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Mg-based alloys might be ideal biomaterials in clinical applications owing to

favorable mechanical properties, biodegradability, biocompatibility, and especially their

anti-inflammatory properties. However, the precise signaling mechanism underlying

the inhibition of inflammation by Mg-based alloys has not been elucidated. Here,

we investigated the effects of a Mg-2.1Nd-0.2Zn-0.5Zr alloy (denoted as JDBM) on

lipopolysaccharide (LPS)-induced macrophages. THP-1 cell-derived macrophages were

cultured on JDBM, Ti−6Al−4V alloy (Ti), 15% extract of JDBM, and 7.5mM of MgCl2
for 1 h before the addition of LPS for an indicated time; the experiments included

negative and positive controls. Our results showed JDBM, extract, and MgCl2 could

decrease LPS-induced tumor necrosis factor (TNF) and interleukin (IL)-6 expression.

However, there were no morphologic changes in macrophages on Ti or JDBM.

Mechanically, extract and MgCl2 downregulated the expression of toll-like receptor

(TLR)-4 and MYD88 compared with the positive control and inhibited LPS-induced

nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling

pathways by inactivation of the phosphorylation of IKK-α/β, IKβ-α, P65, P38, and

JNK. Additionally, the LPS-induced reactive oxygen species (ROS) expression was also

decreased by extract and MgCl2. Interestingly, the expression of LPS-induced TNF and

IL-6 could be recovered by knocking down TRPM7 of macrophages, in the presence

of extract or MgCl2. Mechanically, the activities of AKT and AKT1 were increased by

extract or MgCl2 with LPS and were blocked by a PI3K inhibitor, whereas siRNA TRPM7

inhibited only AKT1. Together, our results demonstrated the degradation products of

Mg-based alloy, especially magnesium, and resolved inflammation by activation of the

TRPM7–PI3K–AKT1 signaling pathway, which may be a potential advantage or target to

promote biodegradable Mg-based alloy applications.
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INTRODUCTION

Biodegradable Mg-based alloy is a new-generation biomaterial
used in cardiovascular stents, orthopedic implants, bone screws,
etc. (1–3). Although it can surmount the drawbacks of
permanent metallic biomaterials, such as chronic inflammation,
in-stent restenosis, and second surgery (4, 5), the rapid
corrosion of magnesium matrix not only results in loss
of their own structural strength ahead of tissue repair but
also greatly alters the implantation microenvironment, with
many unexpected influences locally (6, 7). For instance,
previous data showed that extract of a Mg-based alloy
effectively promoted the proliferation of mouse fibroblasts
by regulating the cell cycle, energy metabolism, and protein
synthesis and obviously enhanced human mesenchymal stem
cells toward osteoblastic differentiation by intricate cellular
mechanisms (8, 9). Thus, it is essential to disclose the
relationship between cells and biodegradable products of
Mg-based alloys.

The foreign body response (FBR) to biomaterial implantation
is a critical factor in determining the eventual outcome of
surgery (10). Unlike non-biodegradable materials eventually
encapsulated with fiber that elicit a lifelong chronic inflammation
according to the classical FBR theory (10, 11), biodegradable
biomaterials can avoid these adverse effects because of their
completely degradable nature. However, the degradation
products will also affect the early stage of FBR and bring about
unpredictable events. Recently, Cipriano et al. reported that
endothelial cells (ECs) will produce a pro-inflammatory cytokine
culture with a Mg–Zn–Sr alloy, and Zhou et al. found that extract
of a Mg-based alloy converted contractile vascular smooth
muscle cells (VSMCs) to an inflammatory phenotype (12, 13).
Contradictorily, Rochelson et al. initially showed that magnesium
inhibited inflammatory responses of human umbilical vein ECs
(HuVECs), and Shechter et al. also reported that oral magnesium
could help patients with coronary artery disease by improvement
of EC function (14, 15). In addition, magnesium shows an anti-
inflammatory effect that is used to treat seizure prophylaxis or
cerebral palsy (16, 17). Li et al. reported that magnesium-doped
titanium exerted an anti-inflammatory phenotype macrophage

(18). Thus, fully understanding the effects of potential molecular
mechanism of degradable products of Mg-based alloys on
macrophages is essential.

Toll-like receptors (TLRs), such as TLR-2, TLR-4, or TLR-
7, are typical pattern recognition receptors (PRRs) of immune
cells that sense damage-associated molecular patterns (DAMPs)
or pattern-associated molecular patterns (PAMPs) to initiate the

innate immune response during the FBR (19, 20). There are

reports of the impact of Mg-based alloys on TLRs. Recently,

Xia et al. showed that high-purity Mg staples can suppress
TLR-4/nuclear factor-kappa B (NF-κB) and activate vascular
endothelial growth factor (VEGF) to inhibit inflammation in
the rectal anastomoses of mice (21). In addition, Zhai et al.
showed that metallic magnesium degradation products inhibit
osteoclast differentiation by attenuation of the NF-κB and
NFACT1 signaling pathway (22). Nevertheless, the systemic
mechanism of the interaction between degradable products of

Mg-based alloy and TLRs signaling pathways on macrophages
requires further elucidation.

