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Abstract: Glucagon like-peptide 1 (GLP-1) within the brain is produced by a population of
preproglucagon neurons located in the caudal nucleus of the solitary tract. These neurons project
to the hypothalamus and another forebrain, hindbrain, and mesolimbic brain areas control the
autonomic function, feeding, and the motivation to feed or regulate the stress response and the
hypothalamic-pituitary-adrenal axis. GLP-1 receptor (GLP-1R) controls both food intake and feeding
behavior (hunger-driven feeding, the hedonic value of food, and food motivation). The activation of
GLP-1 receptors involves second messenger pathways and ionic events in the autonomic nervous
system, which are very relevant to explain the essential central actions of GLP-1 as neuromodulator
coordinating food intake in response to a physiological and stress-related stimulus to maintain
homeostasis. Alterations in GLP-1 signaling associated with obesity or chronic stress induce the
dysregulation of eating behavior. This review summarized the experimental shreds of evidence from
studies using GLP-1R agonists to describe the neural and endocrine integration of stress responses
and feeding behavior.

Keywords: glucagon-like peptide-1; hypothalamic-pituitary-adrenal (HPA) axis; sympathetic nervous
system (SNS); ion channels; food intake

1. Introduction

Population-based and clinical studies data point out a significant and positive association of
chronic stress states and big uncontrollable stressful events with body mass index (BMI) and weight
gain [1]. In both people and animals, regardless of total caloric intake does not increase with stress;
a shift toward choosing more pleasurable or palatable calories occurs [2]. Foods rich in sugars and
fat are potent rewards, interacting to potentiate reward and engagement of neural circuits involved
in habit formation and reward value [3] and trigger learned associations between the stimulus and
the reward (conditioning) [4]. In this respect, stress becomes a critical risk factor affecting both the
development of addictive disorders and relapse to addictive behaviors [1].

It has become increasingly clear the existence of brain networks’ integrated activity in controlling
feeding behavior. The homeostatic control of feeding is regulated by hormones that control hunger,
satiety, and adiposity levels and act on hypothalamic and brainstem circuits to maintain appropriate
energy balance [5,6]. The brain reward systems also play an essential role in feeding behavior, and the
mesocortical dopamine system is crucial in these reward-related processes [2]. In this regard, the ventral
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tegmental area (VTA), and the adjacent substancia nigra pars compacta, receive energy-balance
information via orexin-containing projections from the lateral hypothalamus (LH) [7,8]. From VTA/SNc
arise dopamine signals that innervate the nucleus accumbens (NAc) and dorsal striatum, areas that
regulate the motivational and incentive properties of food [9]. Nevertheless, dopamine projections into
the dorsal striatum, cortical, and limbic regions encode information related to food’s reward value [10].
Moreover, the lateral hypothalamus is critically involved in food-seeking behavior, integrating essential
metabolic signals with upstream and downstream behavioral effector circuits [4].

Satiation signals such as gastrointestinal peptides released by food ingestion, emerge as promising
therapeutically tools in controlling feeding and obesity. For decades it has been known that
glucagon-like peptide-1 (GLP-1) reduces food intake, acting as a short-term prandial signal [11].
However, also GLP-1 produced in the brain is involved in a satiation/satiety circuit controlling food
intake and body weight [12,13]. GLP-1 is a member of the glucagon peptide superfamily, continuously
secreted by the enteroendocrine L-cells at low basal levels in the fasting or interprandial state [14,15].
Meal intake promotes a rapid increase in L-cell secretion [11] depending on the meal’s magnitude and
strongly correlated to gastric emptying [16]. GLP-1 is released by nutritional components stimulation,
such as simple carbohydrates (glucose, fructose, and galactose), amino acids, protein, and fatty
acids [17]. GLP-1 is synthesized from the proglucagon (Gcg) gene, after cell-specific post-translational
processing [18] in L-cells, pancreatic islet α-cells, and brain, by two members of the convertase
subtilisin/kexin family [19,20].

The primary source of endogenous GLP-1 within the brain is a population of
preproglucagon-neurons (PPG) in the caudal portion of the nucleus of the solitary tract (NTS) [21,22].
Ablation of these neurons in mice reduces active GLP-1 by 60% in the brainstem and almost 80% in the
hypothalamus and spinal cord [13,21,23]. Cell bodies of PPG neurons also have been described in the
adjacent medullary reticular formation, both in rodents, non-human primates, and humans [21–26],
as well as in a small population of glutamatergic olfactory bulb interneurons that express PPG that
can modulate the firing pattern of the mitral cells in rodents [13,22,23,27,28]. Axons of these neurons
are widespread throughout the NTS, the dorsal vagal nucleus, and the reticular nucleus (except for
the parvicellular region) [22]. Their axons extend to the area postrema (AP) and the dorsal vagal
nucleus [22]. Also, rostral to the medulla, in the Barrington’s nucleus and the locus coeruleus, there are
many axons from PPG-neurons [22]

Immunohistochemical, hybridization in situ studies in rats and mice, and likewise non-human
primates and the use also of selective fluorescent protein expression by a cre-dependent adeno-associated
virus in mice have shown that PPG neurons project widely to regions that express the GLP-1 receptor
(GLP-1R) in the central and autonomic nervous systems [21,22,29–31]. The hypothalamus receives a
massive input from PPG-neurons, the majority to either the paraventricular (PVN) or the dorsomedial
(DMH) hypothalamic nuclei [21,30,32,33]. However, GLP-1R nerve fibers are observed throughout
the hypothalamus in rodents with a notable difference in the arcuate nucleus (ARC) versus primates.
This area receives the densest innervation of GLP-1 immunoreactivity input in the primate brain [32,33].

Furthermore, these PPG-neurons project to other brainstem areas, in which different autonomic
neurons have been identified, including catecholamine and serotonin neurons [29]. Also, the limbic
forebrain regions [22,29,34], and areas of the mesolimbic reward system related to control of feeding and
motivation to feed, such as the VTA, the NAc, the parabrachial nucleus (PBN), or the suprammammillary
nucleus [23,31,35–37], or structures implicated in the regulation of the stress response and the
hypothalamic-pituitary-adrenal (HPA) axis are innervated by NTS PPG-neurons [38]. In this regard,
substantial numbers of PPG axons are present in mesolimbic areas of the forebrain, with the highest
density of PPG axons observed in the bed nucleus of the stria terminalis (BNST) [33], at low to moderate
density of these axons are identified in the dorsal and ventral parts of the lateral septum (LS) proximal
to the lateral ventricles, the medial septum (MS) and occasionally the septohippocampal nucleus
(SHi) [33]. The central nucleus (CeA), medial nucleus (MeA), and extended amygdala (EA), however,
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revealed a low to moderate density of PPG axon innervation [33]. Moreover, sympathetic preganglionic
neurons are also innervated by PPG-neurons [39].

GLP-1 has a broader range of pleiotropic physiological effects, including the inhibition of the
glucagon secretion [40] and gastrointestinal secretion and motility. However, it also displays other
heart and blood vessels’ actions, lung, ovaries, gut, liver, immune cells, kidney, white adipose tissue,
skeletal muscle, and brain [41–46]. GLP-1 regulates brain areas that modulate food reward with
particular physiological relevance in controlling feeding behavior [47]. Moreover, GLP-1 plays a
major role in overall physiological processes in response to stress [48,49], and this peptide is critical in
maintaining energy homeostasis controlling satiety and hedonic aspects of food intake concerning
stress [13,50–52]. GLP-1R agonists (GLP-1RAs), such as exenatide, liraglutide, albiglutide, dulaglutide,
and recently semaglutide, approved for the treatment of type 2 diabesity and obesity, have become
a promising pharmacological tool for reducing food intake and body weight [53,54] and new as yet
unrecognized therapeutic indications could be developed.

In this review, we summarized what is currently known about the involvement of GLP-1 in
the HPA axis regulation, food intake control, stress responses, modulation of sympathetic activity,
and especially the ionic events in the hypothalamic neurons that might explain some of the most
relevant biological actions of GLP-1 (Figure 1).
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Figure 1. Representative scheme of the interactions and effects of GLP-1 at the central
level. NAC:Nucleus Accumbens; CRF: corticotropin-releasing factor: ACTH: corticotrophin;
HYPO: hypothalamus; P: pituitary; AG:adrenal gland; PVN: paraventricular nucleus; GLP-1R:
glucagon-like peptide 1 receptor; GC: glucocorticoid; GLP-1N: glucagon-like peptide 1 neurons;
VTA: ventral tegmental area; NTS: nucleus of solitary tract; AP: area postrema.

