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Abstract

Neonatal sepsis is a major cause of death and disability in newborns. Commonly used
biomarkers for diagnosis and evaluation of treatment response lack sufficient sensitivity or
specificity. Additionally, new targets to treat the dysregulated immune response are needed,
as are methods to effectively screen drugs for these targets. Available research methods have
hitherto not yielded the breakthroughs required to significantly improve disease outcomes,
we therefore describe the potential of zebrafish (Danio rerio) larvae as preclinical model for
neonatal sepsis. In biomedical research, zebrafish larvae combine the complexity of a whole
organism with the convenience and high-throughput potential of in vitromethods. This paper
illustrates that zebrafish exhibit an immune system that is remarkably similar to humans, both
in terms of types of immune cells and signaling pathways. Moreover, the developmental state of
the larval immune system is highly similar to human neonates. We provide examples of zebra-
fish larvae being used to study infections with pathogens commonly causing neonatal sepsis and
discuss known limitations. We believe this species could expedite research into immune regu-
lation during neonatal sepsis and may hold keys for the discovery of new biomarkers and novel
treatment targets as well as for screening of targeted drug therapies.

Introduction

Neonatal sepsis remains a major cause of mortality accounting for 15.6% of neonatal deaths
worldwide [1]. Apart from mortality, it is associated with long-term consequences including
impaired neurodevelopment [2]. A consensus definition for neonatal sepsis is lacking, but it
is recognized as a systemic condition, with a dysregulated immune reaction in response to a
pathogen, resulting in harmful hemodynamic changes and potential organ dysfunction [3,4].

Neonatal sepsis compromises different entities influenced by aspects such as the gestational
and postnatal age of the patient and the source of infection. It is traditionally classified based on
the timing of onset of disease in relation to birth. Early-onset neonatal sepsis (EOS) occurs
within the first 3 days after birth, due to vertical transmission of pathogens frommother to child.
Late-onset neonatal sepsis (LOS) is defined as an infection which develops after day 3 of birth.
For both EOS and LOS, the incidence and severity increases with decreasing gestational age,
with very-low birth weight and preterm infants being most at risk for severe sepsis [2,5].

The heterogeneity of the disease makes early diagnosis of neonatal sepsis challenging. Blood
culture remains the gold standard [6], but this requires adequate volumes of blood samples and
is linked to underdiagnosis in neonates [7]. Moreover, currently used biomarkers, such as
C-reactive protein, interleukin-6 (IL-6), and procalcitonin, show low discriminative value for
diagnosis [2,8,9]. As the disease burden is high, lack of diagnostic tools generally leads to imme-
diate administration of broad spectrum antibiotics when infection is suspected, resulting in
overuse of antimicrobials in noninfected patients. It remains, therefore, of utmost importance
to identify novel biomarkers to improve accurate and timely diagnosis of neonatal sepsis.

Variables relating both to the invading pathogen as well as to the ability of the neonate to
mount an infection influence the outcome of neonatal sepsis. Current treatment of neonatal
sepsis is, however, limited to antimicrobial therapy and supportive care, leaving the dysregulated
immune response largely untreated. New targets of the dysregulated immune system and drugs
to modulate these targets are therefore warranted.
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Preclinical animal models are invaluable in biomedical research
and drug development, but available models have so far not yielded
new diagnostic biomarkers or novel treatment targets that signifi-
cantly improve the outcome of neonatal sepsis [10]. Therefore, new
preclinical models that can complement the currently available
arsenal of models to study neonatal sepsis and pharmacological
interventions are needed. For this, we propose zebrafish (Danio
rerio) larvae.

Zebrafish larvae are being extensively used in biomedical
research due to 70% genetic homology to humans, high reproduc-
tive capacity, and genetic tractability [11]. At larval stages, the
small size and optical transparency [12] make zebrafish larvae
a powerful whole-organism preclinical model with high-
throughput potential. As such, these larvae can bridge the gap
between high-throughput in vitromethods and low-throughput
animal and human experiments, as illustrated in Fig. 1 [13].
Their potential for studies on neonatal sepsis is supported by
the fact that zebrafish exhibit an immune system that is remark-
ably similar to humans, both in terms of types of immune cells
and signaling pathways [14–16] and by the fact that the devel-
opmental state of the larval immune system is highly similar to
human neonates [17].

