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Abstract

The cardinal symptoms of some ophthalmic diseases observed through exceptional retinal

blood vessels, such as retinal vein occlusion, diabetic retinopathy, etc. The advanced deep

learning models used to obtain morphological and structural information of blood vessels

automatically are conducive to the early treatment and initiative prevention of ophthalmic

diseases. In our work, we propose a hierarchical dilation convolutional network (HDC-Net)

to extract retinal vessels in a pixel-to-pixel manner. It utilizes the hierarchical dilation convo-

lution (HDC) module to capture the fragile retinal blood vessels usually neglected by other

methods. An improved residual dual efficient channel attention (RDECA) module can infer

more delicate channel information to reinforce the discriminative capability of the model.

The structured Dropblock can help our HDC-Net model to solve the network overfitting

effectively. From a holistic perspective, the segmentation results obtained by HDC-Net are

superior to other deep learning methods on three acknowledged datasets (DRIVE, CHASE-

DB1, STARE), the sensitivity, specificity, accuracy, f1-score and AUC score are {0.8252,

0.9829, 0.9692, 0.8239, 0.9871}, {0.8227, 0.9853, 0.9745, 0.8113, 0.9884}, and {0.8369,

0.9866, 0.9751, 0.8385, 0.9913}, respectively. It surpasses most other advanced retinal

vessel segmentation models. Qualitative and quantitative analysis demonstrates that HDC-

Net can fulfill the task of retinal vessel segmentation efficiently and accurately.

Introduction

The study found that the number of patients with retinopathy increases with the advent of an

aging population. There are many reasons for retinopathy, such as diabetes, nephritis, anemia,

influenza, which may cause fundus diseases. The clinical symptoms of retinopathy are mainly

manifest in changes in the length, width, curvature, and angle of the retinal blood vessels [1].

For instance, diabetic retinopathy [2] is associate with swelling of the blood vessels, and hyper-

tensive retinopathy [3] is accompanied by increased retinal vessel curvature and narrowing of

blood vessels. Although retinopathy can be observed in many ways, the most critical character-

istic is the variation of retinal blood vessels.

To enable sufferers to receive reasonable treatment, ophthalmologists usually diagnose

related diseases by observing the morphological features of the abnormal blood vessels. There-

fore, to observe exceptional blood vessels more intuitively, it is most crucial to analyze blood
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vessels’ structure from fundus images accurately. However, it is not easy for researchers to

obtain clear segmentation images. Researchers will be affected by the different colors, con-

trasts, foregrounds, and backgrounds of fundus images when extracting retinal blood vessels.

At the same time, the fundus image is easily affected by uneven illumination and noise [4],

making the task of blood vessel extraction quite challenging. Some experienced experts will be

disturbed by retinal disease and low contrast images, making the artificial extraction of retinal

vessels error-prone and time-consuming. Therefore, a high-quality fundus image plays a criti-

cal part in the early condition analysis and subsequent treatment of ophthalmic diseases. In

addition, retinal blood vessel segmentation can also be used in partial cell ophthalmology

research and is a necessary condition for pre-research treatment.

In recent decades, deep learning enthusiasts have found many feasible strategies for obtain-

ing a more precise retinal vessel segmentation map. Based on little earlier information, con-

ventional retinal vessel extraction strategies can further be divided into matched-filtered (MF)

methods [5–7], mathematical morphology methods [8–10], model-based methods [11–13],

and vessel tracking methods [14, 15]. These strategies utilize hand-crafted features such as

shapes, spatial areas, and edges for precise retinal vessel extraction.

With the fast advancement of deep learning, advanced architecture and modules have been

proposed and applied to different fields of computer vision, such as image segmentation [16],

speech recognition, text detection, and a series of tasks based on deep learning. The unique

superiority of convolutional neural networks (CNNs) [17] is that they can adequately represent

and learn the image features, so methods based on CNN’s often utilized in medical image clas-

sification tasks. In the diagnosis of some diseases, the primary mission is to segment and ana-

lyze the structure of cells in detail. The proposal of the U-Net [18] networks can get a clear

image of cell structure from medical images so that they can analyze the condition further.