2. GLP-1 Receptor and Signaling Pathways

GLP-1R has sequence homology with the receptors for secretin, calcitonin, and parathyroid
hormone, forming class B, a family of G-coupled receptors [55,56]. GLP-1R mRNA is expressed in
pancreatic islets; predominantly in β-cells (~80% of the islet population), non β-cells (~20%) also express
GLP1R (α-and (~12%) and δ-cells), lung, stomach, heart, ovary, kidney, 3T3-L1 preadipocytes and in
mouse and human mature adipocytes, also in human epicardial fat and in visceral and subcutaneous
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adipose tissue [46,57–66]. Despite this, there may be differences in GLP-1 effects among species
since dogs express its receptor in muscle and adipose tissue and mice also in the liver [67,68]. In the
rodent brain, regardless of the appearance of some differences in receptor expression between rats
and mice, depending on the technique of analysis employed, several studies using chemical biology,
recombinant genetics, and super-resolution compatible labeling probes methods had described high
content of GLP-1R in the hypothalamus (preoptic area, PVN, supraoptic, arcuate, DMH, lateral and
ventromedial nuclei), also in the circumventricular organs such as the AP, and the choroid plexus
(CP). In the arcuate, AP, and CP, super-resolution snapshots show that GLP-1R appears organized
as nanodomains at the membrane of GLP-1R positive neuron cell bodies, as well as dendrites,
in mice [66]. Also, GLP-1R expression appears in cells in the posterior thalamus, medulla oblongata,
and pituitary, LS, amygdala (mainly in mice), NAc (the core, the shell), BNST, VTA, dorsal nucleus
of the vagus; lateral reticular nucleus, and spinal cord, olfactory bulb, or supramammillary nucleus
(SuM), among others [23,66,69–74].

Similarly, in non-human primates, the GLP-1R mRNA and protein expression present similar
distribution in the CNS to rodents [75]. Also, in the human brain, mRNA was found in the cerebral
cortex (especially in the occipital and frontal cortex), hypothalamus (mainly the ventromedial and
arcuate nuclei), hippocampus, thalamus, caudate-putamen, and globus pallidum [40]. The GLP-1
receptor is expressed in neurons and glial cells [41,76–78]. In this regard, immunohistochemical studies
demonstrated that GLP-1Rs are expressed in the CA region’s pyramidal cell layer and the granule
cell layer of the dentate gyrus in the hippocampus pyramidal neurons in the neocortex and Purkinje
cell in the cerebellum. Preferably in the dendrites of larger neurons, indicating its expression near
synapses [76]. Moreover, astrocytes [42,79] and microglia [77,80] express GLP-1R.

Furthermore, the receptor of GLP-1 is expressed by the vagal afferent neurons that innervate
the abdominal organs (gastrointestinal tract), including the hepatoportal region [45,46], and also
within the nodose ganglion (NG) [46]. It should consider that the use of antibodies for visualizing the
GLP-1R has limits of detection and possesses variable specificity and tissue penetration. Moreover,
fixation techniques in different cells and tissues can affect the epitopes, that also can be hidden,
leading to the ambiguous identification of GLP-1R-expressing cells in humans and animal species [81].

The activation of GLP-1R both centrally and peripherally induces an increase in intracellular
calcium (Ca2+)i [27,82], and evoke an increase in cAMP production [83]. GLP-1 effects are generally
slow (minutes range), supporting the hypothesis of an indirect activation through second messenger
pathways [11,82,84,85]. Since forskolin, an activator of adenylate cyclase, also increases intracellular
calcium and Rp-8-Br-cAMP, a protein kinase A (PKA) inhibitor, prevents the effect of GLP-1 in
β-cells [86] and channels expressed in cell lines (heterologous systems) [87], it has been suggested
that GLP-1 induces the activation of the cAMP pathway [82,88,89]. Therefore, PKA’s subsequent
activation appears as the canonical signaling pathway accepted for inducing insulin secretion [90].
However, there exist other cAMP mediators, namely Epac [91,92] and other pathways like the inositol
1,4,5-trisphosphate (IP3), that also could be involved in the GLP-1 action [89,92–94]. However,
each of these putative pathways’ contribution remains poorly characterized, which is essential for
understanding GLP-1 effects. For example, and as see below, the understanding of the pro-GABAergic
action of the activation of GLP-1R is necessary to explain how GLP-1 exerts different functions in the
peripheral organs and the central nervous system.

2.1. Molecular Effects of GLP1 in the Hypothalamic Area

Most of the central actions of GLP-1 analogs in the nervous system are linked to changes in the
activation of different groups of neurons, some of which are housed in the hypothalamus. Just like in
pancreatic cells [87,95], the activation of GLP-1 also modulates the electrical properties in hypothalamic
neurons. Many hypothalamic neurons are specialized in the secretion of neuropeptides involved in
regulating the neuroendocrine axis, modulating the pituitary’s hormonal secretion. The studies in these
neurons have extensively focused on intracellular second messenger signaling cascades, as discussed



Nutrients 2020, 12, 3304 5 of 32

above. However, in addition to the activation of these second messenger pathways, the presence of
GLP-1 causes changes in resting membrane potential (RMP) in these neurons. Specifically, the presence
of GLP1 or analogs exerts significant depolarization making them more excitable [96] in hypothalamic
neurons, including an increment in the firing rate in gonadotropin-releasing neurons (GnRH) at the
hypothalamus [97]. Partly because of the reduction of the afterhyperpolarization current [96] (Table 1).

Table 1. Electrophysiological effects of GLP1 in the hypothalamus.

Compound Effect Channel/
Current Preparation Dose Tissue Model

Ex-4 activation INav in vitro 1 µM HPN mouse

Ex-4 activation nonselective
cationic in vitro 1 µM HPN mouse

Ex-4 non effect IA in vitro 1 µM HPN mouse
GLP-1 and analogs ¿blockade? K2P (TREK) 1

Ex-4 depolarizing in vitro 1 µM HPN mouse
Ex-4 reduction ICav in vitro 1 µM HPN mouse
Ex-4 reduction IAHP 1 µM HPN mouse

Ex-4: exendin-4; K2P: two-pore domain potassium channels; IA: Potassium current A-Type; IAHP:
afterhyperpolarization current; ICav: Voltage-dependent calcium current; HPN: Hypocretin Neurons; 1 Tentative
Hypothesis. Adapted from [96].

Since the RMP depolarization can be produced both by activation of the inward current (Na+ or
Ca2+) and by blocking of outward current (K+), in the hypothalamus, several ionic channels may be
involved in the depolarizing effect observed in the presence of GLP-1 and analogs. Table 1 summarize
these effects.

2.1.1. Voltage-Gated Na+ Channels

The substitution of sodium for choline in the culture media avoids the depolarizing effect of
Exendin-4 (Ex4) in hypothalamic neurons, indicating that GLP-1 induced depolarization may be due,
at least in part, to an effect on voltage-gated sodium channels (Nav) [96]. However, the depolarizing
effect in the hypocretin (Orexin-A)-releasing neurons can be suppressed by glutamate and GABA
receptor blockers [96], suggesting the participation of G-proteins rather than a direct effect on Nav

channels [98] by GLP-1R agonists.

2.1.2. Voltage-Gated Ca2+ Channels and Nonselective Cationic Current

GLP-1 increases intracellular calcium in NG neurons [82], and the influx of Ca2+ has been ascribed
to the activation of L-Type voltage-gated Ca2+ channels [99–101]. Additionally, in hypothalamic slices,
the application of Ex-4 results in an inward barium current (IBa) with a reversal potential around
−30 mV, and thus supports the hypothesis of GLP-1 modulating a nonselective cationic current in the
hypothalamus [96].

Even though the evidence comes from non-neuronal cells, the contribution of intracellular Ca2+

storages is unclear [102], but GLP-1 contributes to increasing IP3 levels [92–94], and this could contribute
to the rise in cytosolic calcium that occurs in the presence of GLP-1 [103].

