Fluxes are integrated over 
40°–90° N each month.

Figure 9. The seasonal variation of the monthly gross primary productivity (GPP) at the forest tower site and the tundra 
tower site from GPP models and derived observations. The legend is the annual GPP estimate in units of gC/m 2/yr.
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shallower uptake from spring to summer and only around half of the optimized fluxes. Peak growing season 
uptake occurs in July in all estimates except CLM maximized in June. GOSAT, CLM and TRD4 also show about 
1 month earlier and a higher rate of uptake in the spring growing season but 5–10 Gg S/month lower uptake in 
July compared to the optimized phenology.

The global and regional integrated annual OCS fluxes are summarized in Table 4. The GPP models are clearly 
separated into two groups. The high-value group includes GOSAT, CLM, and TRD4. These GPP models have 
similar strong GPP and GPP-based OCS uptake fluxes. All three simulate the reasonable seasonal amplitude of 
OCS at both BRW and CRV sites in Figure 7. While the OCS flux and GPP from SIB, GOME and CARDA-
MOM are in the low-value group and they consistently simulate weak seasonal amplitudes of OCS in Figure 7 
suggesting insufficient uptake and weak GPP especially from growing season to summer. The optimized flux and 
optimized GPP are more consistent with the three members in high-value group at the 40°N ∼ 90°N region but 
the optimized flux and optimized GPP both agree better with the model ensemble estimate in a global scale. This 
suggests the GPP models bias differently in tropics and can be further studied in the future.

Figure 10. The model ensemble estimates of latitudinally dependent gross primary productivity (GPP) vary by up to 
100% even at 60N, the heart of the Arctic-boreal region, and most models significantly underestimate our Carbonyl Sulfide 
(OCS)-optimized GPP estimate (gray line). Inset: northern high latitude integrated mean annual GPP (in units of PgC/yr) for 
the range 40–90N from our OCS-optimized solution and the model ensemble.

Figure 11. The annual gross primary productivity (GPP) maps for the comparison between the multiple models and optimal 
estimates of inferred GPP.
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3.3. Evaluating GPP With Optimal Estimates and Flux Tower Data

To further evaluate the assumption that weak seasonality and vertical drawdown of atmospheric OCS are related 
to insufficient plant photosynthetic uptake, we compare OCS optimized GPP (GPPopt) to estimates of GPP from 
flux tower observations at two unique Alaskan tundra and boreal ecosystems (Figure 9). This plot shows a strong 
divergence in the summer peak and the phase of the growing and transitional period. The summer peak estimates 
at the forest site range widely from 80 to 260 gC m −2 mon −1 while the range of the tundra site varies from 60 
to 130 gC m −2 mon −1. The observed GPP suggests that the summer peak GPP value of forest sites (150 gC/m 2/
month) is about 60 gC m −2 mon −1 higher than the tundra site (90 gC/m 2/month), almost twice as strong as the 
tundra summer peak value but the GPP peak is one month earlier at forest site (June) than the tundra site (July). 
CLM shows an earlier (and higher) GPP peak compared to other models, which is aligned with the forest tower 
but too early compared to the tundra tower. Consistently, CLM, GOSAT, and TRD4 show higher GPP than SIB, 
GOME and CARDAMOM from April to October. The OCS-optimized GPP is most similar to GOSAT. The 
observed tower GPP at both sites shows a clear difference between the high GPP group including CLM, GOSAT, 
and TRD4 and the low GPP group including SIB, GOME and CARDAMOM.

OCS optimized GPP reproduces the different seasonal phases and amplitude of the forest and tundra towers, 
specifically, earlier GPP onset and higher peak amplitude at the forest tower. This is very encouraging and 
provides an important benchmark for modeling the seasonal phenology of Arctic ecosystems, in this case indicat-
ing better performance for GOSAT and TRD4.

However, OCS optimized GPP does not capture the extent of early GPP onset into early April at the forest tower. 
While CARVE collected critical profile data early in the growing season, detection of the very early start at the 
forest tower could be limited by (a) consistent data in April over multiple years (i.e., flights in 2012 and 2014 
started in May), and (b) lack of near surface data within shallow boundary layers in the late cold season. Our 
first-order assumption that LRU is time-invariant might also explain wider than the observed peaks in GPP during 
the middle of the growing season.

A similar story emerges in a large-scale latitudinal gradient of the zonal averaged GPP from 40 to 90°N region 
(Figure 10), where all GPP results (model simulations and the OCS-optimized result) peak near 50°N but range 
widely in magnitude from 1.5 to 3 PgC yr −1. Consistent with the early analysis, the high GPP group, including 
GOSAT, TRD4, and CLM, varies closely with the optimal GPP but these results are higher than those in the low 

Figure 12. The linear anti-correlation between Carbonyl Sulfide plant uptake flux (Focs) and gross primary productivity 
integrated in northern high latitude.
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GPP group, SIB, GOME, and CARDAMOM. The additional regional and annual integrated GPP from 40 to 
90°N in Table 4 provide consistent evidence that weak OCS plant uptake flux is related to low GPP.

