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Accumulating evidence indicates that RNAmethylation, as the most commonmodification
of mRNA, is of great significance in tumor progression andmetastasis. Colorectal cancer is
a common malignant tumor of the digestive system that seriously affects the health of
middle-aged and elderly people. Although there have been many studies on the biological
mechanism of the occurrence and development of colorectal cancer, there are still major
deficiencies in the diagnosis and prognosis of colorectal cancer. With the deep study of
RNA methylation, it was found that RNA modification is highly related to colorectal cancer
tumorigenesis, development and prognosis. Here, we will highlight various RNA chemical
modifications including N6-methyladenosine, 5-methylcytosine, N1-methyladenosine, 7-
methylguanine, pseudouridine and their modification enzymes followed by summarizing
their functions in colorectal cancer.
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INTRODUCTION

With the fourth modality rate among all diseases, colorectal cancer (CRC) is one of the most
commonly seen tumors of the gastrointestinal tract, and its incidence is the highest in developed
countries (Brody, 2015; Bray et al., 2018; Siegel et al., 2020). At present, colorectal cancer is gradually
tending to be younger (Akimoto et al., 2021). The pathogenesis of colorectal cancer is complex and
diverse, which may be led by an unhealthy diet, obesity, lack of exercise, and microbial infection.
Long-term exposure to these risk factors affects the intestinal microbiota and host immunity,
resulting in genetic and epigenetic alterations in colorectal epithelial cells, ultimately predisposing
them to colorectal cancer (Brody, 2015; Akimoto et al., 2021). The progression of colorectal tumors
from adenoma to colorectal cancer is a multi-step pathological process of tumorigenesis that takes
about 10 years. Abnormal mutations, accumulation of proto-oncogenes and tumor suppressor genes
play a huge part in this process which includes heritable changes in the genome with changes in the
basic nucleotides of DNA and stable inheritance of unchanged nucleotide sequences that cause
changes in gene expression and function, that is, epigenetics (Sjöblom et al., 2006; Markowitz and
Bertagnolli, 2009).

Epigenetic modifications are dynamically reversible and heritable, including DNA
methylation, histone modifications, chromatin remodeling, microRNAs (miRNAs) and
noncoding RNAs (ncRNAs) which are of great importance in the progression and metastasis
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of colorectal cancer (Huang et al., 2021a). Recently, major
breakthroughs have been made in the research on DNA omics
and proteomics in the occurrence and development of tumors,
and the epigenetic modification at the RNA level has also
attracted the attention of many researchers (Skvortsova et al.,
2019; Sivanand and Vander Heiden, 2020; Mobet et al., 2022;
Wishart, 2022).

RNA modifications play a key regulatory role in gene
expression (Helm and Motorin, 2017; Wu et al., 2021). In
recent years, over 170 RNA chemical modifications have been
discovered, involving both coding and noncoding RNAs
(Boccaletto et al., 2022). In eukaryotic, the most abundant
modification found is N6-methyladenosine (m6A), which is
considered as eukaryotic characteristic internal modification
since its discovery in the 1870s (Gilbert et al., 2016; Davalos
et al., 2018). RNA is not only an intermediate or effector molecule
in protein synthesis but also has direct functional effects on gene
expression through a variety of other noncoding RNAs. Dynamic
modification of RNA enables cells to respond rapidly to changes
in the external environment, and the ability to adapt to changing
microenvironments (such as stimuli and stress) is critical for
tumor cell survival. Recent research has demonstrated that RNA
modification has become a main emerging regulator in cancer by
regulating various RNA metabolic processes (Cui et al., 2017;
Barbieri and Kouzarides, 2020; Miano et al., 2021). More and
more evidence has shown that the abnormal expression of various
m6A regulatory proteins plays a role in promoting or suppressing
tumors in human tumors (Nombela et al., 2021). Abnormal
changes in RNA modification are often functionally related to
cell proliferation, differentiation, stress adaptation, invasion and
resistance to chemotherapy. Therefore, targeting abnormal RNA
modifications in cancer cells is expected to be an effective way to
treat tumors.