This review addresses the applicability of zebrafish larvae as a
preclinical model organism to study neonatal sepsis. Hallmarks
of the immune system of both species are compared, with a spe-
cific focus on early life. For zebrafish larvae, the first 5 days
post-fertilization are considered, as during this time the ethical
constraints according to European law are minimal, thereby
capitalizing on their high-throughput potential. Additionally,
studies in zebrafish larvae with relevant pathogens are reviewed,
and the potential advantages and disadvantages of zebrafish lar-
vae to address some of the current challenges in neonatal sepsis
research are discussed.

Developing Immune System

Human neonates primarily rely on the nonspecific innate immune
system, including the complement cascade and lymphocytes
(natural killer cells (NK)), monocytes (macrophages and dendritic

cells), innate lymphoid cells (ILCs), and granulocytes (neutro-
phils). Monocytes, macrophages, and neutrophils appear during
the first or second trimester of gestation [18]; however, these cells
are relatively immature at birth with limited functionality com-
pared to adult’s innate immune cells. The innate immune system
closely interacts with the adaptive immune system (T-cells and
B-cells), which is instructed through antigen presentation cells
(monocytes, macrophages, and dendritic cells), but this pathway
is still developing in neonates and skewed toward anti-
inflammatory and tolerogenic responses [19,20].

The innate immune system is also the first to develop in zebra-
fish larvae, being fully functional at 2 days post-fertilization (dpf)
[21]. The main cells in the innate immune system of zebrafish larvae
are neutrophils and macrophages. The first macrophages can be
detected at 24 hours post-fertilization (hpf) [22] and neutrophils at
48 hpf [21]. Similar to human neonates, in the first 5 days post-
fertilization, the adaptive immune system is still functionally inactive.

Fig. 2 provides an overview of the development of important
cell types in the immune system of humans and zebrafish. The fol-
lowing sections describe immunopathology of neonatal sepsis and
compare the innate immune system of both humans and zebrafish
more in detail.

Immunopathology of Neonatal Sepsis

Sepsis is initiated by the immune system in response to a pathogen.
In adults, increasing evidence illustrates two main immune hall-
marks: sustained hyperinflammation and subsequent immune
suppression. Both phases are initiated at the onset of infection
and may alternate and occur at variable times during a sepsis
episode. Hyperinflammation is characterized by the release of
cytokines and pro-inflammatory mediators, a process known as
“cytokine storm.” This unbalanced inflammatory response also
includes the activation of the complement system, the coagulation
cascade, and endothelial cells. The massive release of pro-
inflammatory molecules and the uncontrolled activation of the
complement system cause tissue damage and organ dysfunction,
while the consumption of coagulation factors and platelets leads
to hemorrhages, all of which can be fatal. In an attempt to return
to immune homeostasis, several anti-inflammatory molecules are
released, leading to a hypo-responsive immune state, the immune
suppression phase [23]. In this phase, a patient may be unable to
control the infection and is susceptible to new opportunistic infec-
tions [24], both of which could lead to death. These mechanisms
are only partly understood in neonates. Studies using neonatal cord
blood showed that the neonatal immune system exhibits different
immune responses to pathogens compared to adults. It is thought
that both the severity and high mortality in the acute phase of neo-
natal sepsis seem to be caused by a dysregulation of the neonatal
pro-inflammatory immune response [25]. However, recent studies
revealed that both pro-inflammatory and hypo-inflammatory
responses are present at the onset of LOS, with elevated IL-6 and
IL-10 levels and elevated Il10/tumor necrosis factor alpha (TNFα)
ratios compared to noninfected neonates (LOS) [26,27]. Moreover,
host–pathogen interactions may vary over time within a patient
and between patients and are affected by several factors including ges-
tational and postnatal age and the causative pathogen [25].

Complement System

The complement system comprises over 30 proteins that induce
inflammatory responses and improve bacterial opsonization

Fig. 1. Schematic overview of available methods for biomedical research. Of the
species that can bridge the gap between high-throughput in vitro methods and
low-throughput animal and human experiments, zebrafish larvae have the advantage
of being immunologically highly similar to humans. Adapted from Schulthess et al. [13].
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[28]. Moreover, it modulates the adaptive immune response. In
humans, synthesis of complement factors (C proteins) starts
around week 5 of gestation, but the system does not reach its full
capacity until 12–18 months after birth, leaving all major factors to
be decreased in neonates, especially in premature neonates (<34
weeks GA) [29].

Genes encoding the principal components of the complement
system have been identified in zebrafish [30]. Although not all
components of the complement system have been functionally
characterized in zebrafish, the C1q proteins, central to the classical
complement activation pathway, exhibit expressional [31] and
functional [32] similarities to higher vertebrates.