The polar-view maps of the GPP in Figure  11 show substantial spatial variation across the northern extrat-
ropics. TRD4, CLM and GOSAT, which have higher global GPP, agree much better with the OCS-optimized 
solution.  Then the low GPP group, SIB, CARDAMOM, and GOME, have notably lower GPP values at those 
highlighted strong GPP regions. For example, in the Arctic Alaska region, GOSAT, TRD4, CLM and optimized 
GPP have comparable higher GPP values than the low GPP group (bottom row), including SIB, GOME, and 
CARDAMOM (950 gC m −2 yr −1 vs. 500 gC m −2 yr −1). Other hot-spot regions including eastern North America, 
Northern Europe and southern boreal Siberia, show more spatial contrasts between the high GPP group and the 
low GPP group. The high GPP models have broader areas of hot spots with GPP close to 1500 or 1700 gC m −2 
yr −1 or even higher especially in eastern North America, while the low GPP models (SIB, GOME, and CARDA-
MOM) are only less than 1300 gC m −2 yr −1.

Finally, in Figure 12, we compared the annual total OCS plant uptake flux and GPP aggregated in NHL. Again, 
the OCS flux and GPP stay in a linear relationship among the models in NHL with −0.98 anti-correlation. The 
model ensemble means of OCS flux and GPP are approximately 25% lower than both from optimal estimates. 
The individual model estimates of OCS flux and GPP from the high GPP group are well close to the optimal 
estimates (−247 Gg S yr −1 and 34 PgC yr −1). However, the estimates of both quantities from the low GPP group 
members are about one third less than the optimal estimates.

4. Discussion
The wide discrepancy in model-based estimates of GPP in the Arctic-Boreal Zone is well documented (e.g., 
Commane et al., 2017; Fisher et al., 2014; Hu et al., 2021). Previous model evaluating studies have relied on 
sparsely distributed towers with limited spatial footprints, or remote-sensing driven GPP products relying on 
imperfect satellite observations and sparse tower observations to extrapolate over space and time. This study 
makes use of novel atmospheric OCS observations to evaluate regional scale model estimates of pan-Arctic GPP 
against atmospheric data. We exploit the relationship between photochemistry and plant uptake of atmospheric 
OCS through stomatal conductance to make the connection between model predictions of GPP and atmospheric 
observations of OCS. In particular, we leverage regionally targeted airborne profiles over Alaska to calculate 
boundary layer enhancements or depletions of OCS and isolate local-to regional-plant driven processes. Our anal-
ysis of spatially resolved OCS complements a recent study by Hu et al. (2021), who performed a similar analysis 
using spatially discrete but temporally continuous airborne OCS measurements from the US National Oceanic 
and Atmospheric Administration (NOAA) Global Greenhouse Gas Referencing network. Both of our main 
results indicate a persistent underestimation of atmospheric OCS depletion in chemical and transport models 
(e.g., GEOS-CHEM, PCTM). This insufficient depletion is driven by a combination of weak plant photosynthetic 
uptake at the surface and errors in the prescription of background OCS mole fraction.

Specifically, we find a subset of low productivity models whose projected atmospheric OCS signals, in terms 
of seasonal amplitude and vertical drawdown, were consistently weak compared to tower and aircraft observa-
tions. These models include the SIB process-based model, the GOME SIF constrained model, and the CARDA-
MOM model-data fusion product. These models show systematically low values of OCS flux and GPP across the 
pan-Arctic and throughout the growing season, including (a) delayed spring OCS drawdown and factor of two 
low summer OCS drawdown compared to CARVE optimized fluxes, (b) weak GPP compared to Alaskan  tundra 
and boreal flux towers, (c) delayed GPP onset compared to tundra, (d) absent or negligible latitudinal GPP gradi-
ent from 40 to 60N. Moreover, GPP polar maps show similar spatial patterns to optimized GPP estimates but 
predicted magnitudes are consistently low across Europe, Siberia, and North America.