In this review, we will summarize the biological characteristics
of various RNA modifications, including m6A, m5C, N1-
methyladenosine, 7-methylguanine, pseudouridine and their
roles in the occurrence and development of colorectal tumors

by providing a basis for further search for biomarkers and
therapeutic targets.

m6A Modification and Colorectal Cancer
m6A methylation modification is a common RNA methylation
modification on the 6th N of adenine. It is a dynamically
reversible post-transcriptional modification that is most
abundant in mRNA and noncoding RNA (Figure 1). The
modification of m6A occurs mainly in the RRACH sequence
motif (where R = A or G, H = A, C, or U) and is significantly
enriched in the mRNA 3′UTR as well as CDS regions
(Dominissini et al., 2012; Meyer et al., 2012). m6A is involved
in multiple processes of RNA metabolism, including post-
transcriptional splicing, translation efficiency and stability
maintenance, and is essential in normal physiological
processes such as growth and development, learning and
memory, and is also involved in regulating the response to
body heat shock (Zhou et al., 2015; Shi et al., 2018; Wang
et al., 2018). It is also crucial for tumor development and
tumor immune drug resistance (Han et al., 2019). m6A
modification is regulated by methyltransferases, demethylases,
and methyl-recognition proteins as a post-translational RNA
modification. Among them, methyltransferase catalyzes the
modification of adenylate by m6A in RNA, which is composed
of various proteins such as METTL3 (methyltransferase like 3),
METTL14 (methyltransferase like 14), WTAP (Wilms tumor 1
associating protein) (Frye et al., 2018; Shi et al., 2019) and
KIAA1429 (Liu et al., 2014). The core proteins of demethylase
include FTO (fat mass and obesity-associated protein) and
ALKBH5 (Alkb homolog 5), which can demethylate bases that
undergo a modification of m6A, which is also the cause of
dynamic reversibility. Methylation recognition proteins can
recognize and bind to m6A-modified bases, and regulate
biological processes such as RNA degradation and
stabilization, nuclear export, and translation efficiency. Given
their functional characteristics, these proteins are called “writer,”
“eraser,” and “reader” (Zaccara et al., 2019).

FIGURE 1 | Schematic diagram of RNA m6A methylation mechanism. m6A modification is a dynamic and reversible process, which could be regulated by writers
(WTAP, METTL3/14, KIAA1429, VIRMA and RBM15), erasers (FTO and ALKBH5) and readers (eIF3, YTHDCs, YTDFs and IGF2BPs).
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In recent years, m6A modification has gradually become the
hot field in studying colorectal tumorigenesis, development and
metastasis. m6Amodifications have widely altered the expression
of certain colorectal tumor-associated genes. Abnormally
expressed writer protein, eraser protein, and reader protein, by
regulating the level of m6A in different RNAs, affects the function
of downstream pathways, such as the classical pathway related to
colorectal tumorigenesis and apoptosis, theWnt pathway and the
Hippo pathway, and plays pro- or anti-cancer effects (Chen et al.,
2020a; Xu et al., 2020a; Chen et al., 2020b).

It was found that METTL3 expression was increased in
tumor tissues of colorectal cancer patients, and the higher its
expression, the worse the prognosis of patients (Zhou et al.,
2021a; Chen et al., 2021). METTL3 regulates the expression of
various oncogenes and tumor suppressor genes at the post-
transcriptional level to enhance the progression of colorectal
cancer. Overexpression of METTL3 represses SOCS2 and
promotes LGR5 promoter activity to maintain cell
proliferation in colon cancer cells (Xu et al., 2020b).
Knockdown of METTL3 can inhibit the development of
colorectal cancer significantly. Research have suggested that
METTL3 targets the YPEL5 m6A modification site to inhibit
its expression and promote the progression of colorectal
cancer (Zhou et al., 2021a). On the other hand, METTL3
stabilizes its expression level by methylating the m6A site of
the CCNE1 3′UTR mRNA to increase the expression of the
cyclin E1 to promote colorectal cancer cell proliferation (Zhu
et al., 2020). Furthermore, a group found that the m6A
methyltransferase METTL3 promoted the malignant
proliferation of colorectal cancer cells by directly or
indirectly upregulating MYC expression (Xiang et al.,
2020). In an indirect mechanism, it was found that
METTL3 may upregulate MYC expression through the
WNT, TGF-β and other signaling pathways. The expression
of MYC was also found to be recognized by IGF2BP1 and its
stability was enhanced dependent on m6A-IGF2BP1. In
addition, METTL3 increases the expression of PTTG3P
through an m6A/IGF2BP2-dependent mechanism and
regulates the PTTG3P/YAP1 axis to induce colon cancer
cell proliferation and promote colon cancer progression
(Zheng et al., 2021). METTL3 also regulates the
progression of colorectal cancer by affecting the
metabolism of tumor cells. Shen et al. found that the m6A
methyltransferase METTL3 regulates the expression levels of
HK2 and SLC2A1 by regulating m6A expression and
stabilizing m6A under the action of the methyl-binding
protein IGF2BP, which further promotes the activation of
the glycolytic pathway, inducing malignant proliferation of
colorectal cancer cells (Shen et al., 2020). Another study has
confirmed that METTL3 carries out m6A modification on
GLUT1 mRNA to improve its mRNA stability and translation
level, and promote glucose metabolism and colorectal cancer
occurrence (Chen et al., 2021). Through the regulation of the
m6A-GLUT1-mTORC1 axis, METTL3 is actively involved in
the proliferation of colorectal cancer, and simultaneous
inhibition of mTORC1 and METTL3 has an additive effect
on the treatment of colorectal cancer. In addition to the effects