The transient receptor potential cation channel subfamily M,
member 7 (TRPM7) is a very ubiquitous cation channel with
a fused alpha-kinase domain expressed on the surface that is
highly permeable to magnesium and calcium, which regulates
cellular physiological metabolism, such as cell proliferation and
migration (23). For example, TRPM7 can mediate oxidative
and cell morphology change through m-calpain activity
(24). Most recently, Zhang et al. found that regulation of
TRPM7 by magnesium can enhance the osteoinduction of
human osteoblasts by activating the phosphatidylinositol
3-kinase (PI3K) signaling pathway, which encouraged us to
explore whether TRPM7 also has an important role in the
inflammatory regulation of immune cells during Mg-based alloy
implantation (25).

The aim of this study was to disclose potential anti-
inflammatory mechanisms of the degradation products of
a Mg-based alloy [Mg–Nd–Zn–Zr alloy [JDBM] used as a
cardiovascular stent (26)] to THP-1 cell-derived macrophages
stimulated by lipopolysaccharide (LPS), a frequently used agent
to mimic infectious circumstance (27). We here investigated the
expression of pro-inflammatory cytokine tumor necrosis factor-
α (TNF-α) and interleukin (IL)-6 of macrophages on the JDBM,
Ti−6Al−4V (Ti, used in permanent metallic biomaterials) as
the control group, as well as extract of JDBM and MgCl2,
respectively. Furthermore, the correlating proteins downstream
of TLR-4 pathways such as NF-κB and mitogen-activated protein
kinase (MAPK), reactive oxygen species (ROS), and the TRPM7–
PI3K pathway were analyzed to elucidate potential mechanisms.

MATERIALS AND METHODS

Materials Preparation
The details of composition and the ingot of
Mg−2.1Nd−0.2Zn−0.5Zr (wt%, abbreviated as JDBM) used
in this study were described in our previous studies (28, 29).
Discs of JDBM and Ti with a diameter of 14mm and height
of 2.0mm were ultrasonically cleaned by ethanol and acetone
for 10min and were further sterilized by exposure to ultraviolet
light for another hour. JDBM samples were precorroded in
Roswell Park Memorial Institute (RPMI) 1640 culture medium
(Gibco, USA) supplemented with 10% inactivated fetal bovine
serum (FBS) and 1% penicillin–streptomycin (PS) for 24 h
(at 5% CO2 and 37◦C) to avoid the initial high corrosion and
ensure cell adhesion (30). Ti discs and cell culture plates (CCPs)
underwent the same pretreatment. Because protein adsorption is
an important event during the FBR, the protein concentration
of all the soaking solutions described above were analyzed by
an indirect evaluation of protein absorption, the bicinchoninic
acid (BCA) assay, according to the protocol (19). Extract from
JDBM was prepared according to ISO-10993 guidelines. Briefly,
disc samples were immersed in RPMI 1640 cell culture medium
according to the surface area/volume ratio of 1.25 cm2/ml for
72 h at 5% CO2 and 37◦C. After that, the original JDBM extract
was harvested and filtered (0.22µm). Wang et al. recommended
that a minimum of six times to a maximum of 10 times dilution
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FIGURE 1 | Effects of JDBM, extract, and MgCl2 on the expression of pro-inflammatory cytokines in THP-1 cell-derived macrophages. THP-1 cell-derived

macrophages were cultured with JDBM, Ti, extract, and MgCl2 for 1 h prior to addition of LPS for another 6 or 24 h. The protein expression of TNF (A) and IL-6 (B) in

supernatants was determined at 24 h by ELISA. The mRNA expression of TNF (C) and IL-6 (D) was analyzed with qPCR at 6 h. &P < 0.05 vs. LPS-induced control

group; *P < 0.05 vs. control group; #P < 0.05 vs. LPS + JDBM group. JDBM, Mg-2.1Nd-0.2Zn-0.5Zr alloy; LPS, lipopolysaccharide; TNF, tumor necrosis factor; IL,

interleukin.

of extract was appropriate to be used in in vitro tests because the
dilution would not result in cytotoxicity (31). Additionally, in
our previous study, we found that 10–20% extract of JDBM could
inhibit LPS-induced inflammation (32). Therefore, to explore
possible anti-inflammatory effects, the extract was further diluted
into 15% extract with cell culture medium as the experiment
group (extract). In human body fluid, Mg-based alloy degraded
as Mg + H2O – Mg(OH)2 + H2 and then Mg(OH)2 + 2Cl− –
MgCl2 + 2OH− (33), indicating that the MgCl2 was the major
final metabolic compound of Mg-based alloy in the body, and
MgCl2·6H2O, therefore, was diluted into cell culture medium
at 7.5mM of (180 mg/L) final magnesium ion concentration
similar to that of 15% extract.

Cell Preparation and Treatment
Here, we selected THP-1 cell-derived macrophages because of
their strong similarity to human primary macrophages and
low cost (34, 35). The THP-1 cell line was obtained from
Cell Bank, Shanghai Institutes for Biological Sciences, Chinese
Academy of Sciences, Shanghai, China, and was cultured in

RPMI 1640 medium supplemented with 10% FBS and 1% PS.
THP-1 cells were treated with 50 ng/ml phorbol 12-myristate 13-
acetate (PMA; Sigma, USA) for 48 h in order to differentiate
into THP-1-derived macrophages and then were refreshed with

RPMI 1640 for another 24 h. After that, macrophages were seeded
into discs of JDBM, Ti, and cell culture plates with or without