Compared with traditional CNNs, U-Net proposed based on fully convolutional network

(FCNs) [19] represent the learning feature information from rough to delicate. U-Net has

accomplished an extraordinary victory within the field of medical image segmentation and has

inspired other applications of U-shaped structures for retinal vessel segmentation. However,

many U-Net variants are unable to detect the blood vessels in fundus images adequately. Con-

sequently, we proposed HDC-Net based on U-Net, which can fully capture the features of

blood vessels that are often ignored in fundus images. To whole up, the contributions of this

article are summarized as follows: (1) we proposed a u-shaped structure that contains HDC

modules, which detects vessel features of different scales by adjusting the receptive fields of the

convolution kernel to obtain more accurate segmentation results. (2) The RDECA module was

obtained by improving the efficient channel attention mechanism. We apply the RDECA

module to the skip connection, focusing on channel information more conducive to segmenta-

tion and enhancing the model’s discriminant capacity.

In this paper, the second section is a brief literature review of the relevant network. In the

third section, the architecture of HDC-Net and related modules are introduced in detail. The

fourth section mainly introduces the related datasets and metrics. The fifth section presents

experimental results and evaluates the model on two datasets. The sixth section gives conclu-

sions and discussions.

Related work

Image segmentation is a hot topic in deep learning, and the medical image is one of the critical

research objects. Retinal blood vessel segmentation firstly locates and recognizes blood vessels

and then segments them. With the innovation of deep learning, various intelligent algorithms

were applied to obtain a more precise map of the vascular structure, among which researchers
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have highly praised the supervised methods. Supervised learning requires manually labeling

the data to establish an optimal predictive model. Researchers input the processed image into

an excellent prediction model to obtain the corresponding probability prediction map.

Fundus image datasets are susceptible to quality degradation due to noise and illumination

during acquisition, so dataset pre-processing is a key step in image analysis. Datasets are aug-

mented in various ways, such as random rotation, random flipping, color Jittering [20] and a

host of other ways to increase the number of images. As the target vessels and background are

not easily distinguishable in fundus images, it is common to use contrast limited adaptive his-

togram equalization (CLAHE) to improve image contrast. In addition, some scholars have

continued to innovate on this basis; for example, Li et al. proposed to combine CLAHE with

the discrete wavelet transform [21] to preserve good image detail and suppress noise, Khur-

sheed Aurangzeb et al. proposed to tune the CLAHE parameters using particle swarm optimi-

zation algorithm [22] to improve the contrast of the images of green channel.

U-Net has an important position within the field of medical imaging analysis. As shown in

Fig (1), the leading architecture of U-Net is mainly composed of a convolutional coding unit

and decoding unit. The basic convolution operation is performed, followed by ReLU activation

in the encoding and decoding unit. The 2×2 max-pooling operation is used for down-sampling

in the encoding unit. The transposed convolution operation is used to perform up-sampling in

the decoding unit. The original U-Net utilizes cropping and copying feature maps to fuse cod-

ing unit information. U-Net has the following advantages: First, the U-Net embraces an

extraordinary encoding and decoding unit, which can simultaneously get overall locations and

context. Since most medical imaging is representative small sample datasets, U-Net can work

with fewer training samples and achieve superior performance.

At present, many excellent medical image segmentation models are based on improvements

made by U-Net. For instance, Tarek M et al. proposed R2U-Net [23], which improves U-Net

Fig 1. The main architecture of the initial version of U-Net.

https://doi.org/10.1371/journal.pone.0257013.g001
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by applying the recurrent residual convolutional block to train deeper networks. However, this

model is liable to overfitting when training a small sample of medical datasets. Golnaz et al.

proposed the Dropblock [24] module, which can effectively overcome the network overfitting.

Guo et al. proposed structured Dropout U-Net (SD-UNet) [25], which adopts structured

Dropblock instead of Dropout in the conventional convolutional layer to prevent overfitting.