2.1.3. K+ Channels

When the levels of glucose in the blood are low, the ATP-dependent potassium channels (KATP) of
pancreatic β-cells remain open and keep the membrane potential at a hyperpolarized level (around
−70 mV) and hence in a non-secreting state (rest) [104]. Several types of voltage-dependent potassium
channels are affected by GLP-1. Although GLP-1 inhibits an A-type potassium current (IA) in peripheral
cells [105], Goycolea et al. failed to block IA in the presence of GLP-1 and other analogs in hypothalamic
slices [96].
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TREK channels are members of the two-pore domain potassium channels (K2P) superfamily
and widely expressed in several tissues such as the hypothalamus, among others. This family of
K2P channels comprises three members, TREK-1, TREK-2, and TRAAK [106]. These channels are
blocked by cAMP [107–109]. Knockout mice for TREK-1 (TREK-1−/−) have a phenotype resistant to
depression and stress, and the activation of the HPA axis in response to induced stress results in a lower
corticosterone level, indicating a close relationship between TREK and stress in this mice model [110].
Since GLP-1R activation results in increased cAMP levels [104,111] and glucocorticoids also increase
the cAMP level in mice and humans in β-cells [112], it could speculate that the increase in cAMP might
modulate the hypothalamic TREK channels and make hypothalamic cells more excitable.

On the other hand, anxiolytic and antidepressant compounds (such as fluoxetine, ostruthin,
and spadin) are useful inhibitors of TREK channels [113–116]; similarly, it has been suggested that
GLP-1 and its analogs (such as Ex-4 and Liraglutide) had anxiolytic and antidepressant effects [117–119].
Incretins are related to the activation of the HPA axis [120,121] too. Altogether, it is tempting to
hypothesize that the positive (anxiolytic) effect of GLP-1 on stress responses may be related to the
inhibition of TREK-1, and thus the interaction between TREK channels and the GLP-1 receptor must
be investigated in deep. However, this fact could be controversial since some studies have shown how
the activation of GLP-1R can have anxiogenic effects [37,120,122]. Therefore, this should be studied
more thoroughly.

3. GLP-1 and the Stress Responses

Living organisms can survive because they maintain dynamic homeostasis, continuously
challenged by internal or external adverse effects, termed stressors [123]. Different aversive
physiological stimuli such as hypoglycemia, hypotension, hypoxia, hypovolemia, hypothermia,
infection, and also psychological stressors, elicit a response that is characterized by the activation of
the autonomic sympathetic nervous system (“fight or flight” response), that facilitates the secretion of
noradrenaline and adrenaline by the adrenal medulla [124]. This response elicits rapid modifications in
physiological states through neural innervation of end organs (increasing heart rate and blood glucose
among others), and it is counter regulated and compensated by the parasympathetic (“rest and digest”)
nervous system [38,125]. Moreover, the stressors also activate the HPA axis and stimulate de synthesis
and secretion of glucocorticoids from the adrenal cortex [124–126]. In the context, GLP-1 emerges as a
critical neuromodulator that mediates the response to stressors [120].

Although the stress response is critical for survival in the short term, dysfunctional stress responses
are linked to several somatic and psychiatric diseases, affective disorders, and neurodegenerative
diseases, emphasizing the importance of precise neuronal control of effector pathways [124,125,127].

3.1. GLP-1 Activates Hypothalamic-Pituitary-Adrenal Axis

Activation of the hypothalamus-pituitary-adrenocortical axis represents a primary hormonal
response to homeostatic challenge [128]. The HPA axis response’s direct-drive is mainly
neuronal, initiated via excitatory neurotransmission at the PVN corticotropin-releasing factor
(CRF)-neurons [128,129] by multiple circuits in forebrain limbic regions, hypothalamus,
and brainstem [38]. The NTS is a crucial region in the processing of autonomic and HPA axis
stress response both in the acute and chronic domains [38,129]. Catecholaminergic neuron fibers
from the A2/C2 region in the NTS innervate CRF-neurons in the medial parvocellular part of the
PVN [130]. These cells represent only a subset of stress-activated PVN-projecting neurons since
non-catecholaminergic GLP-1 producing PPG-neurons also project to the PVN [21,131]. GLP-1-IR nerve
endings or fibers and mRNA expression of GLP-1 receptor also exist in the PVN [132,133]. Similarly,
mRNA for arginine vasopressin (AVP) and oxytocin is colocalizing in the supraoptic and PVN [134].

GLP-1 is involved in the HPA axis activation. The intracerebroventricular injection of GLP-1
induces c-fos expression in the supraoptic nucleus (SON) in the medial parvicellular subregion, and the
magnocellular neurons of the PVN, predominantly in CRF-positive neurons [135,136]. Moreover,
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the administration of GLP-1 into the third ventricle, or the GLP-1 (7-36)-amide (iv), activate the HPA
axis by increasing adrenocorticotropic hormone (ACTH) [120], AVP [135], and corticosterone (CORT)
plasma levels [120,135], in a time-dependent manner, in conscious freely moving and anesthetized
rats [121]. This effect was observed in humans, too, with an increase in cortisol secretion [121]. Likewise,
central i.c.v. or peripheral administration of the GLP-1R agonist, Ex-4, actively elevate circulating
ACTH and corticosterone levels in rats, potently activating the HPA axis [137,138]. Additionally,
conditional deletion of GLP-1 receptor signaling in the PVN reduces HPA axis response to acute and
chronic stress [139]. Accordingly, the reduction of stress response after GLP-1 antagonism or PVN
deletion [129]. In this regard, i.c.v. administration of a GLP-1 antagonist, before placement of the rat in
an isolated open arm of the elevated plus-maze (EPM), blocks the effect of the EPM to increase plasma
ACTH and CORT and decreases the anxiety-like behaviors in response to stress in this task [120].

PVN and CRF could emerge as the principal mediators of GLP-1 effects on the HPA axis.
The central blockade of CRF receptor type 1 with the nonselective CRF receptor antagonist, astressin,
attenuates GLP-1-induced elevations of ACTH and corticosterone in plasma [120]. On this point,
the mechanism of action of Ex-4 in the stimulation of the HPA axis activity depends on the route of
administration, since astressin completely abrogate the effect of centrally administrated Ex-4 on the
secretion of ACTH, but only slightly reduced ACTH to Ex-4 peripheral administration [140]. Moreover,
GLP-1R knockdown in the PVN reduces HPA axis responses to acute and chronic stress [139].

3.2. GLP-1 Activates the Sympathetic Nervous System (SNS)

Using transgenic mice in which the glucagon promoter controls yellow fluorescent protein (YFP),
varicose axons from PPG-neurons in central sites involved regulating autonomic functions have been
observed [29]. The AP that densely express GLP-1 receptors could be one of the links for peripheral
GLP-1 action to activate central autonomic regulatory sites since intravenous GLP-1 agonist (Ex-4)
induce fos-IR in GLP-1-expressing neurons [29,141]. The NTS plays a crucial role in processing
visceral afferent information and transmission to other nuclei in the brainstem, forebrain, and spinal
cord [142]. In mice, medial NTS PPG-neurons receive monosynaptic input from vagal sensory neurons
in the NG [24,143,144]. The chemogenetic activation of GLP-1R-positive vagal afferents induces Fos
expression in this region [145]. Moreover, PPG-innervations are substantial direct to spinal sympathetic
nuclei of the spinal cord that contain immunoreactivity for the enzymes that synthesize acetylcholine
and nitric oxide. These neurons may regulate gut function but also affect cardiovascular control [39].

Moreover, YPF-PPG-neurons innervate ventral medullopontine catecholaminergic groups,
including A1, A5, and C1 neurons, essential for regulating blood pressure and cardiovascular
homeostasis [29,146,147]. Additionally, in the ventral medulla, serotonin (5-HT) neurons are
widely innervated by YPF-PPG-neurons [29]. 5-HT-neurons regulate life-sustaining respiratory
and thermoregulatory networks [148].

The sympathetic nervous system (SNS) innervates the adrenal cortex and influences plasma
corticosterone production [149]. Sympathetic innervation of the gland modulates the diurnal
rhythm in plasma corticosterone by increasing adrenal responsivity to ACTH and augmenting
steroidogenesis [150]. In this sense, bilateral enucleation of rats and previous treatment with
guanethidine attenuate the robust corticosterone response to Ex4, without affecting ACTH response,
indicating the SNS’s role glucocorticoid effect of this GLP-1R agonist [140]. Moreover, Ex4 also
increased the circulating levels of catecholamines by inducing the adrenal medulla [151].