In zebrafish larvae, complement components are maternally
transferred both in the form of protein and mRNA. These compo-
nents then play a central role in protecting the externally fertilized
embryo from pathogenic attacks at the earliest stages of develop-
ment, before the cellular parts of the innate immune system have
developed [30]. From 3 to 5 days post-fertilization, well after the
maternal to zygotic shift, complement factors have been found
to be expressionally induced in the embryo by different pro-
inflammatory stimuli [33,34], indicating the complement system
to be an active part of zebrafish’s innate immune system at
this stage. However, at least in the case of the reaction to lipopoly-
saccharide (LPS) stimulation, transcriptional upregulation of the
complement system is not the dominant immune response [31].
Informative zebrafish experiments to investigate functions of the
complement system can be constructed with due consideration
given to the certainty of homologous functionality of specific
components. It is important to understand that at early stages
of zebrafish embryonic development, the complement system
occupies a central role that is not mirrored in neonatal develop-
ment. These fundamental differences should be kept in mind
when experiments are designed and results about the relative
importance of complement components in the overall immune
responses are interpreted.

Natural Killer Cells

NK cells are cytotoxic cells that induce apoptosis through the
release of granzymes (performin, granzyme B). Additionally, they
mediate protection of the host by secretion of cytokines and che-
mokines, among others interferon gamma (IFNγ), which, in its
turn, activates the adaptive immune system. Fetal NK cells appear
around week 9 of gestation and are present in higher counts
through gestation and at birth compared to adulthood [35].
However, the cytotoxic activity of neonatal NK cells is decreased
compared to adults, mainly due to a low activity of the CD56dim
cells in neonates [36].

In zebrafish, NK cells have been identified in adult tissues and
appear similar to mammalian NK cells in terms of surface receptor
repertoire [37]. Genetic and biochemical approaches have revealed
more variety of NK lysins, one class among several of the bacteri-
cidal peptides stored in cytoplasmic granules in NK cells, in
zebrafish compared to mammals [38]. However, the temporal
emergence of zebrafish NK cells has not yet been established,
before this is established the use of zebrafish larvae in studies on
NK cells and immune response processes they mediate, is not
warranted.

Innate Lymphoid Cells

ILCs are lineage-negative lymphoid cells that mediate inflamma-
tory and anti-inflammatory responses. Like NK cells, ILCs are part
of the innate immune system and do not express antigen receptors.
ILCs activate the acquired immune system by releasing cytokines
such as IFNγ and TNFα and have been detected in human fetal
material with the highest counts being present in the second tri-
mester of pregnancy [39,40].

All three types of ILC have been identified in adult zebrafish
based on their ability to express similar repertoires of cytokines,
including elevated expression of IFNγ and TNFα upon bacterial
challenge [41]. Like NK cells, the emergence of ILCs in embryonic

Fig. 2. Schematic representation of the development of functional immunological cell types during gestation and development of human fetuses and zebrafish larvae.
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development is hitherto unresolved, which should be kept in mind
when selecting an experimental model to study ILC functions.

Neutrophils

Neutrophils are a key component of the innate immune system
and the most abundant type of leukocytes. Mature neutrophils
appear around week 16 of gestation and are present in lesser
concentrations in neonates compared to adults [42]. This is
because neonatal bone marrow is deficient in producing neutro-
phil progenitor cells, and the neonatal neutrophil storage pools
are reduced compared to those of adults, increasing the risk for
neutropenia [43]. Apart from quantitative deficiencies, neutro-
phils in preterm neonates between 28 and 36 weeks GA show
functional deficiencies with decreased phagocytic function,
decreased chemotaxis [44], and impaired neutrophil extracellu-
lar trap (NET) formation [45].

Functionally mature neutrophils develop in zebrafish at 48 hpf
[46]. An array of tools, such as fluorescent reporter lines, knockout
mutant lines, and standardized assays, have been developed to
study neutrophil maturation and behavior [47–49]. Such tools
have been applied to address fundamental questions regarding
neutrophil chemotaxis and reactivity to cytokine stimulation
and their role in the resolution of inflammation and NET forma-
tion [48–51]. These studies have highlighted the role of neutrophils
in initiation of inflammation and in resolution of inflammation
and provided important insights in the regulatory mechanisms
that underlie their role in the innate immune response and tissue
homeostasis [52]. As such, zebrafish larvae appear to be an appro-
priate preclinical model to evaluate the role of neutrophils in
inflammation and sepsis.