Although it can overcome overfitting, it does not adequately detect blood vessels when seg-

menting tiny blood vessels in fundus images. Wang et al. proposed DEU-Net [26], which sig-

nificantly heightens the network’s performance by pixel-level prediction. It tends to ignore the

tiny blood vessels during training. Guo et al. proposed spatial attention U-Net (SA-UNet) [27],

which applies a spatial attention mechanism to concentrate on more valuable pixels and sup-

press background pixels to heighten the expressive capacity of the model, the segmentation

effect of this network at the intersection of thick and thin blood vessels is not good.

To enhance the algorithm’s performance, the researchers mainly focused on the three ele-

ments of the network: depth, width, and cardinality. Except for these factors, “attention” has a

powerful effect on the network’s performance. Woo, et al. proposed the convolutional block

attention module (CBAM) [28], which connects different attention modules in series to learn

what to emphasize or suppress. The CBAM module performed well in classification tasks. Fu

et al. proposed the dual attention network (DANet) [29] to integrate local and global features

adaptively to overcome the difficulty of capturing context information in computer vision

tasks. Although the above attention mechanism models enhance the network’s performance, it

makes the network model more complex and accompanied by increased parameters. Wang

et al. proposed efficient channel attention (ECA-Net) [30] to achieve the trade-off between per-

formance and complexity models. It reaches the local cross-channel information exchange

without dimensionality reduction, which diminishes the complexity of the model whereas

keeping up performance. The fundus image will be affected by uneven illumination and other

factors during imaging, and the discontinuous characteristics of some small blood vessels,

which will cause the blood vessel pixels not to be sufficiently detected by the model. Therefore,

we proposed a structure containing attention mechanisms and a U-shaped structure, which

can better locate and extract the tiny blood vessels in the fundus image.

Methodology

This paper is devoted to proposing a valuable deep learning model to obtain a clear fundus

blood vessel structure. Each pixel of fundus images is classified as a vessel (1) or background

(0) pixel by the vessel segmentation model. Existing retinal vessel segmentation models are

representative binary classification models.

This section describes the structure of the HDC-Net for medical imaging analysis in detail.

The HDC-Net architecture diagram is shown in Fig (2). We adopt SD-Net as the backbone

network. SD-UNet can better overcome the problems caused by fewer samples in the training

set. In the HDC-Net model, basic convolution operations are carried out in the encoding and

decoding units, followed by the HDC module, to detect multi-scale vascular information in

fundus images adequately. The operation flow of each layer in the encoding and the decoding

unit are shown in Fig (3). Skip connection with the RDECA module can realize local cross-

channel information exchange to improve the network’s ability to segment blood vessels.

The Dropblock of regularization method

As we all know, marking the retinal blood vessels is laborious work, and the quantity of images

is insufficient in most of the existing fundus datasets. Although the datasets have been aug-

mented before inputting to the network, the network will still be overfitting during the training
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process. As shown in Fig (4) (left), When the training time reaches 80 epochs, the accuracy of

the training set improves significantly while the validation set improves very slowly, it is an

overfitting phenomenon. Dropblock is a structured form of Dropout that successfully avoids

overfitting issues in our network. The distinction between Dropout and Dropblock is that

Dropout randomly discards a single pixel, while Dropblock randomly discards a small pixel

patch in the feature map. In addition, batch normalization (BN) and ReLU can significantly

reduce the time required for network convergence in the basic convolution unit with Drop-

block. The Dropblock module can perfectly solve overfitting in the HDC-Net. As shown in

Fig (4) (right), The difference in accuracy between the training and validation sets is relatively

stable over the overall training process.

HDC module

Recent medical studies have shown the importance of high-quality segmentation of vascular

structures for the early treatment of ophthalmic diseases. However, fundus images have many

fragile vessels that are difficult to visualize with the naked eye and often overlooked by

researchers. This section introduces the HDC module that allows for adequate detection and

segmentation of retinal vessels.