Some of the firstly described effects of GLP-1R agonists were those affecting the SNS [121,151].
The activation of the GLP-1 receptor induces c-fos expression in neurons in autonomic control
sites in the rat brain and the adrenal medulla, providing inputs to sympathetic preganglionic
neurons [146]. Mice lacking the GLP-1R in the PVN show attenuated stress-induced cardiovascular
responses accompanied by a decreased sympathetic drive to the heart [139]. GLP-1R activation by
mechanisms dependent on the SNS can increase blood pressure and heart rate (HR) independently of
the administration path (intravenous or intracerebroventricular) in rats [152,153] and in freely behaving
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and anesthetized mice [154,155]. Furthermore, a single injection of liraglutide or lixisenatide increases
heart rate (HR) acutely in control and diminishes in Glp1rCM-/-mice (with selective cardiomyocyte
disruption GLP-1R). This effect is abolished by co-administration of the β-adrenergic antagonists like
propranolol or atenolol in freely moving and anesthetized mice [155,156] without further enhanced
by attenuation of cholinergic signaling using the muscarinic receptor antagonist atropine [155,156].
Furthermore, the direct application of GLP-1 within the middle thoracic spinal cord’s subarachnoid
space, a primary projection target of PPG-neurons, increases HR, suggesting direct activation of the
SNS [155]. Other studies assume that the positive chronotropic effects of central GLP-1 receptor
stimulation in mice result from depression of the heart rate’s parasympathetic modulation by inhibiting
the neurotransmission to preganglionic parasympathetic cardiac vagal neurons [154].

Data in humans are conflictive since, although it has been demonstrated that GLP-1R agonist
increases HR in healthy volunteers, obese subjects, and Type 2 diabetes mellitus (T2DM) patient,
the role of the SNS it is not clear since some trials suggest an increase in SNS activity [157,158], but other
studies found no effect [158,159].

Moreover, the activation of the SNS also appears to be related to pharmacological doses of Ex4 on
blood glucose levels in rats, since acutely or centrally administered Ex4 induces hyperglycemia [151,160],
independently of the insulinotropic and HPA activating actions. An effect mediated by GLP-1R [151]
and abolished with the sympathetic blockade and adrenal medulloctomy [151].

The activation of thermogenesis in the brown adipose tissue (BAT) controls body weight
homeostasis. In this regard, the SNS is essential for the control of BAT metabolism by the CNS [161].
GLP-1 emerges as a crucial modulator of BAT thermogenesis in mice by increasing SNS activity without
altering peripheral insulin responsiveness [162]. Central administration of GLP-1R agonist induces
BAT thermogenesis and facilitates adipocyte browning in white adipose tissue (WAT) through AMPK
in the ventromedial hypothalamus (VMH) in rats [163]. Nevertheless, other hypothalamic areas are
involved, such as DMH, since Glp1r knockdown increases body weight gain and adiposity, with a
concomitant reduction in energy expenditure, BAT temperature, and uncoupling protein 1 (UCP1)
expression [164].

3.3. GLP-1 Mediates Multiple Responses to Stressors

GLP-1 plays a critical role in the modulation of brain mechanisms regulating stress adaptation and
mood. Many studies describe acute anxiogenic effects of GLP-1, which engage multiple structures to
generate a coordinated response. The central administration of a GLP-1R antagonist blocks the plasma
increase of ACTH and corticosterone induced by the EPM and decreases anxiety-like behaviors in the
EPM, indicating that central nervous system (CNS) GLP-1 mediates anxiety responses [120]. As well,
Glp1r knockdown in neurons expressing single-minded 1, a transcription factor abundantly expressed
in the PVN in mice, reduced anxiety-like behavior [139]. However, chemogenetically activation of
hindbrain GLP1 neurons shows no effect on anxiety-like behaviors, neither plasma corticosterone
levels, showing the importance of hypothalamic GLP1R signaling for behavioral stress responses in
mice [165]. However, the CeA, a brain region essential for the initiation of the stress response [166],
appears critical for generating the anxiogenic effects of GLP-1 since the administration of the peptide
in CeA does not modify plasma corticosterone levels but decreases the time spent in the open arms
of the EMP [120]. Another neural substrate for GLP-1 control of anxiety-like behavior is the SuM.
Selective activation of SuM, with Ex-4, decreases the time spent in the center of the open field arena in
both male and female rats [37]. Otherwise, initiation of fear and sustained anxiety responses requires
the recruitment of the BNST [137], knocking down the translation of GLP1-R mRNA in the anterolateral
BNST in rats, decreases anxiety-like behavior in the open field test, including a loss of light-enhanced
acoustic startle [52].

Moreover, the central administration of GLP-1 induces anxiety-like behavior in rats [138]. Also,
central GLP-1 produces a proconflict effect in the punished drinking test while leaving activity and
nociception measures unaffected, supporting an anxiogenic effect [167]. Besides, acute intraperitoneal,
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central or intra-dorsal raphe GLP-1 of or Ex-4 administration increases anxiety-like behavior using
three different measuring tests in rats [117]. In contrast, chronic daily central treatment with the Ex-4
does not affect anxiety-like behavior but instead reduces depression-like behavior in the force swim
test (FST) [117]. Contrarily, in humans, intravenously administered GLP-1 does not appear to have
anxiogenic or panicogenic properties, even in patients with panic disorder [137].

Significantly, GLP-1 not just modulates the acute stress response, but can regulate HPA
responsiveness to chronic stress. Exposure to chronic stress reduces PPG mRNA expression
in a glucocorticoid-dependent manner, indicating that glucocorticoids produce long-term PPG
downregulation and long-lasting reduction in PPG action [168], pointing out a role of GLP-1 in
stress adaptation. Moreover, GLP-1 is involved in chronic stress-induced facilitation of corticosterone
responses to a novel stressor, since the role of GLP-1 appears to be manifest following different stress
exposure [169].

GLP-1 activity may amplify the effects of chronic stress on the organism. The i.c.v chronic
administration decreases body weight in animals exposed to chronic stress, even though the GLP-1
administration itself does not precipitate chronic stress-like effects or long term HPA hyperactivity [169].
In contrast, sub-chronic Ex4 administration (subcutaneous bolus) produces several effects that
resemble chronic stress. Overactivates, the HPA axis disrupts circadian glucocorticoid secretion,
induces hypertrophy of the adrenal gland, decreases its sensitivity, impairs pituitary-adrenal stress
responses induces reductions in both food intake and body weight [170]. Moreover, all those effects
were abolished by adrenalectomy [140]. The regulation of the HPA axis by GLP-1 or Ex4 is independent
of the metabolic state in rats [121]. In fasting, during which basal corticosterone levels are high,
these peptides induce marked elevations of corticosterone levels, acting in conditions of metabolic
stress, and independently of glycemic changes insulinotropic properties [121].

Challenges in the homeostasis induced by interoceptive stress activate central GLP-1
pathways [171]. The intraperitoneal treatment with the toxin lithium chloride (LiCl) activates
c-Fos expression of GLP-1 neurons, including those with axonal projections to PVN in rats [172].
The administration of LiCl induces a pool of specific symptoms and behaviors in rats that have been
used as indications of visceral illness [173]. Several of these responses also were caused by GLP-1,
such as reduction of food intake [173,174] or conditioned taste aversion (CTA) [173,175]. The GLP-1R
antagonist blocks the effect of LiCl to reduce food intake, induces pica, and produces a CTA in rats [173].
Like the rat, LiCl activates PPG-neurons, induces anorexia, and CTA formation in wild-type mice,
but LiCl does not evoke aversive effects in mice lacking GLP-1Rs, indicating species differences [176].
GLP-1R activation in the CeA appears to mediate some of the responses to peripheral illness, CeA GLP-1
infusion, but not the inactive GLP-1(9–36), results in a strong CTA, without inducing anorexia [177].
Furthermore, intra-amygdala administration of des-His1, Glu9-exendin-4, the GLP-1R antagonist,
prevents taste aversion learning in response to i.p. injections of the LiCl [177].

Moreover, gastric distension stimulates vagal mechanoreceptors, predominantly located in the
proximal and distal stomach, and lastly, increases c-Fos levels in NTS neurons expressing GLP-1 and
GLP-2 in rats [178]. Furthermore, central GLP-1 is a physiological modulator of stress-induced colonic
motility in the rat, since centrally but not peripherally administered GLP-1 increase fecal output after
immobilization stress, an effect reverted by exendin (9–39), a competitive antagonist at GLP-1R [179].