Given the diversity of these models, it is unlikely they share a common set of mechanisms to explain their low 
productivity. We do note that CARDAMOM currently does not account for cold temperature limitation in spring, 
which can drive low seasonal GPP amplitude in temperature limited forests including high winter GPP and low 
summer GPP (Stettz et al., 2021). While GOME SIF has traditionally offered a reliable measurement of GPP 
variability (e.g., Commane et al., 2017; Luus et al., 2017), we acknowledge previous work showing a late bias 
in the date of spring onset relative to tower based GPP in Alaskan boreal forests (Parazoo et al., 2018). It is also 
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known that the magnitude of the GOME2 SIF product analyzed here has a high bias (Kohler et al., 2015), which 
arises from the nature of the wide fitting window in the SIF retrieval algorithm (e.g., Parazoo et al., 2019). While 
our method to scale instantaneous SIF retrievals against MODIS GPP in the GOPT algorithm should buffer 
such spatially invariant retrieval biases (Parazoo et  al.,  2014), there are numerous other uncertainties related 
to the GOPT algorithm, along with instrument characteristics, overpass time, illumination, and view geometry 
differences between GOME-2 and GOSAT, that are not well accounted for. In particular, our method uses a 
biome-specific scaling factor to convert SIF to GPP, which lumps shrubs from Arctic and subtropical climates 
into the same category. While this appears to work reasonably well for afternoon snapshots from GOSAT, which 
sample the diurnal cycle near the midday peak across all climates and latitudes (e.g., Frankenberg et al., 2011), it 
is unclear how accurately this applies to morning snapshots from GOME-2, which are vulnerable to larger latitu-
dinal differences in view geometry and illumination (e.g., Joiner et al., 2020). While we provide GOME-2 results 
to be comprehensive, we caution the reader that our GOME-2 GPP estimates are subject to significant uncertainty 
and require more detailed analysis that is beyond the scope of this study.

Finally, it is still unclear which factors contribute to low productivity in SIB, though it is noted that a previous 
investigation of SIB at a subalpine evergreen forest in Colorado also found a low bias in GPP in simulations with 
Leaf Area Index prescribed using satellite observations from MODIS, rather than using observations by the tower 
(Parazoo et al., 2020).

We find another subset of high productivity models, including GOSAT, CLM, and TRD4, which simulate reason-
able or even stronger seasonal variation in OCS concentration but are still prone to weak vertical drawdown due 
to low background mole fractions. Both the OCS-constrained regional GPP and flux tower GPP suggest that 
highly productive GPP, such as from GOSAT, CLM, and TRD4 provide GPP strong enough to simulate the 
OCS vertical drawdown and seasonal variation in Alaska. The high performance of GOSAT is consistent with 
previous findings, and it is encouraging to see good agreement with tower data and optimized fluxes at high 
latitudes. CLM shows reasonable agreement with optimized OCS seasonality, and the tendency for early growing 
spring onset has been previously documented and attributed in part to the formulation of leaf budburst, which is 
improved when accounting for cold temperature effects (Shi et al., 2020). The close agreement between TRD4 
and optimized OCS flux and GPP supports previous findings that model ensemble averages tend to provide 
improved estimates of GPP compared to individual models, especially at high latitudes (e.g., Fisher et al., 2014).

We note several important caveats in this study which are likely to affect the use of OCS as a proxy for model 
GPP. In particular, this analysis relies on the use of global transport modeling to simulate the distribution of OCS 
in the atmosphere for comparison to tower and aircraft data. We first note that global atmospheric simulations 
are already challenging in trying to account for the multiple horizontal and vertical mixing processes which 
are highly unresolved at the coarse 2.5 × 2° resolution used here. The use of reanalysis data to drive the model 
helps, but vertical mixing remains a challenge, especially in the Arctic given the complex topography and surface 
energy exchanges.

The majority change of the optimized OCS flux to the prior flux suggests higher GPP model is preferred to gener-
ate reasonable vertical profiles in the simulations. Consistently, Hu et al., 2021 suggested higher OCS-optimized 
GPP than SIB4 over the North American Arctic and Boreal region (5%–15% increase in April–September and 
30%–50% increase in October–March). Meanwhile, the stronger optimized OCS uptake flux may result from 
other underestimated processes besides GPP such as soil uptake, and nighttime plant uptake while incom-
pletely closed stomata (Hu et al., 2021) and dry deposition. OCS diffuses through stomata into leaves where it is 
consumed by Carbonic Anhydrase. Reduced OCS in leaves creates a positive OCS gradient from the canopy air to 
the leaves during the night. The uptake will be small but not zero during the night because stomatal conductance 
is not completely closed. There will be a small but non-negligible uptake inside the leaf throughout the night. 
Hu et al., 2021 showed that their OCS inversion suggests that nighttime uptake should be higher than the SIB4 
nighttime uptake.

The dry deposition is known to cause ozone and methane loss at the surface. A similar non-photosynthetic uptake 
of OCS might account for part of the model-data discrepancy. Currently, we are not able to differentiate the 
updates of the flux from these processes and from GPP. However, the amount of these processes is much smaller 
than that from the GPP.
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There is also a mismatch in scale in comparing coarse grid boxes to in situ atmospheric mole fractions. We also 
find that the background influences on OCS are not well constrained. Even though global modeling accounts for 
global oceanic and terrestrial influences, the magnitude of these sources, in particular ocean dimethyl-sulfide 
(DMS) emissions, are not well known. Finally, in building the linear model to convert predicted GPP to OCS, we 
assume that the equations for photochemistry and CO2 diffusion into leaves are both well known, linearly related, 
and scale across common plant functional types.