The HDC module is a hierarchical structure, and it divides the input feature map into two

parts along the channel axis. The feature conversion process takes place in these two parallel

branches [31]. The feature maps generated by the two parallel branches are concatenated into

a new feature map along the channel axis. In this case, each filter is responsible for a particular

function in the HDC module. From the HDC module diagram in Fig (5), we can see that the

Fig 2. Diagrams of HDC-Net. The convolution operation extracts morphological and marginal information from the feature map (green arrow). The HDC module

extracts retinal vessel features more fully in a hierarchical manner (yellow arrow). The RDECA module applied to skip connection can heighten the discriminative

capacity of the model. Finally, a binary probability map was obtained by a 1×1 convolution operation and a sigmoid activation function (red arrow).

https://doi.org/10.1371/journal.pone.0257013.g002
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Fig 3. The operation flow in the encoding and decoding unit.

https://doi.org/10.1371/journal.pone.0257013.g003
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channel number and resolution of the feature maps are unchanged between out and input fea-

tures so that the HDC module can be used as a general module for fundus image segmentation

tasks.

The input feature map (F) is divided evenly along the channel axis into two parts, denoted

by X1 and X2, respectively. To effectively collect context information of each spatial position

within the image, the convolution feature transformation is carried out in two spaces of differ-

ent scales. The different receptive fields of the kernel can detect different scale information,

and it can realize the comprehensive detection of blood vessels by the fusion of multi-scale

structures. Dilated convolutions [32] with dilation rates of 1 and 2 were used to extract edge

structure information of the retinal vessels, and Y1 and Y2 respectively represented the trans-

formed feature maps. Dilated convolution changes the receptive field of the kernel to extract

structural more fully and edge information of the vessels. The Y1 and Y2 concatenated along

the channel axis to form a new feature map (Y3), and then the SAM was utilized for adaptive

feature refinement. It is an approach that can detect neglected fragile blood vessels.

In the SAM module, average-pooling can aggregate spatial information, while max-pooling

can highlight different object features in an image. SAM models that contain two different

Fig 4. Comparison U-Net with HDC-Net models training 100 epochs on DRIVE dataset.

https://doi.org/10.1371/journal.pone.0257013.g004

Fig 5. The operation flow of the HDC module. Among them, F1 and F2 represent dilated convolutions with dilation rates of 1 and 2, respectively.

https://doi.org/10.1371/journal.pone.0257013.g005
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pooling methods can infer more refined information, enhancing the network’s multi-scale per-

ception capabilities and optimally capturing global key details. The operation flow of SAM is

shown in Fig (6). The output FS of the SAM module can be express as:

FS ¼ sðf 7�7ðcat½ MaxPool ðY1Þ; AveragePool ðY2Þ�ÞÞ ð1Þ

Where f7×7 means a convolution operation with a kernel size of 7, σ(�) represents the Sigmoid

functions, and cat[�] presents the concatenate operation. In addition, the residual connection

(RC) between the input and the output feature maps are utilized to prevent the overfitting and

compensate for the loss of characteristic information to feature transformation.

RDECA module

According to recent studies, it is common to apply attention mechanisms to deep learning

models to heighten performance. However, most basic strategies are devoted to creating more

complex attention modules to obtain superior performance, which unavoidably increases the

difficulty of realization. Wang et al. proposed an ECA-Net, which adopts a 1D convolution

operation to realize the information exchange between adjacent channels, significantly reduc-

ing the model’s parameters while keeping up with good performance. The ECA-Net only uti-

lizes average-pooling to aggregate spatial information in feature maps, but max-pooling can

gather more prominent information.

The RDECA module utilizes the max-pooling and average-pooling simultaneously to

gather more abundant feature information, so it achieves accurate segmentation to some

extent. The complete structure of the RDECA module is shown in Fig (7). The RDECA

Fig 6. Diagram of the spatial attention in the HDC module.

https://doi.org/10.1371/journal.pone.0257013.g006

Fig 7. Diagram of RDECA. As shown in illustration, it uses both max-pooling and average-pooling to generate descriptors.

https://doi.org/10.1371/journal.pone.0257013.g007
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module utilizes different forms of pooling operations to generate different attention descrip-

tors. The different channel attention descriptors are concatenated along the channel axis to

retain more practical information than the element-wise summation. The 2D convolution

with a kernel size of 1 is adopted to reduce the channels, followed by ReLU to activate the mod-

ule. The 1D convolution is utilized to realize local cross-channel information exchange without

the dimensionality reduction, and then the sigmoid function is adopted to generate the final

channel attention descriptor.