15% extract and MgCl2 conditioning medium for 1 h and then

stimulated with or without 1µg/ml of LPS for another 24 h.
According to previous reports, LPS could stimulate macrophages
at 10 ng/ml−1µg/ml, and the higher the inflammatory response
macrophages were induced, the more effective the inhibition of
the alloy became if it had anti-inflammatory capacity; 1µg/ml
of LPS, therefore, was selected in our study (36, 37). The
pH value and magnesium ion concentration of supernatant
from the groups were analyzed using a pH detector (PB-10,
Sartorius, Germany) and inductively coupled plasma–atomic
emission spectrometry (ICP-AES; PerkinElmer Optima 2000,
USA), respectively. For evaluating cytotoxicity, the supernatants
were tested using a lactate dehydrogenase (LDH) cytotoxicity
assay kit (Beyotime, China) according to the protocol.
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FIGURE 2 | The characterization of the effects of JDBM, Ti, extract, and MgCl2 on the macrophages. (A) Macrophages were seeded on JDBM or Ti discs with or

without LPS for 24 h after immersion in culture media for 24 h, and the cellular morphology of macrophages was visualized by SEM. Scale bar = 80µm. (B) The

JDBM, Ti, and cell culture plates (CCPs) were immersed in culture media for 24 h, and the protein concentration of supernatants was determined by the BCA assay.

THP-1 cell-derived macrophages were precultured with JDBM, Ti, extract, and MgCl2 for 1 h prior to challenge with or without LPS for 24 h. The supernatants were

harvested to analyze the cytotoxicity (C) and the pH value and Mg2+ concentration (D). The representative images from three experiments are shown. *P < 0.05 vs.

control group. JDBM, Mg–Nd–Zn–Zr alloy; LPS, lipopolysaccharide; SEM, scanning electron microscopy; BCA, bicinchoninic acid.

Scanning Electron Microscopy
THP-1 cell-derived macrophages were seeded on the surface of
JDBM and Ti discs for 1 h before the addition or not of LPS
for 24 h and then fixed in 2.5% paraformaldehyde (PFA) for
40min followed by gradient isopropanol dehydration (20, 40, 60,
80, 95, and 100%, 10min each step). After being dried under
vacuum, the surface of the samples was coated with gold. The
samples were then observed by scanning electron microscopy
(SEM) (SHINKKUVDMSP, Japan).

Real-Time Quantitative PCR Analysis
THP-1 cell-derived macrophages were treated using the method
as described above. The total RNA extractions and cDNA
synthesis were performed using kits (TOYOBO, Japan). Bio-Rad
C100 was employed for RT-qPCR analysis using SYBR green
(TOYOBO, Japan). The levels of target genes were normalized to

GAPDH, a housekeeping gene, for calculation using the 2−11CT

method. The primer sequences of genes are listed in Table S1.

Enzyme-Linked Immunosorbent Assay
ELISA was carried out to determine the expression of pro-
inflammatory cytokines (IL-6 and TNF). THP-1 cell-derived
macrophages were treated with the same method described
above. The level of cytokines in the supernatant was determined
using an ELISA kit (DAKWE, China) according to the
manufacturer’s instructions.

Western Blotting
Protein lysates extracted from cells were loaded into 10%
or 12% sodium dodecyl sulfate–polyacrylamide gels for
electrophoresis (SDS-PAGE). After that, proteins were
transferred to polyvinylidene difluoride (PVDF) transfer
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FIGURE 3 | The reversible anti-inflammatory effects of extract and MgCl2 (A) THP-1 cell-derived macrophages were cultured with extract or MgCl2 for 1 h and

replaced with extract, MgCl2, or normal media (control) in the presence of LPS for the indicated times. The protein expression of TNF (B) and IL-6 (C) in supernatants

was determined at 24 h by ELISA. The mRNA expression of TNF (C) and IL-6 (D) was analyzed with qPCR at 6 h. &P < 0.05 vs. MgCl2/control group; *P < 0.05 vs.

extract/control group. LPS, lipopolysaccharide; TNF, tumor necrosis factor; IL, interleukin.

membranes (Millipore, Billerica, USA). Primary antibodies,
including MYD88, P65, P38, p-P38, ERK, p-ERK, JNK,
p-JNK, p-IKK-α/β, IKK-α/β, p-IκBα, IκB AKT, p-AKT,
AKT1, and p-AKT1 (CST, USA), were separately incubated
overnight after blocking with 7% skim milk for 1 h. Then,
secondary antibodies IRDye R© 800CW goat anti-mouse IgG
and IRDye R© 800CW goat anti-rabbit IgG (Li-COR, USA)
were incubated with the membranes for 1 h. Finally, all
results were acquired by an infrared imaging system (Li-
Cor Odyssey, Li-COR, USA). The data were analyzed by
ImageJ software.

Immunofluorescence and Flow Cytometry
The effects of extract and MgCl2 on NF-κB activity were
evaluated with an NF-κB activation-nuclear translocation
assay kit (Beyotime, China). THP-1 cell-derived macrophages
were seeded into six-well plates with extract and MgCl2
for 1 h and then added with or without LPS for 30min.
After rinsing, fixation, and blocking, macrophages were
incubated with p-65 primary antibody at 4◦C overnight.
Cells were subsequently incubated with cy3-conjugated

secondary antibody for 1 h and then stained with DAPI
for 5min at room temperature. Finally, macrophages
were visualized by fluorescence microscopy (DFC310,
LECI, Germany).