Antigen-presenting Cells

Antigen-presenting cells (APCs) include monocytes, dendritic
cells, and macrophages that present antigens through major histo-
compatibility complex (MHC) to T-cells, thereby activating the
acquired immune system. APCs appear around week 12 of gesta-
tion in the thymus and lymph nodes [53]. However, in neonates,
APCs are present in lower amounts compared to adults and the
expression of MHC class II on neonatal APCs, needed for a proper
immune response, is decreased. It has been reported that mono-
cytes from septic neonates express even lower levels of MHC class
II compared to monocytes of non-septic neonates [54].

The most well-studied APCs in zebrafish are macrophages,
which have been characterized in terms of development and func-
tional maturation and in terms of their reaction to cytokines and
pathogen stimulation. Phagocytically active zebrafish macro-
phages emerge at 1 dpf from the lateral plate mesoderm [22,46,55],
and in many studies these have been found to be among the first
responding immune cell types reacting to various bacterial and
fungal pathogens [56–58]. Using combinations of fluorescent
reporter lines, M1 and M2 activation status can be conveniently
assessed by live microscopy [59]. Dendritic cells exhibiting
MHC class II expression that have the capacity to activate T lym-
phocytes have been identified in adult tissues [60] and they are
enriched in gut and skin [61] indicating their functional conserva-
tion. It is, however, uncertain when mature dendritic cells emerge
during zebrafish development. As a result, zebrafish larvae may be
suitable to study macrophage actions, but uncertainty remains
about its suitability to serve as a model in the study of processes
involving dendritic cells.

Pattern Recognition Receptor

Recognition of invading pathogens is achieved through activation
of pattern recognition receptors (PRRs). PPRs detect conserved
microbial structures called pathogen-associated molecular pat-
terns (PAMPs) or damage/danger-associated molecular patterns
(DAMPs). Those microbial structures include DNA, lipoproteins,
carbohydrates, and other structures. LPS is a PAMP, found on the
cell surface of gram-negative bacteria. The most studied PRRs are
the toll-like receptors (TLRs) through which PAMPs trigger a sig-
nal cascade that leads to the release of pro-inflammatory mediators
that help control pathogens [62–64], although in animal models
like the zebrafish, TLRs have also been shown to have an anti-
inflammatory immune-regulatory function [65,66]. There are 10
TLRs in humans recognizing different DAMPs or PAMPs [67].
Tlr4, which recognizes LPS, has received most attention regarding
its role in sepsis [68], although several other TLRs are being inves-
tigated as possible targets for therapeutic intervention in sepsis
treatment; Tlr2 and Tlr4 primarily through antagonistic anti-
inflammatory mechanisms and other TLRs through agonistic
mechanisms to enhance the immune response to infections [69].
Recent findings that TLRs such as TLR2 also play an important role
in negative control of inflammatory processes [66] may indicate
that agonistic activation could also be beneficial to suppress hyper-
inflammatory responses under certain circumstances. It has been
shown that Tlr4 expression is reduced in neonates, especially those
with very low birth weight [70].

Considerable research efforts in the past decades showed simi-
larities between PRRs and intracellular signaling pathways to be
extensive between humans and zebrafish. Homologs of most of
the human TLRs have been identified in zebrafish [67].
Functional analyses have established that the accessory adaptor
molecule Myd88 occupies the same central position in the intra-
cellular signaling cascades downstream of all TLRs except TLR3
[71,72]. However, while the similarities between human and zebra-
fish responses to bacterial infection and PAMP stimulation are
striking, it should be noted that important differences and some-
times conflicting observations have been reported, particularly
regarding the molecular pathways involved in LPS signaling.
Two in vitro studies have found that while zebrafish embryos do
mount a clear inflammatory response to LPS stimulation, it does
not appear to be mediated through Tlr4 [73,74]. The notion that
zebrafish Tlr4 does not recognize LPS has recently been challenged,
with the identification of a zebrafish gene encoding the coreceptor
myeloid differentiation factor-2 (Md-2) [75], suggesting the mech-
anisms of LPS signaling in zebrafish may be more similar to those
in humans after all. Conflicting observations have been made
regarding the role of Myd88, specifically in LPS signaling, as an
in vitro study found the zebrafish inflammatory response to LPS
to be independent of Myd88 [73], while an in vivo mutant study
reported the opposite [72]. Considering that some disease models
are based on LPS stimulation [76,77], caution should be exercised
when drawing conclusions regarding the exact nature of LPS-
mediated signaling, even if the inflammatory responses caused
by this stimulation may still serve as a model for certain aspects
of sepsis research.