on cell proliferation, METTL3 also has relations with the
progression and metastasis of colorectal cancer. Peng et al.
(2019) demonstrated that the overexpressed m6A
methyltransferase METTL3 in colorectal cancer can
increase miRNA-1246 expression by upregulating the
methylation level of pri-miR-1246, and further lead to
tumor metastasis by downregulating the expression of the
metastasis-related suppressor gene SPRED2. In addition, it
was found that SPRED2 regulates colorectal cancer metastasis
through the MAPK signaling pathway. Research has suggested
that MAPK can regulate the epithelial-mesenchymal
transition (EMT) process, thus impacting tumor metastasis
(Huang et al., 2021b). Li et al. (2019) shown that METTL3
regulates the progression and migration of colorectal cancer
by increasing the methylation level of SOX2 and enhancing
the stability of methylated SOX2 through an m6A-IGF2BP2-
dependent mechanism. It was also found that the tumor-
suppressing METTL3 had low expression level in colorectal
tumor, and it lost its inhibitory effect on p38/ERK in the
MAPK signaling pathway and promoted colorectal cancer
migration (Deng et al., 2019). In sum, METTL3 modulates
the expression and function of various target molecules in a
m6A-modified manner to affect the proliferation, apoptosis,
metabolism, invasion and metastasis of colorectal cancer cells.
Therefore, specific targeting of METTL3 has important
application prospects in the treatment of colorectal cancer.

In contrast, another m6A writer protein, METTL14, expressed
at a low level in colorectal cancer. The higher the expression of
METTL14, the longer the overall survival of the patients, and
overexpression of METTL14 can suppress the metastasis and
progression of colorectal cancer (Chen et al., 2020b). METTL14
knockout was shown to reduce the level of m6A of its
downstream target SOX4, resulting in reduced recognition of
the modified SOX4 mRNA by YTHDF2, thus increasing SOX4
gene expression and promoting the SOX4-mediated EMT process
and activity of the PI3K/AKT signaling pathway, leading to
malignant progression of colorectal cancer (Chen et al.,
2020a). This was also confirmed in another study in which the
researcher found that the suppression of METTL14 can enhance
the progression and metastasis of colorectal cancer (Wang et al.,
2021). Tumor-associated macrophages (TAM) can inhibit the
antitumor activity of T cells, but the mechanism is not clear. A
recent study found that in colorectal cancer patients’ tumor
tissue, the expression of METTL14 was negatively correlated
with CD8+ T cell infiltration (Dong et al., 2021). Reduced
expression of METTL14 in TAM subset C1q + cells can
promote colon cancer cell growth and impede CD8+ T cell
infiltration. It was further found that the reduction of Ebi3
expression level in C1q + cells can restore the anti-tumor
killing ability of CD8+ T cells, while the loss of METTL14
expression can reduce the m6A modification level of Ebi3
mRNA in C1q + cells and promote the increase of its
transcription level. Therefore, increasing the expression of
METTL14 in TAM subset C1q + cells can promote CD8+