For the intracellular ROS detection, cells were pretreated with
extract or MgCl2 for 1 h and then stimulated with LPS for
1 h. Next, cells were stained using dichlorodihydrofluorescein
diacetate (DCFH, Beyotime, China) according to the protocol.
Finally, THP-1 cell-derived macrophages were harvested and
analyzed by flow cytometry [fluorescence-activated cell sorting
(FACS); Canto II, BD, USA] or directly visualized using a
fluorescence microscope.

For the TLR-4 detection, cells were pretreated with extract
or MgCl2 for 1 h before LPS stimulation for 24 h. Cells were
washed with PBS and stained with TLR-4-PE (BioLegend, USA)
for 30min. After that, the results were analyzed with FACS.

The FACS data were processed using Flowjo 7.6 software.

siRNA Transfection
TRPM7 siRNA was obtained from the Beijing Genomics
Institute, China. THP-1 cell-derived macrophages were seeded
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FIGURE 4 | Effects of extract and MgCl2 on the expression of pro-inflammatory cytokines of THP-1 cell-derived macrophages through regulation of the TLR-4

pathway. THP-1 cell-derived macrophages were pretreated with anti-TLR-4 antibody (MTS510, 3µg/ml) for 1 h prior to the addition of extract or MgCl2 for another 1

h and then stimulated with LPS for the indicated time. The protein expression of TNF (A) and IL-6 (B) in supernatant was measured by ELISA at 24 h. The mRNA

expression of TNF (C) and IL-6 (D) was analyzed with qPCR at 6 h. &P < 0.05 vs. LPS + MTS510 control group; ∧P < 0.05 vs. LPS-induced control group. TLR,

toll-like receptor; LPS, lipopolysaccharide; TNF, tumor necrosis factor; IL, interleukin.

into six-well plates for 12 h before transfection with siRNA
and Lipofectamine 6000 (Beyotime, China) for another 48 h
according to the instructions.

Statistical Analysis
The statistical analyses were performed by using one-way
ANOVA with Tukey’s honestly significant difference (HSD)
on SPSS software. All results were analyzed as means ±

standard deviation (SD) and P < 0.05 was considered as
statistical significance.

RESULTS

Effects of JDBM, Extract, and MgCl2 on
the Pro-Inflammatory Response of
Lipopolysaccharide-Induced THP-1
Cell-Derived Macrophages
Because magnesium is the main degradable product of Mg-
based alloys (38), we investigated the role of magnesium from
JDBM on the anti-inflammatory response by setting up a
15% extract group and a similar magnesium concentration as
a 7.5mM MgCl2 group. The effects of JDBM, extract, and
MgCl2 solution on the secretion of inflammatory cytokines
were first investigated by ELISA and qPCR. JDBM, extract, and

MgCl2 suppressed the expression of TNF-α and IL-6 in LPS-
stimulated macrophages compared with the LPS control group at
both the protein (Figures 1A,B) and the mRNA (Figures 1C,D)
levels, but the Ti group did not have this effect. Notably, the
expression of TNF and IL-6 in the JDBM group was significantly
lower in the extract and the MgCl2 group. In addition,
no significant difference was observed in all groups without
LPS stimulation.

Cytotoxicity and Cellular Morphology of
THP-1 Cell-Derived Macrophages on
JDBM and Ti Discs
To further investigate the complex reasons for the anti-
inflammatory capacity of JDBM, we evaluated the difference in
protein adsorption among the Ti, JDBM, and CCP by BCA assay
because of its importance as mentioned inMaterials Preparation,
whereas no significant difference was visualized between all
groups (Figure 2B). Next, because macrophages with different
cellular morphology could represent a pro-inflammatory or anti-
inflammatory subset of cells, we further analyzed the cellular
morphology of macrophages on the surface of JDBM and Ti
discs (39). As shown in Figure 2A, macrophages showed a round
type and a flat type in both JDBM and Ti, whereas, after LPS
stimulation, they changed into an “omelet-like” type with spread
pseudopodia. However, there was no significant distinction
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FIGURE 5 | Effects of extract and MgCl2 on TL-4–MYD88-dependent signaling pathway in THP-1 cell-derived macrophages. THP-1 cell-derived macrophages were

pretreated with MgCl2 or extract for 1 h prior to challenge with LPS for another 24 h. The expression of TLR-4 was analyzed by FACS (A,B), and MYD88 was detected

at the protein level using western blotting (D). The expression of TLR-4 and MYD88 was measured at the mRNA level using real-time PCR (C,E). The representative

images from three experiments are shown. *P < 0.05 vs. control group; &P < 0.05 vs. LPS-induced control group. LPS, lipopolysaccharide; FACS,

fluorescence-activated cell sorting.

between cells of the JDBM and Ti groups under LPS stimulation
or not. Moreover, we also found that JDBM caused visible cell
damage compared with the control group, whereas the other
groups had no significant cytotoxicity (Figure 2C). Furthermore,
the ICP results showed that the magnesium concentration of
JDBM was remarkably higher than that of the extract and the
MgCl2 group, and the pH value of JDBM was also higher than
that of the other groups, which indicated that alkalinity and the
extremely high magnesium concentration of the environment
might result in cytotoxicity (Figure 2D). In addition, we detected
Zn < 0.5 ppm, Zr < 0.2 ppm, and Nd < 0 ppm of extract group
compared with those of control group (Zn < 0.2 ppm, Zr < 0
ppm, and Nd < 0 ppm), suggesting that these element had no
effects owing to extremely low concentration (data not shown).
Together, the JDBM group had a better anti-inflammatory effect
than the extract and the MgCl2 group because high magnesium
ion levels are produced, causing alkalinity, thereby resulting in
cytotoxicity, instead of changing cellular morphology.