Cytokine Production

Both pro- and anti-inflammatory cytokines are crucial for cell
signaling, and initiation, maintenance, and resolution of host
responses to infections. Several pro-inflammatory cytokines can
be used as diagnostic markers for sepsis, including IL-1β, IL-6,

4 Keij et al.



IL-8, IL-23, TNFα, and IFNγ. Reviewing the potential of each bio-
marker in the diagnosis of neonatal sepsis is beyond the scope of
this review. Neonates with sepsis present with elevated levels of cir-
culating cytokines [25]; however, gestational age does influence
cytokine responses and very preterm neonates show reduced or
altered cytokine production in response to sepsis, possibly explain-
ing their higher risk for severe infection [78–80].

Zebrafish have been used extensively in cytokine research and
the pro-inflammatory cytokines that drive sepsis have all been
identified, including IL-8 [50], which is absent in mice and rats.
Transcription levels of IL-1β, TNFα, INFγ, IL-6, and IL-8 have
been found to follow similar temporal profiles of transcriptional
induction and subsequent return to baseline upon inflammatory
challenges such as LPS injection and tissue amputation. All exhib-
ited robust induction within the first 12 hours after challenge and
rapid resolution [81–83], indicating good conservation of their
roles in mediating early responses to inflammatory stimuli. In
zebrafish, fluorescent lines have been generated for IL-1β [57],
TNFα [59], and IFNγ [84] enabling for instance in vivomicroscopy
approaches as illustrated in Fig. 3. IL-10 has been assessed as a
marker of anti-inflammatory signaling and alternative macro-
phage activation (M2) in numerous studies [85,86]. It exhibits
transcriptional induction subsequent to the inflammatory
response to LPS stimulation [83].

Zebrafish Larvae as Model for Neonatal Sepsis

Animal models have provided insight into the pathogenesis of neo-
natal sepsis; however, this has hitherto not lead to considerable
improvements in available treatment strategies [10]. This may

be because of the absence of clinically relevant features in the cur-
rent preclinical models [87], due to discrepancies in pharmacologi-
cal effects between traditional preclinical species and humans, or
because timing and dosage are essential aspects of successful sepsis
treatment [88–90]. Moreover, traditional animal models have lim-
ited high-throughput potential. Keeping in mind the known
differences between neonates and zebrafish larvae and the knowl-
edge gaps in zebrafish larvae described in the previous section,
zebrafish larvae may provide a useful complementary preclinical
model to overcome some of these shortcomings. Moreover, the dif-
ferent entities of neonatal sepsis (e.g. EOS versus LOS) and specific
causative pathogens influencing the host–pathogen interaction
have to be recognized. In the first 5 days post-fertilization, zebra-
fish larvae may best reflect scenarios of EOS.

As with any preclinical model, it is important to be conscious
about known differences between neonates and zebrafish larvae
and the knowledge gaps in zebrafish larvae described before. For
example, the well-established similarities of TLR signaling [67,91]
and key important cytokine responses between humans and zebra-
fish means initiation and dynamics of pro-inflammatory signaling
can be studied in zebrafish embryos, with the caveat that LPS sig-
naling through TLR4 is not entirely resolved [73–75]. Thus, to
model pathogen recognition in EOS caused by E. coli, it may be
advisable to use live bacteria, or at least a more complex pro-inflam-
matory stimulus than LPS. For group B Streptococcus (GBS) on the
other hand, it may be possible to use purified PAMPs to investigate
inflammatory initiation, since the Tlr2 signaling appears to be more
similar between humans and zebrafish [91].

In the next paragraph, we will discuss studies on pathogens that
cause neonatal sepsis. Major findings are summarized in Table 1.

Infection Models in Zebrafish Larvae with Pathogens
Relevant for Neonatal Sepsis

Zebrafish larvae are often utilized to study infections and host–
pathogen interactions. The most common approach involves
induction of infection through microinjection into specific sites
to create systemic or localized infections, followed by microscopy-
based or transcriptional assessment of host responses [57,58].
Systemic infection models are used for the assessment of overall
transcriptional responses in the search for biomarkers [99, 103,
105], while localized infections are used for highly detailed studies
of interactions between pathogens and immune cells [58,106].
Alternatively, the ease of injection in zebrafish larvae can be lever-
aged to generate pathogenic screening tools where mutant libraries
of pathogenic strains are evaluated in a vertebrate host, in search
for novel virulence factors [97], to investigate pathogen commu-
nity dynamics [98,100], or to test properties of mutant strains in
vivo in an immunocompetent vertebrate [102,107]. Finally, infec-
tions have also been induced through the intestinal route, either
food-borne or by keeping larvae in pathogen-containing incuba-
tion medium [95,108]. Although in the first 5 days post-fertiliza-
tion zebrafish larvae may best reflect EOS, pathogens related to
LOS are also discussed.