Nevertheless, we provide a novel and potentially valuable framework for evaluating model photosynthesis in the 
Arctic. Our approach can easily be applied to other regions in North America and Europe where more airborne 
OCS observations are made. It would be particularly useful to determine whether such an approach can be used 
with long term records from the NOAA airborne network to track changes in regional photosynthesis over inter-
annual to decadal time scales.

5. Conclusions
We used atmospheric OCS mole fraction observations from ground sites (BRW and CRV) and aircraft campaigns 
(CARVE) to evaluate the model simulations with different plant uptake fluxes derived from a diverse set of GPP 
products. We found a subset of low terrestrial productivity models including SIB, GOME, CARDAMOM whose 
projected atmospheric OCS uptake signals, in terms of seasonal amplitude and vertical drawdown, were consist-
ently weak compared to observations. Another subset of high productivity models including GOSAT, CLM, and 
TRD4 simulate more reasonable or even stronger seasonal variation but are still prone to weak vertical drawdown 
due to low background mole fractions. Both the OCS constrained regional GPP and flux tower GPP suggest that 
highly productive models, GOSAT, CLM, and TRD4 provide GPP strong enough to simulate the OCS vertical 
drawdown and seasonal variation in Alaska. SIB, GOME and CARDAMOM GPP products at the northern extra-
tropic are overall too weak, in particular in Northern midlatitude Eurasia, Siberia, Eastern North America, and 
Arctic Alaska. Quantitatively, we suggest 33 PgC yr −1 GPP for the region of 40°N ∼90°N and 247 Gg S yr −1 
plant uptake for OCS in the region.

Our study indicates from the OCS constraint that regional GPP at high latitude is likely encompassed by 
the multi-model range of GPP.  These modeled GPP are still incapable of starting the growing season at 
the correct timing over both forest and tundra sites. A more comprehensive inversion method with OCS 
observations in a finer spatial-temporal resolution is expected to help to further improve the performance in 
the phenology in the current GPP. A more extensive observational system of OCS with multiple platforms 
including additional ground-based measurements, airborne and satellite remote sensing data is the next step 
to advance the study to improve current GPP through OCS for carbon uptake in the mid-to high-latitude 
terrestrial ecosystem.

In this study, we try to justify the effectiveness of using OCS to estimate GPP. We acknowledge that Leave 
Area Index (LAI) and physiology are crucial to GPP estimation in terrestrial biosphere models (TBMs). For 
example, LAI of each canopy layer is used to integrate foliage photosynthesis to canopy photosynthesis in 
CLM, and this model representation suggests that plant physiology (e.g., carbon allocation) and LAI are 
closely related to the GPP simulations (Lawrence et al., 2019). Daily LAI is also used to estimate sub-daily 
photosynthetic assimilation in the Simple Biosphere Mode (SIB; Lokupitiya et al., 2009). These model struc-
tures can be understood as that LAI is a proxy of stomatal density, which regulates the intensity of leaf-level 
carbon flux exchanges, including OCS. Site-level LAI measurements at varied canopy layers can benefit the 
upscaling of leaf-level GPP and OCS fluxes to the canopy-level and ecosystem level, and are essential to the 
top-down and bottom-up comparisons and understanding of terrestrial carbon fluxes. LAI measurements at 
different scales (e.g., in situ and satellite) are also key to interpreting the seasonal dynamics of GPP and OCS 
fluxes at varied spatiotemporal resolutions. This research justifies the substantial role of OCS in estimating 
GPP, which could be controlled by environmental factors (e.g., temperature, water, and sun light) decided 
stomatal dynamics and the plant physiology of varied terrestrial ecosystems (e.g., the onset of the growing 
season), and paves a way for estimating GPP at varied scales and for further understanding terrestrial carbon 
dynamics with this new framework.
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Appendix A

Figure A1. (a) Solar induced chlorophyll fluorescence (SIF) optimized gross primary productivity (GPP) (SIB-GPP); (b) 
Regression slope of SIB3-GPP and SIB3-Carbonyl Sulfide (OCS) plant uptake flux; (c) Inferred OCS flux from SIF GPP 
using linear regression parameters and Equation 1.
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Data Availability Statement
CARVE observations for all the campaigns from 2012 to 2016 are archived at ORNL DAAC (https://daac.
ornl.gov/cgi-bin/dataset_lister.pl?p=35). The ground-based OCS measurements at BRW and CRV are availa-
ble at NOAA/GML website (https://gml.noaa.gov/dv/data/). The GPP data from all models, OCS fluxes and 
GEOS-CHEM model simulations are available upon request, and will be archived during the reviewing process.
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