The Role of Magnesium in JDBM on
Anti-inflammation of
Lipopolysaccharide-Induced THP-1
Cell-Derived Macrophages
Before the anti-inflammatory effects of extract and MgCl2 were
proven, as shown in Figure 1, we further analyzed whether
this effect of magnesium ion was reversible. Macrophages
were treated with or without extract and MgCl2 for 1 h. Cells
were washed, and LPS was added in the presence of control,
extract, or MgCl2 solution for another 6 or 24 h. As shown in
Figure 3, exposure to extract or MgCl2 before the LPS challenge
had little influence on the production of IL-6 and TNF by
macrophages at both the protein and RNA levels, suggesting
that the anti-inflammatory effects of magnesium ion were
reversible. These results also indicated that magnesium
ion downregulated pro-inflammatory cytokines ahead
of transcription.
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FIGURE 6 | Effects of extract and MgCl2 on the NF-κB inflammatory signaling pathway in LPS-induced THP-1 cell-derived macrophages. Cells were pretreated with

extract or MgCl2 for 1 h and then stimulated with LPS for 30min. (A) Immunofluorescence images of control, LPS + control, MgCl2 + LPS, and extract + LPS

groups. Scale bar = 20µm. (B) The p65 activity in THP-1 cell-derived macrophages was determined at the indicated times by western blotting. (C) Cells were

pretreated with extract or MgCl2 for 1 h and then stimulated with LPS for 30min. The relative expression of p-IKβ-α/IKβ-α and p-IKK-α/β/IKK-α/β was determined by

western blotting. (D) THP-1 cell-derived macrophages were pretreated with extract or MgCl2 and then stimulated with LPS at various time points. The increase in

LPS-induced IκB-α gene expression was in the presence of extract or MgCl2 analyzed by qPCR. The representative images from three experiments are shown.

NF-κB, nuclear factor-kappa B; LPS, lipopolysaccharide.

Effects of Extract and MgCl2 on the TLR-4
Pathway During the
Lipopolysaccharide-Induced Inflammatory
Response
According to the above results, we next investigated the

effects of extract and MgCl2 on the inflammatory signaling

pathway. Because it was the first cascade of LPS binding to

macrophage TLR-4 during the inflammatory process, it was
necessary to examine whether extract and MgCl2 inhibited the
LPS-induced inflammatory response via the TLR-4 receptor. An
anti-TLR-4 monoclonal antibody (MTS510) was used to treat
macrophages prior to stimulation with LPS. The results revealed

that MTS510 with or without extract and MgCl2 depressed
TNF and IL-6 release after LPS challenge. Of note, treatment
of macrophages with a combination of MST510 and extract
or MgCl2 synergistically inhibited IL-6 and TNF expression
elicited by LPS compared with treatment with MTS510 alone
(Figure 4). To further analyze how magnesium ion affected the
TLR-4 signaling pathway, the effects of extract and MgCl2 on the
expression of TLR-4 and MYD88 in LPS-induced macrophages
were determined. As shown in Figure 5, both the extract and
MgCl2 groups, compared with the LPS-induced control group,
could reduce TLR-4 andMYD88 expression at both the RNA and
protein levels. Altogether, these results showed that magnesium
ion could downregulate the TL-4/MYD88 signaling pathway.
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FIGURE 7 | Effects of extract and MgCl2 on the MAPK inflammatory signaling pathway in LPS-induced THP-1 cell-derived macrophages. THP-1 cell-derived

macrophages were pretreated with or without NF-κB inhibitor (Bay 117082, 5µM) for 1 h prior to the addition of extract or MgCl2 for another 1 h and then stimulated

with LPS for the indicated time. The protein expression of TNF (A) and IL-6 (B) in medium was measured at 24 h by ELISA. The mRNA expression of TNF (C) and IL-6

(D) was analyzed at 6 h by qPCR. (E) THP-1 cell-derived macrophages were pretreated with extract or extract for 1 h and then stimulated with LPS for 45min. The

relative expression of p-P38/p38, p-ERK/ERK, and p-JNK/JNK was determined by western blotting. The representative images from three experiments are shown.

*P < 0.05 vs. LPS + Bay 117082 control group; ∧P < 0.05 vs. LPS-induced control group. MAPK, mitogen-activated protein kinase; LPS, lipopolysaccharide; NF-κB,

nuclear factor-kappa B; TNF, tumor necrosis factor; IL, interleukin.