Last but not least, the RC [33] is applied between the input and the final output to effectively

prevent the overfitting caused by the network being too complex, and it also plays a role in

supplementing information. In our experiment, the kernel size of 1D convolution is 3. In addi-

tion, Fig (8) shows the structure when the RDECA module is applied to SD-UNet only.

Datasets and metrics

The datasets

Although deep learning networks can effectively capture feature information from data that

has not been pre-processed, they tend to perform better on pre-processed images. In addition,

DRIVE [34], CHASE-DB1 [35] and STARE [36] are typical small sample datasets, so it is

essential to pre-process the data before training. The DRIVE consists of 40 color images,

Fig 8. The diagram when the RDECA module is applied to SD-UNet.

https://doi.org/10.1371/journal.pone.0257013.g008
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which are from the Dutch diabetic retinopathy screening project. The CHASE-DB1 consists of

28 color fundus images derived from retinal imaging of 14 children. The STARE dataset con-

sists of 20 fundus images, of which 10 have lesions, and 10 do not.

The DRIVE dataset consists of 40 fundus images with a resolution of 584×565, of which

training and test images each account for half. As the image’s resolution does not match the

network, we change the image’s resolution by padding 0 pixels around the image. The resolu-

tions of the DRIVE, CHASE-DB1, and STARE datasets were 565×584, 999×960, and 700×605.

We adjusted the resolution of the images in the DRIVE, CHASE-DB1, and STARE datasets to

592×592, 1008×1008, and 704×704, respectively. The image resolutions were adjusted to be

consistent with the original images in the three datasets during the evaluation process. In addi-

tion, we utilized four data augmentation methods: (1) random angle (0-360 degrees) rotation;

(2) adding Gaussian noise; (3) adjust the hue, contrast, and brightness; (4) horizontal, vertical

and diagonal flips; The images after each pre-processing step shown in Fig (9). In addition, the

resolution of the image is too large for the network to train. Each image is cropped into four

images with a resolution of 512×512 on the CHASE-DB1 dataset. The images after the crop-

ping step are shown in Fig (10).

Fig 9. The four pre-processing methods for the DRIVE dataset. (a) Original image; (b) Image after flip; (c) Image after arbitrary angle rotation; (d) Image after

adjust hue, brightness, contrast (e) Image after adding Gaussian noise.

https://doi.org/10.1371/journal.pone.0257013.g009

Fig 10. Images after processing by four different methods. (a) Image after pre-processing; (b) /(c) /(d) /(e) Images after crop operations.

https://doi.org/10.1371/journal.pone.0257013.g010
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The metrics

The output result of the HDC-Net is a probability prediction map, which describes the possi-

bility of pixels as blood vessels. On the paper, the threshold is set as 0.5. If the predicted value

of pixels in the probability map is greater than the threshold, it is considered a blood vessel

pixel; otherwise, it is considered a background pixel. The probability maps compared with the

corresponding ground truths, each element of the output image classified as True Positive

(TP), False Positive (FP), True Negative (TN), and False Negative (FN). Sensitivity (SE) mea-

sures the proportion to which 1 pixel is predicted as blood vessels in the probability map. Spec-

ificity (SP) measures the proportion to which 0 pixels are predicted as background in the

probability map. Accuracy (ACC) measures the proportion to which pixels are correctly pre-

dicted in the probability map. In addition, we also calculated the f1-score(F1) because it can

better measure precision and recall at the same time.

SE ¼
TP

TPþ FN
ð2Þ

SP ¼
TN

TN þ FP
ð3Þ

ACC ¼
TN þ TP

TP þ TN þ FP þ FN
ð4Þ

Precision ¼
TP

TP þ FP
ð5Þ

Recall ¼
TP

TPþ FN
ð6Þ

F1 ¼ 2�
Precision � Recall
Precision þ Recall

ð7Þ

We also utilized the area under the curve (AUC) to evaluate our model to evaluate the net-

work’s performance further. AUC is usually used to measure the performance of a binary clas-

sification model. If the AUC value is closer to 1, it means that the model’s performance is

better.