4. GLP-1 in the Control of Food Intake. Crosstalk with the Stress System

The effects of GLP-1 on food intake have been of considerable attention in clinical and basic
studies and described in different species, including rats [74], mice [12], or humans [180]. Peripherally,
intestinal GLP-1 acts as a shorter-term prandial satiation signal [181–183], it is secreted in the response
of food ingestion [17], reduces meal size in rats and humans [181,184], and increases intermeal intervals,
accounting for its suppressive effect on food intake [181]. Moreover, GLP-1R blocking with Ex9 increases
food intake in rats [181]. The peripheral administration of native GLP-1 requires a postprandial state to
express biological activity to inhibit food intake [185]. Accordingly, oral, but not intra-3rd-ventricular
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(i3vt) or IP glucose potentiated GLP-1s anorectic action [186]. The physiological doses of GLP-1 that
inhibit eating do not induce avoidance in rats [187] or gastrointestinal malaise in humans [184].

GLP-1′s peripheral effects on food intake point towards a role for vagal afferents by the vagus nerve.
The vagal afferents neurons (VANs) of the NG express GLP-1R [188] and innervate the gastrointestinal
tract, liver, and portal vein [189]. Endogenous GLP-1 acts in a paracrine fashion to stimulate adjacent
GLP-1R on the dendritic terminals of the celiac and gastric branches of VANs that innervate the gut,
reducing food intake via vagal-NTS glutamatergic signaling and also mediate insulin release via
vago-vagal reflex [190]. Knocking down GLP-1Rs in VANs by injecting a lentiviral vector in the NG
increases meal size, accelerates gastric emptying, increases postmeal glycemia, and blunts insulin
release [191]. Also, subdiaphragmatic vagotomy reduces the anorexic effect of peripherally GLP-1
administration [192]. Indeed, GLP-1R on VANs is modulated by feeding, since GLP-1Rs expressed on
vagal afferent neurons are trafficked to the membrane in response to a meal in 18 h fasted and then
re-feed rats, giving a possible explanation of the observation exogenously administered GLP-1 only
inhibits food intake after feeding [185]. All were together, suggesting that GLP-1 receptors in VANs
contributed to the incretin-linked effects after a meal [191]. However, there is also evidence showing
that other additional mechanisms may be involved in GLP-1 peripheral effects contributing to food
intake reduction. Thus in the rat [193] or mice with visceral nerve-specific deletion of GLP-1R [194],
the vagotomy does not modify food intake. Moreover, subdiaphragmatic vagal afferent deafferentation
does not prevent lowering food-intake after long-lasting liraglutide treatment [195]. In this regard,
the activation of areas outside the blood-brain barrier (BBB) could have relevant effects on eating,
since peripherally injected 125I-labeled GLP-1 binds to the subfornical organ and the AP, which both
have close neuroanatomical connections with hypothalamic areas involved in water and appetite
homeostasis [196]. Besides, GLP-1R agonist reaches regions shielded by the BBB such as arcuate, PVN,
or SOP nuclei of which most were intersected by projections from neurons in the lateral PBN. [197].
For example, liraglutide can access the brain either by diffusion from the circumventricular organs
(CVOs) or by uptake through specialized cell structures intercepting the BBB protected brain regions
with the CVOs [197], indicating that neuronal targets of applied pharmacological GLP-1R agonism
can differ from engaged by NTS-derived GLP-1. Moreover, exogenous administration of GLP-1R
agonists failed to reduce food intake (and gastric emptying) in Glp1r∆Wnt1-/- mice or Glp1r conditional
KO mice, reflecting the importance of neural GLP-1R populations for the pharmacological control of
GLP-1-regulated feeding [194,198].

Rodent PPG-neurons are sensitive to satiety peripheral signals, including leptin [24] or
cholecystokinin (CCK) in fed state [199,200]; also, gastric distension increases c-Fos-expression
in NTS neurons [178] but is unaffected by GLP-1, PYY, or ghrelin [24], bringing out the potential role of
these neurons as central integrators of several satiety signals in the NTS. In this regard, PPG-neurons
do not express GLP-1R but receive direct synaptic input from sensory vagal neurons [24] and express
functional leptin receptors [24,201]. However, the effects differ between species since PPG neurons
in mice but not in rats, are responsive to leptin [202]. Leptin systemically administered elicits robust
pSTAT3-ir within the NTS, but outside of GLP-1 neurons in rats [203]. It seems that in mice, PPG cells
are mostly second-order neurons, receiving direct input from vagal afferent fibers [24]. Recently it has
been described that GLP1 cells in the NTS represent a subset of LepRbNTS cells in mice, while in NTS
rats, GLP-1- and LepRb-containing cells are distinct [204]. In mice, the activation of LepRbNTS neurons
mediates a robust and durable suppression of food intake independently of GLP-1 signaling [204],
bringing out NTS PPG system differences between species

Centrally administrated GLP-1 reduces food intake in fasted rats [205] and reduces water
intake [174]. The effect induced by the central administration of the GLP-1 or the GLP-1 analog,
liraglutide is short-lasting compared to large doses of CCK, just observed on the first day of
treatment [163,206], and remission at 48 h [163,207]. Similarly, the GLP-1R agonist’s peripheral
administration, Ex4, reduces food intake in 24 h-fasted rats [151] and after the onset of the dark phase,
reducing meal size and increasing intermeal interval [181]. Conversely, blocking endogenous GLP-1R
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with Exendin 9-39 (Ex9) increases rats’ food intake [181]. However, disruption of GLP1/GLP1R signaling
in the central nervous system is not associated with perturbation of feeding behavior or obesity in mice,
showing species-specific differences [208]. The dose, pharmacokinetics, or the antagonist’s selectivity
may be implicated in the discrepancies observed between studies [12].

GLP-1R activation, in rat, increases AMAPA/Kainate-mediated glutamatergic signaling in the
NAc and VTA. This activity is, at least in part, responsible for reduced food intake and weight loss
GLP-1-induced [209,210]. Glutamate is considered the primary excitatory neurotransmitter in the CNS
by exerting depolarization in the postsynaptic neurons. It has been suggested that Ex-4 improves
the levels of glutamatergic receptors (GluN1) and transporters (EAAT-2) [211,212] hence improving
glutamatergic tone. The involvement of AMPA/Kainate receptors in response to GLP-1 at the central
level has been further confirmed [213]. It has also been reported an increment of GLT-1 (primary
glutamate transporter in the hippocampus) mRNA in mice treated with Ex-4 [211]. Similar results are
found in cultured primary astrocytes [212] and hypothalamic slices [96]. On the other hand, in vivo,
liraglutide induces weight loss and reduction in food intake [214], and it has been proposed that the
glutamatergic hypothalamic neurons were required for the liraglutide-induced effect [215].

PPG-neurons in the NTS respond to abroad array of interoceptive signals that can suppress
food intake, including hormonal, thermal, osmotic, gastrointestinal, cardiovascular, respiratory, and
inflammatory signals in both rats and mice, bringing out the role of GLP-1 PPG-neurons in modulating
food intake in response to mainly intense or stressful stimuli [13,48,122,216–219].

In this context, it is clear that GLP-1 released from the gastrointestinal tract after a meal plays
a critical physiological role in satiety [181]. However, GLP-1 from NTS-PPG-neurons projecting
throughout the brain to many hypothalamic areas emerges as a critical modulator involved in
controlling energy homeostasis and reward [22,207]. Moreover, cells from these areas project to nuclei
associated with reward and motivation [47]. In this context, GLP-1 could act as a coordination link
between homeostatic and hedonic pathways in the control of food intake preferentially in response to
stress (Figure 1).

4.1. GLP-1 Anorectic Action and HPA Activation

The neural circuits that regulate energy intake converge on the PVN, in which there are CRF
containing neurons implicated in the regulation of the HPA axis, thereby providing overlap between
the stress and feeding systems [220]. The amount and type of food eaten can be influenced by stress.
Many types of stress are associated with reduced food intake [221]. However, although 20% of people
do not change eating behaviors during stress periods, it has been reported an increase in total calories
eating under stress experiences [2,222], emphasizing eating a more significant proportion of calories
from highly–palatable foods [223]. Under these conditions, chronically stressed individuals are more
susceptible to weight gain, obesity, type II diabetes, or cardiovascular diseases [2].