T cell infiltration and antitumor effects (Dong et al., 2021).
The third writer protein WTAP has been shown to have

tumor-promoting action in many malignancies, including liver
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cancer, gastric cancer and osteosarcoma (Chen et al., 2019a; Li
et al., 2020a; Chen et al., 2020c; Zhou et al., 2021b; Feng et al.,
2021). In colorectal cancer, studies have pointed out WTAP is
also oncogenic and can promote the progression of colorectal
cancer through the WTAP/WT1/TBL1 axis in the canonical Wnt
signaling pathway (Zhang et al., 2016a). Another group also
suggested the higher expression of WTAP protein in colorectal
cancer (Dong et al., 2022). In sum, both the dual role of METTL3
in colorectal tumors and the pro-oncogenic effect of METTL14
and WTAP in other tumors suggest that the m6A modification
sites on different downstream target genes are different, which
affect the activation status of various signaling pathways they are
involved in, and thus play specific roles in tumors. Therefore, the
next step in the investigation of m6A modification in the
progression of colorectal tumor disease could be how to
preserve the oncogenic role of the regulator by using
inhibitors or developing new drugs to block its oncogenic
signaling in specific signaling pathways.

However, unlike m6A methyltransferase, eraser and reader
proteins have been less studied in colorectal cancer. It has been
found that FTO is regulated by miR-1266 in the nucleus and
initiates cell signaling molecules STAT3, cyclin D1 and MMPs
to promote the development of colorectal cancer (Shen et al.,
2018; Roslan et al., 2019; Ge et al., 2021). In addition, one
group recently found that FTO is regulated by miR-96, which
affects the methylation level of MYC and increase the
expression of MYC, thus participating in the pro-
proliferative and anti-apoptotic effects of miR-96 in
colorectal cancer (Yue et al., 2020). While in the cytoplasm,
FTO can dynamically regulate m6A modifications to
contribute to the stemness of colorectal cancer cells and
influence tumor drug resistance (Relier et al., 2021).
Preliminary progress has also been made in the mechanism
study of another demethylase, ALKBH5, in mediating
colorectal cancer metastasis and immunotherapy resistance.
The expression of ALKBH5 is downregulated in colon cancer
and is associated with tumor metastasis, and it is pointed out
that this molecule can be used as an independent predictor of
patient prognosis (Yang et al., 2020). This study further
confirmed the tumor suppressor effect of ALKBH5 both
in vitro and in vivo (Yang et al., 2020). One study found
that ALKBH5 can affect the tumor microenvironment of
colorectal cancer, thus mediating the resistance of colorectal
cancer patients to the anti-PD-1 therapy response (Li et al.,
2020b). Meanwhile, ALKBH5 inhibitors can significantly
improve immunotherapy efficacy, providing new
possibilities for targeted therapy of colorectal cancer,
melanoma, and other malignant tumors. Together, these
demonstrated that ALKBH5 can not only be used as a
breakthrough target for the clinical treatment of colorectal
cancer in the future, but also has the potential to become a new
biomarker for the patient population. Furthermore, there is
still a gap in the study of the functional mechanisms of other
members of the Alkb subfamily in colorectal tumors. The
search for new molecules related to m6A modification and
the study of their mechanisms is still a promising direction
worth studying in the future.

Reader protein reads m6A modification sites of key
molecules of colorectal tumor signaling pathways, affecting
the expression level and RNA stability of these genes. In
addition, the reader protein also forms complexes with
noncoding RNAs related to colorectal tumors to improve its
stability. Transcriptional and translational levels of YTHDF1
are significantly elevated in colorectal cancer patients. One
study found YTHDF1 could enhance tumor cell stemness to
promote tumorigenesis by inhibiting the canonical Wnt/β-
catenin pathway (Bai et al., 2019). Another member of the
YTHDF family, YTHDF3, affects colorectal cancer progression
by regulating the negative feedback axis of the lncRNA GAS5-
YAP-YTHDF3 in the Hippo pathway (Ni et al., 2019).
Downregulation of the YTHDC2 gene can significantly
inhibit the translation of tumor metastasis-related genes,
such as hypoxia-inducible factor-1alpha (HIF-1α), and the
high expression of this molecule is positively correlated
with tumor stage and colon cancer metastasis (Tanabe
et al., 2016).

circRNA is an RNA molecule with a novel structure. In
recent years, modification of m6A has also been found in some
circRNAs (Figure 2), with functions in the tumor occurrence
and progression being reported (Zhao et al., 2019a; Li et al.,
2021; Rao et al., 2021). In colorectal cancer, a study reported
that circNSUN2 modified with m6A was frequently
upregulated in tumor tissue and serum samples from
patients with liver metastases of colorectal cancer (Chen
et al., 2019b). The results show that after being recognized
by YTHDC1, m6A-modified circNSUN2 will be exported to
the cytoplasm, contributing to the formation of the ternary
complex of circNSUN2-insulin-like growth factor 2 mRNA
binding protein. circNSUN2 enhances the stability of HMGA2
mRNA, thereby promoting colorectal cancer invasion and liver
metastasis (Chen et al., 2019b). circNSUN2 may become a
potential therapeutic target for liver metastases of colorectal
cancer.