Results and analysis

Implementation details

The HDC-Net model was evaluated on the DRIVE, CHASE-DB1, and STARE datasets, respec-

tively. All models were trained from scratch on the training set and evaluated on the testing

set. We use the Adam optimizer and a binary cross-entropy loss function to optimize our net-

work. For the DRIVE dataset, we set the training epoch, learning rate, and batch size to 100,

0.008, and 2, respectively. For the CHASE-DB1 dataset, we set the training epoch, learning

rate, and batch size to 50, 0.008, and 2, respectively. For the STARE dataset, we set the training

epoch, learning rate, and batch size to 80, 0.008, and 2, respectively. In addition, for the Drop-

block, we set the discard blocks and dropout rates to 7 and 0.15, respectively. The implementa-

tion is based on the public Pytorch, and all experiments run on Tesla V100-PCIE-16GB.
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Ablation experiment

The SD-UNet was selected serves as our baseline. Tables 1–3 show the results of SD-UNet,

SD-UNet + RDECA, SD-UNet + HDC, and HDC-Net on the three datasets (DRIVE, CHAS-

E-DB1, STARE) respectively. In addition, to prove that the RC in the RDECA module plays an

essential role in our model, we also included SD-UNet+RDECA(no RC) and HDC-Net(no

RC) in the ablation experiment. The ablation experiments show that the RDECA module was

applied to the baseline, and the SP and ACC have increased by 0.02%/0.14%/0.09%, 0.04%/

0.06%/0.02% on the three datasets, respectively. When the HDC module is applied to the base-

line, the ACC, F1, and AUC of the SD-UNet+HDC increased by 0/0.11%/0.07%, 0.16%/

0.88%/0.21%, and 0.03%/0.15%/0.12% on the three datasets, respectively, which shows our

proposed HDC module can extract more vascular information.

Furthermore, the ablation experiments show that RDECA modules with an RC structure

perform better than those without an RC structure. Therefore, the RC structure is conducive

to improve the performance of the model. The segmentation performance of HDC-Net that

combines the advantages of these two modules is better than applying the RDECA module or

HDC module to the baseline alone.

Table 1. The ablation experiment based on DRIVE.

Model SE SP ACC F1 AUC

SD-UNet 0.7933 0.9855 0.9687 0.8157 0.9851

SD-UNet+RDECA(no RC) 0.7940 0.9854 0.9686 0.8153 0.9854

SD-UNet+RDECA 0.7956 0.9857 0.9691 0.8181 0.9857

SD-UNet+HDC 0.8002 0.9849 0.8687 0.8173 0.9854

HDC-Net(no RC) 0.8150 0.9833 0.9685 0.8189 0.9851

HDC-Net 0.8258 0.9829 0.9692 0.8239 0.9871

https://doi.org/10.1371/journal.pone.0257013.t001

Table 2. The ablation experiment based on CHASE-DB1.

Model SE SP ACC F1 AUC

SD-UNet 0.8270 0.9836 0.9731 0.8039 0.9876

SD-UNet+RDECA(no RC) 0.8138 0.9848 0.9735 0.8023 0.9872

SD-UNet+RDECA 0.8151 0.9850 0.9737 0.8049 0.9875

SD-UNet+HDC 0.8313 0.9843 0.9742 0.8109 0.9891

HDC-Net(no RC) 0.8133 0.9860 0.9745 0.8096 0.9884

HDC-Net 0.8227 0.9853 0.9745 0.8113 0.9884

https://doi.org/10.1371/journal.pone.0257013.t002

Table 3. The ablation experiment based on STARE.