The initial component of the HPA axis, the CRF, is located in neurons in the PVN of the
hypothalamus, but also in extra-hypothalamic limbic structures like the extended amygdala (included
the BNST and the CeA), as well as in hindbrain structures like the Barrington’s nucleus adjacent
to the locus coeruleus and dorsal raphe nuclei [224,225], playing a role in addiction and several
psychiatric disorders [224,226]. This peptide acts through two significant receptors; the CRF1 activation
is associated with increased stress responsiveness, while CRF2 receptor activation suppresses food
intake and decreases stress responsiveness [227]. There is increasing evidence that CRF neuronal
activation in the PVN by GLP-1 likely contributes to food intake suppression. Using optogenetics and
chemogenenetic approaches, and slice physiology, it has been described that 50% of CRF-neurons
receive direct projections from NTS PPG-neurons and exist a direct synaptic connection between these
neurons. Moreover, GLP-1R activation increases the excitatory synaptic strength to CRF-neurons in
mice, through enhancement of AMPA receptor subunit membrane trafficking and the inhibition of CRF
neuronal activity blocks GLP-1 induced satiety in the PVN. [213]. CRF also mediates the anorexic effect
of GLP-1 in chicks and mediates the inhibition of gastric emptying induced by GLP-1 in rats [228].
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At several concentrations, such as pico- and nano-mol/L, both GLP-1, and Ex4 are capable
of enhancing a transient Cl- inward current in neurons from different brain areas, including the
hypothalamus and the hippocampus [97,229,230]. In this regard, GABA mainly mediates the inhibitory
transmission, and Ex-4 applied in the micromolar range increases hippocampal inhibitory transmission
by activating GABAA receptors at pre-, post- and extra-synaptic sites [230,231]. Besides, the addition
of GLP-1 to rat hippocampal slices results in GABA release, and this effect is abolished in the
presence of bicuculline (a GABAA receptor antagonist) [230]. Interestingly, dipeptidyl peptidase-4
(DPP4) inhibitors enhance the endogenous GLP-1 levels and enhance GABAergic transmission in rat
hippocampal neurons in vivo [232]. In the same way, in experiments using microdialysis, it has been
verified that the application of GLP-1 increases the GABA concentration in the rat PVN [229].

Besides, GLP-1 mediates illness or stress-induced anorexia. The previous injection of GLP-1R
antagonist blunts the potent LiCl-related suppression of food intake, inducing pica, and producing
CTA [172,173]. This effect supports the functional role of endogenous GLP-1-containing neural
pathways as mediators of aversive behaviors in rats [176]. Also, the central administration of the GLP-1R
antagonist (exendin 9-39) reduces in a 60% the anorexic response to lipopolysaccharide (LPS) [233].
Likewise, rats’ metabolic state is an essential factor contributing to acute stress, since caloric restriction
reduces HPA axis activity [234] with lower baseline and stress-evoked plasma ACTH levels [235].
In this regard, acute restraint stress suppresses dark-onset food intake in rats fed ad libitum. This effect
is reverted by the central infusion of GLP-1R antagonists, which blocks restraint stress-induced
hypophagia and reduces anxiety-like behavior. These data suggest an underlying mechanism by which
short-term negative energy balance attenuates neuroendocrine and behavioral responses to acute stress
that involves GLP-1 signaling [122].

Furthermore, dexamethasone suppression of the HPA axis augments the Ex4 induced
anorexia [149], illustrating Ex-4 and dexamethasone’s synergistic effects co-administration. In other
brain regions, such as the BNST, the center of integration for limbic information regulates the affective
and physiological components of anxiety [137], GLP-1R blockade attenuates stress-induced hypophagia
in mice [33]. In this region, the GLP-1R mRNA is expressed by a subset of GABAergic neurons,
and some of these GLP-1R-expressing neurons also express CRF mRNA [28].

4.2. GLP-1 Anorectic Effect: Hypothalamic Actions

Subcutaneous administration of native the GLP-1 induces c-fos activation in the hypothalamus and
hindbrain [236], indicating that peripheral administration can activate central circuits. The peripheral
administration of liraglutide labeled with a fluorescent probe was observed in hypothalamic regions
protected by BBB, such as the arcuate, the PVN, the SON, and supraoptic decussation [195].

Likewise, activation of central GLP-1R by icv or i.p. administration of GLP-1 or its analogs
induces satiation [195,237]. In the brain, the PVN contains different neuronal populations related to
appetite regulation, stress response, and other neuroendocrine functions [132,238], one of the neuronal
populations linked to satiety signaling express GLP-1 receptors [132]. By fiber photometry, it has been
described that food discovery modulates this neuronal population in an anticipatory manner, and its
stimulation orchestrates feeding behavior [132]. Moreover, the postnatal ablation of PVN GLP-1R
causes increased food intake, body weight gain, and obesity [213] (Figure 2).



Nutrients 2020, 12, 3304 13 of 32

Nutrients 2020, 12, x 13 of 32 

 

 

Figure 2. The figure represents the effects of the central administration of GLP-1 and analogs on intake 

and some related behaviors schematically. The central administration of GLP-1 or analogs produces 

several physiological effects such as decreased food intake [158,206,230], water intake [171], and body 

weight [239]. Likewise, it also produces more related to food behavior effects, including increased 

CTA [169,170] and anorexia [220]. Besides some effects such the decreased of food-seeking 

[21,34,201,224] and food-motivated behavior [21,34]. 

Also, in the hypothalamus, the administration of liraglutide in the ARC reduces food intake 24 

h after injection [163]. In the ARC, numerous cells express GLP-1R mRNA, and many of them also 

co-express proopiomelanocortin (POMC) neurons mRNA. Approximately an average of 68% of 

POMC-neurons was found predominantly in the ARC mediolateral part, co-express GLP-1R mRNA, 

and about half of the GLP-1R-expressing cells, preferably in the caudal part of ARC, do not express 

either POMC or neuropeptide Y (NPY) mRNA [240]. Furthermore, liraglutide peripherally injected 

targets GLP-1Rs located in the ARC, and it is internalized by POMC/transcript regulated by cocaine 

and amphetamine (CART) neurons, adjusting the neuronal activity [195]. This effect was observed in 

brain slices from Pomc-EGFP mice after stimulation with GLP-1(7-36)amide, that dose-dependently 

depolarizes POMC-neurons and increases the frequency of action potentials [195]. Interestingly, 

GLP-1(7-36)amide stimulation increased the frequency of GABAergic currents onto POMC-neurons, 

suggesting that GLP-1 activates POMC/CART-neurons directly at the level of the cell body and that 

the NPY/agouti-related peptide(AgRP) pathway is inhibited at the NPY/AgRP neurons via 

GABAergic interneurons [195]. 

Other hypothalamic nuclei are innervated by hindbrain GLP-1 neurons and express GLP-1 

receptors [39,71] such as the LH, involved in motivation feeding behavior [241]. In this regard, 

specific activation of GLP-1R in this region decreases food intake [163], the intra-LH microinjection 

of Ex-4 reduces food-motivated behavior, and knocking down the GLP-1R increases food 

reinforcement and body weight [242]. The microinjection of GLP-1 into the VMH and DMH reduces 

food intake by 30% and 48%, respectively, after 20 min of administration in fasted rats [243]. In fed 

rats, specific activation of the GLP-1R by liraglutide in the ARC, LHA, and PVH decreased rats’ food 

Figure 2. The figure represents the effects of the central administration of GLP-1 and analogs on intake
and some related behaviors schematically. The central administration of GLP-1 or analogs produces
several physiological effects such as decreased food intake [158,206,230], water intake [171], and body
weight [239]. Likewise, it also produces more related to food behavior effects, including increased
CTA [169,170] and anorexia [220]. Besides some effects such the decreased of food-seeking [21,34,201,224]
and food-motivated behavior [21,34].