Streptococcus Agalactiae
S. agalactiae is a gram-positive bacterium belonging to GBS [109]
and is one of the main causes of EOS [110]. S. agalactiae has been
used in zebrafish larvae of 3 dpf to study pathogen and host factors
that are essential for the progression of sepsis [92]. The results
showed upregulation of the pro-inflammatory cytokines IL-1ß
and IL-8, related to neutrophil activation and recruitment, which

Fig. 3. Examples of applications of fluorescent reporter lines in zebrafish larvae. A:
Three still images from a confocal timelapse microscopy video showing the gradually
increased expression of tnfa by macrophages after infection with E. coli via the duct of
Couvier at 3 DPF, in the Tg(mpeg1:mCherry-F)ump2 [57] fishline, with macrophages
expressing red fluorescent mCherry, crossed with the Tg(tnfa:eGFP-F)ump5 [59]. The
time (in minutes) after infection is indicated in the upper left-hand corner of each
image. The overlap of red and green fluorescent signal makes tnfa expressing macro-
phages appear yellow. B: A single confocal stack showing intestinal epithelial cells
expressing il1b in the TG(il1b:eGFP-F)ump3 [57] reporter line, after intestinal coloniza-
tion by unspecified commensal microbes. C: Stereo-fluorescent microscopy image in
the Tg(mpeg1:mCherry-F)ump2/TG(mpx:GFP)il14 [47,57], showing red fluorescent macro-
phages and green fluorescent neutrophils migrating to a site of injury in a widely
applied tailfin amputation assay.
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is also a key characteristic of the GBS infection found in a mouse
model of meningitis [50,111]. Additionally, capsule and anch-
ored lipoteichoic acid were identified as virulent factors for S.
agalactiae infections [92], validating results found in a rat model
of GBS infection [112] and in in vitro studies with human cell
lines [113].

The optical transparency of the zebrafish embryo was used to
demonstrate that S. agalactiae is able to cross the blood–brain
barrier [92]. This may suggest zebrafish larvae could be a useful
model to study localization and spread of infections throughout
the body, including the brain.

Escherichia Coli
E. coli is also one of the main pathogens of neonatal sepsis, causing
both EOS and LOS [114]. Barber et al. [94] provide an example of
the versatility of zebrafish larvae to study infections. They tested
different extraintestinal pathogenic E. coli (ExPEC) strains and
measured whole-organism transcriptomics and various patho-
logical endpoints and evaluated antibiotic treatment regimens.
The larvae exhibited symptoms observed in neonatal sepsis,
including cytokine storm, tachycardia, edema, and vascular
leakage [2]. Strain differences in flagellar serotype and flagellin
levels were shown to correlate with differences in pathological
development and transcriptional profiles of cytokines.
Furthermore, strain differences were evident in the efficacy of
antibiotic treatments and the impact of early versus delayed
antibiotic treatment initiation. This illustrates that zebrafish lar-
vae allow for the temporal evaluation of infection development
and treatment outcome.

Staphylococcus Aureus
S. aureus is a gram-positive species that is highly adaptable and can
colonize virtually any host tissue, causing infections from skin
abscesses to bloodstream infections that lead to LOS [115].

Studies in zebrafish larvae infected with S. aureus support the
hypothesis that phagocytes act as “Trojan horses” for this patho-
gen. The optical transparency of the larvae and ease of genetic
manipulation allowed for the identification of intracellular niches
of S. aureus in phagocytes, specifically in neutrophils, that serve as
reservoirs protecting the pathogen from immune destruction and
that ultimately release massive amounts of pathogens that will lead
to systemic infections [98]. This study identified this intracellular
niche as a novel target for treatments of S. aureus infections, illus-
trating how zebrafish larvae can provide key information that can
lead to new therapeutic approaches.

Staphylococcus Epidermidis
S. epidermidis is an opportunistic pathogen that can cause LOS
[116]. This member of the CONS family is naturally present in
human skin lesions where it is generally harmless. CONS can be
pathogenic in preterm neonates due to their relative immature
immune system and the high number of invasive medical procedures
performed in this population increases their risk of infection [117].