Model SE SP ACC F1 AUC

SD-UNet 0.8291 0.9855 0.9735 0.8297 0.9900

SD-UNet+RDECA(no RC) 0.8290 0.9857 0.9736 0.8295 0.9905

SD-UNet+RDECA 0.8230 0.9864 0.9737 0.8267 0.9909

SD-UNet+HDC 0.8239 0.9867 0.9742 0.8318 0.9912

HDC-Net(no RC) 0.8168 0.9881 0.9748 0.8339 0.9912

HDC-Net 0.8369 0.9866 0.9751 0.8385 0.9913

https://doi.org/10.1371/journal.pone.0257013.t003
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In Fig (11), we show the visualization image of the test example on the CHASE-DB1 dataset,

including the segmentation results obtained by U-Net, SD-UNet, SD-UNet+RDECA, SD-U-

Net+HDC, SA-UNet, HDC-Net, and the corresponding ground truth. We know that the seg-

mentation results obtained by SD-UNet are not accurate enough when segmenting small

curved blood vessels from the visualization images. Although the segmentation results of

SD-UNet + RDECA and SD-UNet + HDC are more accurate than SD-UNet, the edge struc-

ture of blood vessels is exceptionally rough and unsmooth. Compared with SD-UNet+RDECA

and SD-UNet+HDC, the blood vessels segmented by SA-UNet perform better in terms of edge

structure, but it performs poorly at the intersection between small and thick blood vessels. In

Fig 11. Enlarge the image for better observation; (a)Visualization image of test examples from the CHASE-DB1 dataset; (b)Corresponding ground truth; (c)

Visualization results from U-Net; (d)Visualization image from SD-UNet; (e)Visualization image from SD-UNet+RDECA; (f)Visualization image from SD-UNet

+HDC; (g)Visualization image from SA-UNet; (h)Visualization image from HDC-Net(ours).

https://doi.org/10.1371/journal.pone.0257013.g011
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short, the results of HDC-Net are the best from the perspective of indicators or visualizations,

and it can ideally overcome the shortcomings of SA-UNet. Compared with the baseline, the

result of HDC-Net has higher accuracy and can get a more precise edge structure. It demon-

strates HDC-Net is effective for blood vessel segmentation. To further analyze the visualization

images, we show more segmentation examples on DRIVE, CHASE-DB1, and STARE in Figs

(12)–(14) respectively.

Comparative experiment

To assess the effectiveness of HDC-Net, we compared the segmentation results of HDC-Net

with other models applied to medical image segmentation. As shown in Table [4], HDC-Net

reached to 0.8258, 0.9829, 0.9692, 0.8239, and 0.9871 for SE, SP, ACC, F1, and AUC, respec-

tively on the DRIVE datasets, it shows that HDC-Net has outperformed than most other reti-

nal vessel segmentation methods. From Table [5], we can see that compared with other

advanced methods, the HDC-Net achieved the highest SP, ACC, and AUC, which are 0.9853,

0.9745, and 0.9884, respectively on the CHASE-DB1 dataset. Although the SE and F1 are not

superior to other methods, they are also comparable to other methods. Table [6] shows the

results of HDC-Net compared to other state-of-the-art methods. HDC-Net has the highest

ACC, and other metrics are better than most other existing methods on the STARE dataset. In

general, HDC-Net performs better than other existing methods when performing retinal vessel

segmentation tasks. In the segmentation diagram, the segmented vessels are not only more

precise but also have better continuity. The experimental results show that the

HDC-Net algorithm with multi-scale awareness and enhanced discrimination capabilities per-

forms well in the retinal vessel segmentation task and can detect and extract vessels adequately

Fig 12. The visualization of the DRIVE dataset.

https://doi.org/10.1371/journal.pone.0257013.g012
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Fig 13. The visualization of the CHASE-DB1 dataset.

https://doi.org/10.1371/journal.pone.0257013.g013

Fig 14. The visualization of the STARE dataset.

https://doi.org/10.1371/journal.pone.0257013.g014
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and accurately, which can be used for other retinal vessel segmentation tasks. In addition, we

further compared the parameters of HDC-Net in relation to other models. As shown in

Table [7], although HDC-Net does not have the fewest parameters, it has the best performance

in retinal vessel segmentation, and it has significantly fewer parameters than R2-UNet.

Generalization ability is an important basis for evaluating deep learning models, and it is

very important in real applications. We adopt a cross-training approach to assess the generali-

zation ability of HDC-Net. In Table [8], we compare the generalization ability of two existing

methods with HDC-Net, it uses the DRIVE dataset to train the model and then evaluates it on

the STARE dataset, and vice versa. Table [8] shows that except SP in all indicators have

Table 4. Results of HDC-Net and other methods on DRIVE dataset.