Also, in the hypothalamus, the administration of liraglutide in the ARC reduces food intake
24 h after injection [163]. In the ARC, numerous cells express GLP-1R mRNA, and many of them
also co-express proopiomelanocortin (POMC) neurons mRNA. Approximately an average of 68% of
POMC-neurons was found predominantly in the ARC mediolateral part, co-express GLP-1R mRNA,
and about half of the GLP-1R-expressing cells, preferably in the caudal part of ARC, do not express
either POMC or neuropeptide Y (NPY) mRNA [240]. Furthermore, liraglutide peripherally injected
targets GLP-1Rs located in the ARC, and it is internalized by POMC/transcript regulated by cocaine
and amphetamine (CART) neurons, adjusting the neuronal activity [195]. This effect was observed in
brain slices from Pomc-EGFP mice after stimulation with GLP-1(7-36)amide, that dose-dependently
depolarizes POMC-neurons and increases the frequency of action potentials [195]. Interestingly,
GLP-1(7-36)amide stimulation increased the frequency of GABAergic currents onto POMC-neurons,
suggesting that GLP-1 activates POMC/CART-neurons directly at the level of the cell body and that the
NPY/agouti-related peptide(AgRP) pathway is inhibited at the NPY/AgRP neurons via GABAergic
interneurons [195].

Other hypothalamic nuclei are innervated by hindbrain GLP-1 neurons and express GLP-1
receptors [39,71] such as the LH, involved in motivation feeding behavior [241]. In this regard,
specific activation of GLP-1R in this region decreases food intake [163], the intra-LH microinjection of
Ex-4 reduces food-motivated behavior, and knocking down the GLP-1R increases food reinforcement
and body weight [242]. The microinjection of GLP-1 into the VMH and DMH reduces food intake by 30%
and 48%, respectively, after 20 min of administration in fasted rats [243]. In fed rats, specific activation
of the GLP-1R by liraglutide in the ARC, LHA, and PVH decreased rats’ food intake and body
weight [163]. In contrast, no effects were described when liraglutide was injected in the DMH; however,
the treatment in the VMH decreases body weight in food intake–independent manner related to
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increased thermogenesis in the brown adipose tissue in rats [163]. Also, pharmacological activation
of the GLP-1R in the VMH by Ex-4 reduces food intake, activating mTOR signaling, indicating that
glucose metabolism and inhibition of AMPK are both required for this effect [244]. In contrast to the
clear acute pharmacological impact on food intake, knockdown of the VMH Glp1r conferred no changes
in energy balance in either chow- or high-fat-diet-fed mice, glucose homeostasis, or the response to
peripherally administered GLP-1R agonist [244,245], suggesting therefore that classic homeostatic
control regions are sufficient but not individually necessary for the effects of GLP-1R on nutrient
homeostasis [244,245].

4.3. GLP-1 Anorectic Effect: Forebrain/Hindbrain/Mesolimbic Actions

Beyond the hypothalamus, other brain areas, such as the paraventricular thalamic nucleus (PVT),
the PBN, VTA, medial prefrontal cortex, amygdala, NAc, or hippocampus, involved in the control of
food intake presents GLP-1 signaling [190]. Many of these sites are activated by food pleasures but not
all brain activations that code food pleasure necessarily causes or generate the pleasure, since other
brain activations are likely to be secondary or consequent to the pleasure, and in turn, could cause
motivation, learning, cognition or other functions [246].

The PBN contains several subpopulations of neurons that regulate taste [239], integrate neural
signals associated with satiety from neuronal populations on the PVN, and receive inhibitory
projections from AgRP neurons [247]. PBN receives excitatory glutamate signaling from NTS neurons’
subpopulation responsible for integrating visceral and gustatory inputs [248]. GLP-1 producing
neurons from the NTS projects to the lateral PBN [35,249] and local activation with Ex-4 inhibits food
intake of chow and palatable food, the motivation to work for palatable food, and decreases body
weight gain [35,249], thereby implicating this brain region in the hedonic aspect of feeding [190].
Moreover, Ex-4 increases neuronal firing, and the expression of calcitonin gene-related peptide (CGRP)
in this nucleus resulted in anorexia [249]. This anorectic effect is not related to nausea/malaise since
Ex-4 does not induce pica response [35].

The PVT neurons receive projections from hindbrain regions and substantial inputs from the
hypothalamus and project to forebrain sites such as the core and shell of the NAc, involved in reward
and motivation function [250]. Neurons in PVT express GLP-1R and receive monosynaptic inputs from
NTS preproglucagon neurons activated by food intake [23,36]. PVT GLP-1R agonism by intra-injections
of Ex-4, reduces food intake, food-motivation, and food-seeking, while blocking GLP-1R signaling
with PVT Ex-9 injection, increases meal size and food intake [36]. Moreover, PVT cells that express
the GLP-1R project to the NAc and electrophysiological results reveal that PVT GLP-1R signaling
reduces PVT-to NAc projecting neurons’ excitability, contributing to the motivational aspects of feeding
control [36].

Reward-related regions such as VTA and the NAc, the core and the shell subregion, receive NTS
GLP-1 neuronal projections [22,31,251]. Pharmacological treatment with Ex-4 delivered to the VTA
in overnight food-deprived rats reduces one-hour sucrose intake, 24 h chow intake, and 24 h body
weight. Also, Ex-4 treatment in the VTA, NAc core and NAc shell can reduce high-fat diet intake in
not food-deprived rats [31]. However, if the animals are maintained on chow, Ex-4 injections into
the VTA, NAc core, or shell does not suppress food intake, suggesting a role of GLP-1 signaling
in motivation to feed [31]. In this regard, Ex-4 reduces food-reward behavior in the conditioned
place preference and progressive ratio operant-conditioning, since peripheral Ex-4 treatment of rats
blocks preference for chocolate pellets and decrease motivated behavior for sucrose [252]. Moreover,
post dark onset intra-NAc core treatment with GLP-1 also reduces food intake 24 h after injection
without affecting body weight. However, no effect was described after NAc-shell injection [251].
Furthermore, the NAc core injection of Ex-9 increases food intake two hours after posttreatment [251].
This negative energy balance induces by GLP-1R activation in NAc is, in part, thought a glutamatergic,
AMPA/kainite receptor-mediated mechanism [210].
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However, manipulations related to NAc affect reward-motivated behavior and can affect feeding
by changes in food palatability [207]. Blocking NAc GLP-1R signaling with Exe9 enhances sucrose
solutions’ palatability in meal patterns and microstructure studies of ingestive behavior in rats [253].
Also, NAc Ex9 did not affect licking for nonnutritive saccharin (0.1%), suggesting that the presence
of nutrients in the gut may be required for endogenous stimulation of NAc [253]. So, at this site,
GLP-1 R stimulation reduces the reward associated with food palatability and contributes to satiety
reducing meal size, with no effect on meal frequency when rats consume sweetened condensed milk or
sucrose [207,253].

In this regard, GABA neurons in NAc regulate homeostasis, especially feeding behavior [254].
GABAergic medium spiny neurons transmit signals to the ventral pallidum and susbstantia nigra of
the basal ganglia after NAc has integrated the information, regulating motivation-related behavior.
So neural projections of these cells from the zona incerta act on NAc to enhance gastric function and
food intake via GLP-1R signaling as an essential effector [255].

Moreover, the SuM nestles between the LH and the VTA, which regulates ingestive and motivated
behavior, express GLP-1R [74]. Knocking down the GLP-1R in this nucleus increases food-seeking and
adiposity in obese male rats without altering food intake, body weight, or food motivation in lean or
obese females [74] and induces anxiolytic responses in female rats [37].

Another brain region that is important to take into consideration related to food intake is the
hippocampus. This forebrain structure is neuroanatomically interconnected with several regions before
mentioned, such as the PBN, VTA, NAc, or amygdala [256]. Besides, hippocampal neurons integrate
learned experience with the external and internal context to influence decisions about when, where,
what, and how much to eat [256]. It has recently been described that gastrointestinal-derived vagal
sensory signaling endogenously promotes hippocampal-dependent learning and memory function
in rats [257]. Endocrine pathways involve the interaction between different satiation signals and the
hippocampus, such as leptin [257], ghrelin [258,259], and also GLP-1 [260]. The GLP-1R is mostly
expressed in neurons in ventral CA1 and CA3 pyramidal layers [23]. The activation of GLP-1R by
Ex-4 in the ventral hippocampal formation induces hypophagia and reduces body weight in rats,
through a specific reduction in meal size with no effect on meal frequency by mechanisms other than
nausea [260]. Furthermore, this HPFv GLP-1 signaling is relevant for feeding since the administration
of Ex (9-39) increased food intake by 30%, six hours after its administration [260]. In this regard, a novel
hippocampus-hypothalamus-hindbrain pathway regulating meal size control has been described in
which ventral hippocampus ghrelin signaling counteracts the food intake–reducing effects produced
by the GLP-1R agonist, Ex-4, and also other gut-derived satiation signals, including CCK, amylin,
and mechanical distension via downstream orexin signaling to the hindbrain laterodorsal tegmental
nucleus [259].