Effects of Extract and MgCl2 on the
Nuclear Factor-Kappa B and
Mitogen-Activated Protein Kinase Pathway
in Lipopolysaccharide-Induced THP-1
Cell-Derived Macrophages
NF-κB is a critical mediator downstream of the TLR-4 pathway
to produce inflammatory cytokines; thus, we next evaluated
NF-κB activity in the presence of extract or MgCl2 after LPS

stimulation (40). As shown in Figure 6A, the P65 protein
(NF-κB) was transferred into the nucleus from the cytosol in

the presence of LPS, whereas extract and MgCl2 reversed the
process. Furthermore, the results of western blotting also showed
that both the extract and MgCl2 groups could decrease the
phosphorylation of P65, compared with the LPS control group,
in a time-dependent manner (Figure 6B). Moreover, the LPS-
induced phosphorylation of IκBα, a repressor of NF-κB, and
of IKK-α/β, a crucial upstream protein of NF-κB, was also

significantly reversed in the extract and MgCl2 groups compared
with the LPS control group (Figure 6C). In addition, the extract
and MgCl2 groups, compared with the LPS control group, could
attenuate the increasing trend of LPS-induced IκBα expression at
the mRNA level for 2 h (Figure 6D). To further comprehensively
disclose the effects of magnesium on the TLR-4 pathway, an anti-
NF-κB inhibitor (Bay 117082) was added to macrophages before
the LPS challenge. As shown in Figures 7A–D, the groups of

extract or MgCl2 with or without Bay 117082 could inhibit TNF
and IL-6 release inflicted by LPS, compared with the LPS control
group, at both the protein and mRNA levels. Interestingly,
treatment of macrophages with a combination of Bay 117082
and extract or MgCl2 synergistically inhibited IL-6 and TNF
expression by LPS challenge, compared with treatment with Bay
117082 alone, which indicates that there are other transcription
factors (TFs) affected by magnesium. The MAPK pathway,
including p38, ERK, and JNK, is another important pathway
downstream of TLR-4 to regulate activator protein 1 (AP-1)
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FIGURE 8 | Effects of extract and MgCl2 on antioxidants in LPS-induced THP-1 cell-derived macrophages. Cells were pretreated with MgCl2 or extract for 1 h and

then stimulated with LPS for 1 h. (A) The ROS level of THP-1 cell-derived macrophages was assayed by fluorescence microscopy using a DCFH probe. Scale bar =

100µm. (B,C) The expression of intracellular ROS was also detected by FACS using a DCFH probe. The representative images from three experiments are shown.

*P < 0.05 vs. control group; &P < 0.05 vs. LPS-induced control group. LPS, lipopolysaccharide; ROS, reactive oxygen species; DCFH, dichlorodihydrofluorescein

diacetate; FACS, fluorescence-activated cell sorting.

translocation into the nucleus, thereby enhancing inflammatory
cytokine expression (41). Thus, we next investigated the activity
of MAPK in the presence of extract and MgCl2. As shown in
Figure 7E, the phosphorylation of P38 and JNK stimulated by
LPS was significantly reversed by extract and MgCl2, compared
with the LPS control group, whereas the phosphorylation level
of ERK was not significantly different. All these results suggested
that magnesium ion was able to inactivate the NF-κB and MAPK
signaling pathways to inhibit the TLR-4 signaling axis.

Effects of Extract and MgCl2 on the
Lipopolysaccharide-Induced Reactive
Oxygen Species Production of THP-1
Cell-Derived Macrophages
Previous research revealed that LPS could induce ROS
production and that ROS further contributed to the enhancement
of the TLR-4 pathway by interacting with NF-κB, which increased
the inflammatory response (42). Therefore, the possible effect
of magnesium on intracellular ROS expression was evaluated

by FACS and fluorescence microscopy. As shown in Figure 8,
extract and MgCl2 could effectively decrease ROS production
inflicted by LPS compared with the LPS control group.
These results indicated that magnesium ion might be a good
ROS scavenger.

The Role of TRPM7 on Inhibiting
Inflammation of Extract and MgCl2
The above findings prompted us to explore how magnesium
affected the TLR-4 signaling pathway. Because of the possibility
that extracellular magnesium depressed LPS/TLR binding
activity, macrophages were stimulated by LPS for 15min to
permit LPS/TLR-4 binding before extract or MgCl2 replacement
with LPS, whereas the IL-6 and TNF expression in the presence
of extract or MgCl2 was still decreased, compared with the
LPS-induced control group at both the protein and mRNA
levels (Figure S1). Together, these results supported the concept
that magnesium affected inflammation by an intracellular
molecular mechanism.
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FIGURE 9 | Effects of extract and MgCl2 on the TRPM7–PI3K–AKT1 anti-inflammatory signaling pathway in macrophages. (A) The mRNA expression of TRPM7 in

THP-1 cell-derived macrophages cultured with extract or MgCl2 for 1 h prior to the addition of LPS for 6 h was determined by qPCR. (B,C) THP-1 cell-derived

macrophages were, respectively, transfected with TRPM7-siRNAs (TRPM7-siRNA1, TRPM7-siRNA2, and TRPM7-siRNA3) plasmids for 72 h, and the mRNA

expression of TRPM7 was determined by qPCR. (D) THP-1 cell-derived macrophages were pretreated with extract or MgCl2 in the presence or absence of LY294002

(10mM) for 1 h prior to stimulation with LPS for 45min. The relative expression of p-AKT/AKT and p-AKT1/AKT1 was determined by western blotting. (E) THP-1

cell-derived macrophages were transfected with TRPM7-siRNA3 or NC (no plasmid content) for 72 h and then incubated in the presence or absence of extract or

MgCl2 for 1 h prior to stimulation with LPS for 45min. The relative expression of p-AKT/AKT and p-AKT1/AKT1 was determined by western blotting. The transfected

THP-1 cell-derived macrophages were pretreated with or without extract or MgCl2 for 1 h prior to stimulation with LPS for 6 h and the mRNA expression of TNF (F)

and IL-6 (G) was analyzed by qPCR. The representative images from three experiments are shown. *P < 0.05 vs. LPS control group or NC-control group; ∧P < 0.05

vs. NC-extract group; #p < 0.05 vs. NC group; &P < 0.05 vs. NC-MgCl2 group. LPS, lipopolysaccharide.