m5C Modification and Colorectal Cancer
m5C modifications are widely found in mRNA, rRNA, tRNA,
and ncRNA, with the greatest abundance in tRNA and rRNA
in eukaryotes (Figure 3). Enzymes responsible for RNA m5C
modification include NSUN1 to NSUN7 of the NSUN family
and DNA Methyltransferase-2 (DNMT2) (Bohnsack et al.,
2019; Kuznetsova et al., 2019). NSUN1 and NSUN5 are
involved in regulating 28S rRNA m5C modification, while
NSUN3 and NSUN4 regulate mitochondrial tRNA and rRNA
m5C modification, respectively. NSUN2 and DNMT2 regulate
tRNA m5C modification in the cytoplasm, while NSUN7
targets eRNAs. The m5C regulator also functions in some
digestive tumors. Studies have shown that the copy number of
the NSUN2 gene is significantly increased in colorectal cancer,
and the RNA methyltransferase NSUN2 is associated with the
oncogene MYC. When the MYC protein is activated, the
expression of NSUN2 is also upregulated (Alboushi et al.,
2021). To date, no specific m5C methyltransferase inhibitor
has been developed. However, studies have shown that
azacytidine, as a novel antitumor drug, can reduce the
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proliferation ability of cancer cells by inhibiting DNMT2-
mediated m5C modification, suggesting that reducing m5C
modification of tRNA may be an effective cancer treatment
strategy (Esteller and Pandolfi, 2017).

m1A Modification and Colorectal Cancer
m1A modification means the attachment of a methyl group to
the N1 position of RNA adenosine. The modification of m1A
can significantly alter the structure of the RNA and the strength

FIGURE 2 | Regulation of m6A methylation in circRNA. YTHDC1 could promote circRNA nuclear export through binding to m6A methylation sites. The complex of
eIF4G2, eIF4, eIF4B and YTHDF3 could initiate the translation of m6A-modified circRNA, and the circRNA could be cleaved by YTHDF2-HRSP12-RNase P/MRP complex.

FIGURE 3 | Functions of RNA m5C modification in RNA processing and metabolism. DNMT2 and NSUNs could methylate tRNA, rRNA, mRNA and ncRNA;
YTHDF1, YBX1 and ALYREF could recognize m5C modification, while TETs could demethelate them.
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of protein-RNA interactions, thus affecting the protein
translation process (Wiener and Schwartz, 2021). TRM10
and the TRM6-TRM61 complex mediate m1A modification
of tRNA (Xiong et al., 2018; Zhang and Jia, 2018). The
presence of m1A modification was also detected in 28S
rRNA (Sloan et al., 2017). The YTH protein family can bind
to m1A with low affinity, so it is considered as a potential m1A
reader (Dai et al., 2018). ALKBH1 and ALKBH3, as
demethylases, are involved in the regulation of m1A
modification. Abnormal expression of m1A-related regulatory
genes in digestive tumors is closely related to patient prognosis.
Overexpression of ALKBH1 in colorectal cancer is one of the
causative factors of a lower survival rate, as well as low
expression of ALKBH3 (Zhao et al., 2019b).

m7G Modification and Colorectal Cancer
The epigenetic modification m7G was originally found to exist
within eukaryotic mRNA, tRNA, and rRNA. The most typical
enzyme characterizing m7G methylation modification is
METTL1. In tRNA, METTL1-WDR4 complex-mediated m7G
modification maintains its structural integrity (Lin et al., 2018).
Them7G in rRNA is mediated by theWilliams-Beuren syndrome
chromosome region 22 (WBSCR22), but its role is not fully
understood. The m7G modification on rRNA may be involved
in ribosome maturation, but has little effect on translation (Haag
et al., 2015). The m7G modification within mRNA is enriched at
the 5′UTR and is dynamically regulated with stress changes, and
its role is to promote the translation process (Malbec et al., 2019).
As an important regulator of m7G,METTL1 functions as a tumor
suppressor in colorectal cancer (Liu et al., 2020). In addition,
overexpression of METTL1 also enhance the chemosensitivity of
colorectal cancer cells to cisplatin by regulating the miR-149-3p/
S100A4/p53 axis (Liu et al., 2019). These results suggest that
maintaining high levels of functional tRNA may be crucial for