Veneman et al. established a protocol for S. epidermidis infec-
tions in zebrafish larvae [103]. Their study revealed genes involved
in the pathogenesis of S. epidermidis infections, such as mfap4
which is related to cell adhesion. Moreover, the protocol has high-
throughput capabilities and allows for automated fluorescence-
based quantification of the infection and transcriptomic analysis.

Table 1. Overview of major findings obtained in zebrafish larvae on infections with pathogens relevant for neonatal sepsis with indications of methods of infection. (SI:
systemic infection; LI: localized infection; FB: food-borne).

Pathogen Major findings References

Streptococcus agalac-
tiae (GBS)

- Serotype-dependent GBS virulence. [92]SI

- Upregulation of interleukin-1β and interleukin-8 genes, related to neutrophil activation and recruitment.

- Systemic infection leading to blood–brain barrier crossing infection involving host transcriptional suppressor
Snail1

[93]SI

Escherichia coli - Flagellar serotype linked to virulence, pathogenic manifestations, for example, epithelial protrusions in the tail
and trunk and temporal window of opportunity for pharmaceutical intervention.

[94]SI

- Importance of locus of enterocyte effacement (LEE) type 3 secretion system to intestinal virulence of
enterohemorrhagic E. coli (EHEC).

[95]FB

- Rapid but brief il1b expression from macrophages versus delayed but sustained il1b expression from neutrophils. [57]LI

- Degranulation and bactericidal activity of neutrophils which are not in direct contact with bacteria. [96]LI

- Mutant library screening of an extraintestinal pathogenic E. coli (ExPEC) to investigate the virulence gene
repertoire in vivo.

[97]SI

Staphylococcus
aureus

- An intracellular niche in neutrophils is a critical bottleneck leading to clonal expansion of single strains after
multistrain infection.

[98]SI

- Microtubule-associated protein 1 light chain 3 (Map1lc3) associates with S. aureus upon neutrophil phagocytosis
and provides an intracellular niche which enhances survival of the pathogen.

[99]SI

- Subcurative dosages of antibiotics support preferential clonal expansion of resistant strains in mixed-strain
infection in vivo.

[100]SI

- Protective neutrophil activating role for nerve growth factor b (Ngfb) and its receptor tropomyosin-related kinase
receptor A (Trka)

[101]SI

- Identified a metabolic adaptation strategy in the pathogen to achieve daptomycine resistance and evading
neutrophil chemotaxis.

[102]LI

Staphylococcus
epidermidis

- High-throughput adaptations of injection strategies and analysis of infectious burden. Transcriptomics data from
multiple time points of infection.

[103,104]SI
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This application of high-throughput concepts supports the broad
potential of this species in future research on the diagnosis and
treatment of neonatal sepsis.

The high-throughput potential has also been illustrated by
Philip et al. who used LPS to induce sepsis symptoms like vascular
leakage, exudative edema, extravasation of neutrophils, alterations
in the coagulation system, immune activation, and production of
reactive oxygen species [76]. Subsequently, they screened a library
of 96 small molecules targeting epigenetic and immunemodulators
for efficacy regarding these endpoints, taking advantage of the
larval optical transparency. This study identified promising chemi-
cal entities including Fasudil, known to be effective in treating vas-
cular leakage in a murine model of sepsis, thereby supporting the
intra-species scaling potential of findings in zebrafish larvae.

Limitations of Zebrafish Larvae as Model for Neonatal Sepsis

Despite the known similarities in the immune response of zebra-
fish and humans, particularly, the exact emergence of certain com-
ponents of the innate immune system, such as NK cells and ILCs in
zebrafish larvae, remains unknown. In addition to that, uncertain-
ties about the exact mechanism of LPS signaling in zebrafish larvae
may impact translatability of findings on infections with gram-
negative bacteria.

An intrinsic limitation of sepsis research in zebrafish larvae is
that human pathogens infect and grow at 37°C, while the optimal
temperature for themaintenance of zebrafish and their larvae is 28°
C [118]. This temperature could lead to attenuated activity of
human pathogens and as a consequence pathogen infections in
zebrafish larvae might not accurately reflect infections in humans.
This can be (partially) overcome by slightly adapting the mainte-
nance temperature of the larvae to 31°C [119] as a compromise
suitable for both pathogen and host or by using related pathogens
that can infect zebrafish at that lower temperatures [120].