Next, we tried to investigate the possible role of TRPM7
during the anti-inflammatory process of magnesium in
the LPS-stimulated macrophages. As shown in Figure 9A,
the expression of TRPM7 in the presence of extract and
MgCl2 was higher than that of the control group at
the RNA level. Next, we transfected TRPM7-siRNA into
macrophages, and the qPCR results showed that all of the siRNA
could significantly suppress TRPM7 expression, especially
siRNA3 (Figures 9B,C). Although previous studies proved
the antisense of siRNA at the protein level in other cells,
the TRPM7 protein expression of siRNA transfected cells

was not detected in this study, which might be a weakness
(43, 44).

Then, the transfected macrophages were treated with extract
or MgCl2 for 1 h before LPS stimulation for another 6 h,
and qPCR was used to analyze the TNF and IL-6 expression
at the mRNA level. As shown in Figures 9F,G, after LPS
stimulation, the TNF and IL-6 expression of TRPM7 knockdown
macrophages with extract or MgCl2 was significantly increased
compared with that of macrophages in the presence of extract
or MgCl2 alone. In particular, the siRNA3 group was not
significantly different from the LPS control group (P > 0.05),
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FIGURE 10 | Schematic illustration of the potential regulatory mechanism of LPS-induced inflammatory responses in macrophages treated with the degradation

products of JDBM. After JDBM cardiovascular stent was implanted, macrophages would adhere to the surface of stent owing to the FBR. The magnesium from the

degradation products of the JDBM passed into the cytoplasm of macrophages through the TRPM7 channel to activate the PI3K–AKT1 signaling pathway and

scavenged intracellular ROS to prevent the inflammatory response based on the LPS-induced activation of the TLR-4–MYD88–NF-κB/MAPK signaling pathway,

which show good anti-inflammatory effects of Mg-based alloy. LPS, lipopolysaccharide; JDBM, Mg–Nd–Zn–Zr alloy; FBR, foreign body response; ROS, reactive

oxygen species.

which suggested that TRPM7 was a necessary factor during
the anti-inflammatory process associated with magnesium. To
further systematically disclose the role of TRPM7 in the anti-
inflammatory response of magnesium ion, a PI3K inhibitor
(LY24002) was added to macrophages prior to LPS challenge
with or without extract or MgCl2, and then the activity of AKT
and AKT1 was evaluated by western blotting. As shown in
Figure 9D, the phosphorylation level of AKT in the LPS control,
extract + LPS, and MgCl2 + LPS groups were higher than that
of the control group. The phosphorylation level of AKT1 in
the group of extract + LPS or MgCl2 + LPS was significantly
increased compared with that of the LPS control group and
control group, whereas the groups of extract + LY24002
+ LPS and MgCl2 + LY24002 + LPS could decrease their
phosphorylation compared with that of groups without LY24002,
which suggested that magnesium inhibited inflammation by
regulation of the PI3K/AKT1 pathway. Then, the relationship
between the activity of AKT1 and TRPM7 was analyzed by
western blotting and showed that the phosphorylation of AKT1
in LPS + extract + TRPM7-SiRNA3 or LPS + MgCl2 +

TRPM7-SiRNA3 group was lower than that of LPS + extract
or LPS + MgCl2 group, respectively, whereas the activity of
AKT had no influence (Figure 9E). Together, these results
showed that magnesium inhibited the inflammatory response

of macrophages through regulation of the TRPM7–PI3K–
AKT1 pathway.

DISCUSSION

Although Mg-based alloys are a promising biomaterial for
the future, local inflammation caused by FBR, infection, or
surgery remains a concern (45). The present study systematically
analyzed the potential mechanisms of the degradable products
of JDBM in the LPS induction of the pro-inflammatory response
of macrophages. We found that magnesium degradable products
played a critical factor in the anti-inflammation effect of a Mg-
based alloy. It effectively inhibited pro-inflammatory cytokine
release induced by the TLR-4 pathway through activating the
TRPM7–PI3K–AKT1 pathway.

Rapid corrosion of a Mg-based alloy would have many
side effects, including massive accumulation of these products,
thereby resulting in high magnesium concentration and
alkalinity, which in turn deteriorated the local physical condition
(7). Evidence has shown that overrated magnesium would impair
cell viability (46, 47). Our previous study also showed that above
50%, extract would result in cytotoxicity of macrophages, and
this was partly the reason for anti-inflammation effects of the
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Mg-based alloy; besides, 20% extract could trigger inflammatory
response without LPS stimulation owing to possible high osmotic
pressure, although it was also able to inhibit inflammation after
LPS stimulation (32). Therefore, it was reasonable to describe
why JDBM inhibited inflammation “better” than 15% extract,
and the reason why we selected 15% extract in our study was
it will not trigger inflammation but has anti-inflammation
effects after LPS stimulation, which offered a suitable dilution
time of extract in the future research. Furthermore, Li et al.
found that Raw 264.7 macrophages were round and flat
on the Ti alloy, whereas the cells in the Mg-doped Ti alloy
were more elongated and less flattened, which demonstrated
that magnesium promoted macrophage polarization (48).
However, in our experiments, we did not find this process;
and the possible causes, we speculated, might be using a
different macrophage cell line and adding LPS to mimic an
infectious environment.