4.4. Stress in Obesity: GLP-1 and the Motivation to Feed

It has been shown that chronic stress, mild hypercortisolemia, and prolonged SNS
activation contribute to the clinical presentation of visceral obesity and type 2 diabetes [228].
Considerable evidence demonstrates that feeding behavior is influenced by stress, and this relationship
also seems to be strongest among individuals who are overweight and those who binge eat [1,261].
In humans and animals, a shift toward choosing more pleasurable or palatable calories occurs whether
or not total caloric intake increases with stress [2].

Metabolic systems and brain reward systems play a significant role in feeding behavior [5].
Similar brain regions are activated by palatable food in the rat and humans, such as the dorsal and
ventral striatum, VTA, LH, NAc, CeA, and basolateral nuclei of the amygdala, the hippocampus,
and reward-related cortical structures, as well as the neurotransmitter system (dopamine, serotonin,
opioids, and endocannabinoids) [4,5]. Many foods of intense sweetness and fat are potent rewards [3],
promote eating, and trigger learned associations between the stimulus and the reward (conditioning) [4],
but also induce changes in carbohydrate and fat metabolism, insulin sensitivity, and appetite



Nutrients 2020, 12, 3304 16 of 32

hormones, increasing salience and motivation for food intake that may alter energy homeostasis [262].
Overconsumption of high palatable foods reduces reward thresholds along with an upregulation
of extrahypothalamic CRF in the amygdala and limbic striatal pathways involved in the regulation
of stress response [262,263]. It may also promote food craving, increasing overeating risk, and
stress-induced high palatable food-seeking [262,263]. The loss of control and overeating results
in compulsive eating behavior, certain forms of obesity, and the recently proposed term of “food
addiction” [264]. Recently, it has been demonstrated that binge-like eating over several weeks in a model
of intermittent fat feeding in rats affects the GLP-1 system, decreasing PPG mRNA expression in the NTS,
suggesting downregulation of central GLP-1 signaling [265], accordingly with dysfunction in satiation
processes that generally serve to limit food intake observed in different animal models [265]. Moreover,
rats with intermittent access to a high-fat diet show large meals [266] and reduced responsiveness to
intragastric nutrients and amylin, supporting the idea of reduced sensitivity to satiation signals under
these conditions [266]. A possible loss of sensitivity to GLP-1 is not yet proven and could also explain
the lack of inhibition of large meals observed in this animal model.

Moreover, there seems to exist a strong link between obesity and impaired function of the reward
network. In rodents, extended access to palatable food induces weight gain and a worsening brain
reward deficit, characterized by a decrease in reward responsiveness in the LH [5]. Furthermore,
feeding is associated with dopamine release in the dorsal striatum [267], and it has been described in
obese individuals and obese rats, a decreased expression of striatal dopamine-receptor D2R [5,268],
similar to those found in patients under drug addiction [269]. Interestingly, knocking down striatal
D2R increases the emergence of compulsive-like eating in rats with access to palatable food [268],
and this compulsive behavior continues in the presence of an aversive conditioned stimulus pointing
out also the role of CeA [270]. Amygdala D2 dopamine-receptor activation reduces food intake and
operant behavior for sucrose, whereas D2 receptor blockade increased food intake, reducing operant
behavior [271]. However, the amygdala plays also a role in stress-related hedonic eating, in which a
decreased expression of CRF was observed under a palatable diet, and withdrawal from such a diet
can produce a heightened emotional state and maladaptive coping responses that increase the drive to
obtain palatable food as a rewarding source in an aversive environment [272].

Different studies in diet-induced obesity mice and obese humans suggest central resistance
to different metabolic hormones that control food intake, such as leptin or GLP-1 [273].
Gut-brain communication is altered by high-fat consumption [274], and impairs the anorectic response
to Ex-4 [275], altering the anorectic response to peripheral administration of GLP-1R agonists,
delaying the onset but also prolonged the action on the depression of food intake [276]. Moreover,
GLP-1 deficiency may play a critical role in developing the pathophysiology of obesity, since this
hormone decreases food intake and body weight, as was described previously in this review.
Furthermore, in monogenic obesity (1% of total cases of obesity), the PCSK1 gene encoding the
PC1/3 enzyme losses its function, or it is mutated [277]. However, obesity-related to environmental and
societal changes are related to this gene since single-nucleotide polymorphisms at three loci of PCK1
are related to an increased risk of obesity [277]. In this regard, a reduction in GLP-1 secretion has been
described in obesity with altered L-cell responsiveness to carbohydrates [278], accompanied by insulin
resistance [279]. Ghrelin and leptin are potent modulators of GLP-1 secretion by L-cells [280,281];
both hormone systems are impaired occurring secondary to obesity [282,283], causing functional
deficits in GLP-1 signaling [277]. Moreover, the incretin effect of GLP-1 is altered in obesity [271], and it
is inversely correlated with BMI [284]. Furthermore, in obesity, an accelerated gastric emptying could
be observed that could be related to reduced GLP-1 signal, which could predispose to an earlier onset
of the next meal, contributing to overeating [285].

Using functional MRI (fMRI), it has been demonstrated that brain regions involved in reward
processing are altered in obese individuals [286]. The acute treatment with a single dose of the
GLP-1 receptor agonist, exenatide, reduces brain responses to food cues in normoglycemic obese and
T2DM patients, also correlated with reductions in food intake, but without effect in weight loss [286].
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Moreover, these effects are blocked by exendin 9-39 [287]. After ten days of treatment with liraglutide,
an increase in the activation of the right insula and caudate nucleus related to chocolate milk was
observed in obese T2DM patients compared to lean individuals. This effect was not achieved after
12 weeks when apparent effects on body weight were observed [288]. Also, the administration of
liraglutide at the dose approved for obesity treatment reduces body weight at five weeks but does
not show differential activations in response to food cues. However, with control for the change in
body weight, an increase in orbitofrontal cortex activation was achieved, indicating the beginning of
counter-regulatory changes in response to weight loss [289], which could be related to the eventual
weight-loss plateau observed with this and other weight-loss medication.

5. Conclusions

Acute or chronic exposure to stress evokes different physiological and behavioral responses
that considerably alter metabolic and behavioral status in humans and experimental animals [223].
The activation of the HPA axis and SNS, in response to stress, increases glucocorticoid and
catecholamines synthesis, facilitating glucose availability to fuel the metabolic demands of other
physiological and behavioral stress responses [125,126,222,290]. Glucocorticoids regulate body fat
accumulation and increase appetite, food intake, and body weight gain [290,291]. Chronic stress and
obesity are closely related to disordered eating syndromes, including bingeing or night predominant
intake [223].

In the brain, GLP-1 acts as a neuromodulator. Produced by PPG-neurons in the
NTS [21], modulate and process peripheral and central signals to maintain the homeostasis.
PPG-neurons innervate numerous brain regions responsible for modulating many physiological
functions such as metabolism, reward-seeking behavior, and stress response. This neuropeptide
modulates the stress response, driving the HPA axis, and regulating the SNS and mediating the limbic
system eliciting responses to homeostatic and psychogenic stressors [29,47,120,121,292]. Moreover,
GLP-1 controls food intake, modulating the energetic balance, acting on GLP-1R in a multitude of
energy balance-relevant nuclei in the hypothalamus [21,205], but also in other mesolimbic brain areas
involved in reward [23].

In conclusion, GLP-1 in the brain appears as a neuromodulator that coordinate food intake
in response to the physiological and stress-related stimulus, since GLP-1 signaling affects different
brain areas that control diverse aspects of feeding to maintain homeostasis. However, when this
equilibrium is disrupted (obesity, diabetes, chronic stress [168,285]), the GLP-1 signaling is dampened,
and dysregulation in eating behavior may appear. Future studies should address how satiety activities,
observed under HPA axis activation, depend directly or indirectly on GLP-1 since it is known that CRF
has potent anorexic effects [293] and how the nature and duration of the stressors affect food intake
and behavior involving GLP-1. It is still unknown how stress influences central GLP-1R signaling in
metabolic pathologies, such as obesity or diabetes. Neither how the HPA axis and GLP-1 interact with
the control of feeding under these metabolic diseases. Answer these questions that will open new
relevant pharmacological actions of GLP-1 analogs in the control of obesity.
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