Also, the scarcity of monoclonal antibodies against zebrafish’s
cell surface markers limits the use of common molecular biology
techniques like immunohistochemical staining or flow cytometry.
However, it can be anticipated that the increasing popularity of the
zebrafish and its larvae will lead to a wider range of monoclonal
antibodies against zebrafish antigens becoming available.

Contrary to higher vertebrate species, the internal exposure of
drugs in pharmacological or toxicological studies or screens is cur-
rently hardly ever quantified in zebrafish larvae and drug concen-
trations in the surrounding medium are often unjustly used as a
proxy for drug exposure.Without adequate quantification of inter-
nal drug exposure, interpretation of observed effects (or lack
thereof) is limited, which may lead to false-negative findings for
drug efficacy in this species. Progress is, however, being made in
the development of novel methods that allow for the quantification
of internal drug exposure in zebrafish larvae [121,122].

Future Perspectives

Successful treatment of neonatal sepsis requires 1) the discovery of
specific and predictive biomarkers for diagnosis and evaluation of
treatment response and 2) the identification of novel treatment tar-
gets and effective drugs for these targets. Giving its unique features,
the zebrafish larva is a promising preclinical model that can com-
plement the available methods for research in both areas.

The discovery of disease-specific biomarkers for neonatal sepsis
is essential for timely initiation and cessation of treatments, ensur-
ing optimal efficacy andminimizing the development of resistance.

Furthermore, biomarkers are required for patient selection in trials
evaluating new therapies, as inclusion of misdiagnosed patients or
the inability to stratify patients into subgroups that would benefit
from targeted therapy will reduce the statistical power to detect
drug effects.

A key advantage of zebrafish larvae in biomarker discovery is
their suitability for hypothesis-generating whole-organism tran-
scriptomic, proteomic, and metabolomic studies. Omics techniques
may provide novel information about the pathophysiology of sepsis
and identify new diagnostic biomarkers. Due to the disease complex-
ity, it is unlikely that a single biomarker could serve as a diagnostic
marker for neonatal sepsis; however, the combination of high-
throughput data acquisition and advanced analysis techniques for
large datasets could lead to the identification of diagnostic finger-
prints that are composed of multiple markers.

Regarding novel treatment targets, research in sepsis therapies
has in recent years been focused on agents to control the exacer-
bated inflammatory responses [123]. The demonstrated similar-
ities in the (temporal) hallmarks of infections in zebrafish larvae
and the ease of use of this whole-organismmodel in high-through-
put screening studies may expedite the discovery of novel targets
and identification of new drugs for targeted therapies that translate
well to humans.

The translation of pharmacological findings in zebrafish larvae
to human neonates may be improved by applying pharmacological
modeling approaches. These approaches allow for quantitative
interspecies scaling by correcting for known differences in
(patho)physiology between species. This was recently illustrated
in the field of tuberculosis, a disease that is studied in zebrafish lar-
vae infected withM.marinum, a close relative of the human patho-
genM. tuberculosis. By correcting for differences in drug sensitivity
between the two bacterial species and differences in the growth
phase of the bacterial infections in larvae and humans, findings
in zebrafish larvae on the efficacy of isoniazid were successfully
translated to humans [124]. Similar approaches could be applied
in the research on neonatal sepsis to overcome potential issues aris-
ing from differences in maturation and function of immunological
cell types or signaling pathways, or from differences in body
temperature.

In recent years, manipulation of the gut microbiome, the com-
munities of microbes in the intestine, through probiotics and pre-
biotics has shown potential as preventative strategy against
neonatal sepsis [125]. Zebrafish larvae are uniquely suitable for
studies aimed at evaluating health-promoting effects of microbial
colonization [126], and the microbiome was recently found to
impact innate immune regulation through transcriptional regula-
tion of myd88 [127]. The evaluation of health benefits of specific
bacterial strains is likely to bring about new advances in affordable
sepsis prevention, and zebrafish embryos are sure to continue to
bring added benefits to existing research models.

Conclusion

Zebrafish larvae have been successfully used to model infections
with pathogens causing neonatal sepsis, capturing several hall-
marks of the immunological and phenotypical pathophysiology
and allowing the identification of host and pathogen factors nec-
essary for the establishment and spread of the infection. The rep-
resentation of important aspects of human infections in zebrafish
larvae opens up the possibility to include this vertebrate model in
preclinical research, to complement existing in vitro and in vivo
models with high-throughput potential, which will stimulate
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biomedical and pharmacological research on neonatal sepsis. This
research may hold important keys for the discovery of new bio-
markers and novel treatment targets as well as for screening of tar-
geted drug therapies.
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