Previous data have revealed that magnesium suppressed
the inflammatory response by decreasing the activity of the
NF-κB pathway in various cells (17, 49, 50). Consistently,
our results found that magnesium, as a major degradable
product of the Mg-based alloy, suppressed the inflammatory
response by downregulation of the TLR-4–MYD88–NF-κB
signaling pathway during the LPS stimulation. Of note, the
expression TLR-4 and MYD88 of the extract and MgCl2 was
lower than that of negative control group at the mRNA level,
which indicated that magnesium could first affect transcription.
We also found that degradable product of a Mg-based alloy
inhibited LPS-induced ROS production in macrophages, which
in turn alleviated the activation of the NF-κB pathway, even
though the potential mechanism required further exploration.
Recently, Yan et al. reported that magnesium could inhibit
the immune response by downregulation of all members of
the MAPK pathways (51). However, other studies found that
magnesium could attenuate CoCl2-induced neuronal cell death
by activating the ERK1/2 pathway and could inhibit the
calcification of extracellular matrix, thereby protecting articular
cartilage through ERK/autophagy pathway (52, 53). Interestingly,
our results confirmed that magnesium could effectively decrease
the activity of the p38 and JNK pathways induced by LPS
but not the ERK1/2 pathway. In that, the ERK signal pathway
regulated the cell growth, differentiation, migration, and so on
rather than inflammation (54); we speculated that magnesium
could active ERK1/2 protein during the LPS stimulation,
although the precise molecular study is for elucidation in
the future.

It had been reported that the PI3K/AKT pathway played a
crucial role in preserving the integrity of the immune system
(55). For example, Schabbauer et al. revealed that PI3K/AKT
activation significantly enhanced endogenous anti-inflammation
capacity (56). Of note, Su et al. found that PI3K/AKT activity
was a crucial molecular mechanism underlying the anti-
inflammation effects of MgSO4 during the LPS stimulation
(57). Our study showed the extract, MgCl2, and LPS, compared
with control, could activate AKT; however, the activity of
AKT1, a subfamily AKT, was increased by extract and MgCl2
compared with the control group but not LPS. Given a previous

study showing that AKT1 was an important mediator to
promote macrophage polarization to an M2 type that had
an anti-inflammatory effect (58), AKT1 reasonably played a
more important factor than AKT in the anti-inflammatory
capacity of magnesium. Also, Zhang et al. reported that
TRPM7 could prevent magnesium ion movement into the
cytoplasm to enhance expression of neuronal calcitonin gene-
related polypeptide-a (CGRP) in both the peripheral cortex
of the femur and the ipsilateral dorsal root ganglia (59).
Consistently, our results also demonstrated that magnesium
did not act as an anti-inflammation agent until entry into the
cytoplasm, and notably, this process relied on TRPM7 regulation.
Additionally, Zhang et al. found that magnesium could regulate
the osteoinduction of human osteoblasts by the TRPM7–
PI3K–AKT pathway (25). Our results showed that AKT1 was
a major downstream of the TRPM7-PI3K pathway instead
of AKT during the anti-inflammation of magnesium in the
LPS-stimulated macrophages. Altogether, our study suggested
that the degradable products of a Mg-based alloy limited the
inflammation of macrophages via the TRPM7–PI3K–AKT1
signaling axis.

Although in this study we first showed that the degradation
products of a Mg-based alloy exhibited an anti-inflammatory
capacity through mediating the TRPM7–PI3K–AKT1 pathway,
the rest of the TRPM families and anti-inflammatory signaling
pathways have not been studied (60). Because THP-1 cell-derived
macrophages were just a proxy for primary macrophages, it
was a major limitation in our study, which needed a primary
mouse or human macrophage to confirm the results in the
future. Additionally, the related in vivo experiments should be
implemented, and the effects of a Mg-based alloy on other
TLRs need to be studied. Altogether, these findings provided
some good evidence of Mg-based alloy application in infectious
patients with conditions such as sepsis.

CONCLUSION

In this study, the degradable products of JDBM could
effectively limit the inflammatory response by THP-1 cell-derived
macrophages and might relieve FBR during implantation. We
confirmed that magnesium from degradable products was a
major factor in the anti-inflammatory process of JDBM. We
found that intracellular magnesium could decrease the activity of
the TLR-4–MYD88–NF-κB/MAPK signaling pathway and LPS-
induced ROS expression, which depend on TRPM7 of THP-
1 cell-derived macrophages regulating extracellular magnesium
entrance, thereby activating the PI3K–AKT1 pathway to mediate
the above pathway, as shown in Figure 10. Thus, our results
provided a new mechanism for the anti-inflammatory capacity
of Mg-based alloys, which should be taken into account prior to
clinical application.
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Figure S1 | Role of the intracellular magnesium from Extracts or MgCl2 in the

anti-inflammatory response. (A) THP-1 cell-derived macrophages were stimulated

with LPS for 15min prior to the addition of Extracts or MgCl2 for the indicated

times. The protein expression of TNF (B) and IL-6 (C) in supernatants was

measured at 24 h by ELISA. The mRNA expression of TNF and IL-6 (D) was

analyzed with qPCR at 6 h. &P < 0.05 vs. control group.

Table S1 | Primers used for real-time PCR.
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