Model SE SP ACC F1 AUC

[18] 0.7884 0.9833 0.9662 0.8031 0.9812

[23] 0.7792 0.9813 0.9556 0.8171 0.9784

[27] 0.7850 0.9860 0.9684 0.8136 0.9829

[37] 0.7851 0.9724 0.9559 - 0.8787

[38] 0.7262 0.9803 0.9475 0.7786 -

[39] 0.7653 0.9818 0.9542 - 0.9752

[40] 0.8432 0.9813 0.9520 0.8163 -

[41] 0.8252 0.9787 0.9649 - 0.9780

[42] 0.8252 0.9764 0.9569 0.8289 0.9822

HDC-Net(ours) 0.8258 0.9829 0.9692 0.8239 0.9871

https://doi.org/10.1371/journal.pone.0257013.t004

Table 5. Results of HDC-Net and other methods on CHASE-DB1 dataset.

Model SE SP ACC F1 AUC

[18] 0.8183 0.9838 0.9728 0.8000 0.9875

[23] 0.7756 0.9820 0.9634 0.7928 0.9815

[27] 0.8154 0.9847 0.9735 0.8028 0.9872

[37] 0.7776 0.9634 0.9505 - 0.8705

[39] 0.7633 0.9809 0.9610 - 0.9781

[41] 0.8440 0.9810 0.9722 - 0.9830

[42] 0.8199 0.9827 0.9665 0.8280 0.9865

HDC-Net(ours) 0.8227 0.9853 0.9745 0.8113 0.9884

https://doi.org/10.1371/journal.pone.0257013.t005

Table 6. Results of HDC-Net and other methods on STARE dataset.

Model SE SP ACC F1 AUC

[18] 0.7955 0.9859 0.9710 0.8119 0.9887

[23] 0.8298 0.9862 0.9712 0.8475 0.9914

[27] 0.8167 0.9876 0.9744 0.8305 0.9906

[38] 0.7865 0.9730 0.9835 0.7750 -

[39] 0.7581 0.9846 0.9612 - 0.9801

[40] 0.8630 0.9730 0.9620 0.8233 -

[41] 0.8397 0.9792 0.9659 - 0.9810

HDC-Net(ours) 0.8369 0.9866 0.9751 0.8385 0.9913

https://doi.org/10.1371/journal.pone.0257013.t006
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reached the highest for testing on STARE dataset, and reached the highest SP, ACC, AUC for

testing on DRIVE dataset. In general, based on the data analysis, it can be known that the gen-

eralization ability of HDC-Net is the best.

Conclusion

High-quality fundus segmentation images are good for clinical diagnosis. We have developed

a retinal vessel segmentation framework based on deep learning. The pre-processed retinal

images were fed into the network for training, and then the trained model was further evalu-

ated. In HDC-Net, the HDC module can detect vascular structure information of different

scales, and the RDECA module in the skip connection part facilitates the information

exchange between the encoding and decoding units. The proposed model we put forward was

evaluated on three publicly available datasets (DRIVE, CHASE-DB1, STARE). The experimen-

tal results show that the performance achieved is comparable to or even better than that

achieved by most of the existing state-of-the-art methods. Based on the analysis of ablation

experiments on three different datasets (DRIVE, CHASE-DB1, STARE), the overall improve-

ment in the performance of HDC-Net compared to baseline was significant. The ACC, F1, and

AUC improved by {0.05%, 0.82%, 0.2%}, {0.41%, 0.74%, 0.08%}, {0.16%, 0.88%, 0.13%} respec-

tively, and it demonstrated that the proposed HDC and RDECA module are helpful for retinal

vessel segmentation. The proposed HDC-Net is effective and achievable. In addition, most ret-

inal lesions remain some similar symptoms, such as microaneurysms, hemorrhages, exudates,

and other abnormalities found in the retina, so the proposed HDC-Net we put forward can be

used as a general network to perform other retinal vascular segmentation tasks competently.
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