METTL1 executing function in cancer cells. Although the effect
ofMETTL1 on tRNAmay be cancer-promoting, there is no direct
evidence that m7G modification plays a role in cancer cells.
Another study demonstrated that WBSCR22 expression in
colorectal cancer tissues is remarkably increased and
upregulated WBSCR22 predicts a poor prognosis in patients
(Yan et al., 2017). Knockdown of WBSCR22 can significantly
improve the sensitivity of colorectal cancer cells to oxaliplatin,
while overexpression of WBSCR22 increases cell resistance.
Knockdown of WBSCR22 can increase oxaliplatin-induced
intracellular ROS production and ROS-induced accumulation
of 8-oxoguanine oxidative damage, which makes cancer cells
more susceptible to oxaliplatin treatment (Yan et al., 2017).

Pseudouridine (ψ) Modification and
Colorectal Cancer
Pseudouridine is another abundant RNAmodification in mRNA,
tRNA, rRNA, snRNA, and lncRNA. In human cell lines, the
proportion of pseudouridine (ψ) modifications in mRNA and
lncRNA is about 30%–84% (Zhang et al., 2019). Pseudouridine is
important in regulating the response to environmental stress. The
presence of ψ can increase the rigidity of the RNA backbone,
affecting its thermodynamic stability and spatial conformation,
thus making the structure and function of the RNAmore stable. ψ
modification is involved in maintaining structural stability in
tRNA and in the assembly of ribosomes in rRNA. One of the most
studied diseases associated with defective pseudouridine
modification is dyskeratosis congenita (DC) caused by
inactivating mutations in pseudouridine synthase 1 (DKC1).
Deficiency of DKC1 activity results in impaired telomerase
activity and impaired mRNA translation, resulting in reduced
cell replicative potential and premature senescence. Abnormal
mutations in DKC1 are associated with various tumors such as
colorectal cancer and hepatocellular carcinoma (McMahon,

TABLE 1 | The main factors of RNA modification.

Genes Modification
type

Target genes Functions in
cancer

References

Writer
METTL3 m6A MYC, EGFR, SP1, SP2, SOX2 Oncogene Lin et al., (2016); Barbieri et al., (2017); Cui et al., (2017); Vu et al. (2017);

Weng et al. (2018)METTL14 m6A
NSUNs m5C rRNA, NMR, HDGF Oncogene Saijo et al. (2001); Bantis et al. (2004); Li et al. (2018); Chen et al. (2019c)
METTL1 m7G Pri-let7 Oncogene Pandolfini et al. (2019)
PUS10 Pseudouridine Unknown Tumour suppressor Jana et al. (2017)
DKC1 Pseudouridine rRNA Tumour suppressor Ruggero et al. (2003); Montanaro et al. (2010)

TERC Oncogene Penzo et al. (2015)
Eraser
FTO m6A PDCD1, CXCR4, SOX10, ASB2,

RARA
Oncogene Iles et al. (2013); Li et al. (2017); Yang et al. (2019)

ALKBH5 m6A FOXM1, NANOG Oncogene Zhang et al., (2016b); Zhang et al. (2017)
ALKBH3 m1A tRNA, CSF1 Oncogene Konishi et al. (2005); Chen et al. (2019d); Woo and Chambers, (2019)

Reader
YTHDC2 m6A HIF1A Oncogene Tanabe et al. (2016)
YTHDF1 m6A FZD9, WNT6 Oncogene Bai et al. (2019)
YTHDF2 m6A TNFRSF1B Oncogene Paris et al. (2019)
IGF2BP1 m6A SRF Oncogene Müller, (2019)
IGF2BP2 m6A SOX2, MYC Oncogene Li et al. (2019); Wang et al. (2019)
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2019). In colorectal cancer, reduced ψ modification on rRNA
alters translation in cancer cells by affecting its interaction with
the ribosomal P site (Babaian et al., 2020).

CONCLUSIONS AND PERSPECTIVES

RNA modification plays an important role as a key post-
transcriptional regulator in gene expression, and researchers
gradually realize that the functional network of its interaction
involves many fields such as metabolism, epigenetics,
chromatin remodeling, as well as the immune system.
Although research on the epitranscriptome has made great
progress, most studies have only focused on the biological
functions of m6A modifications in mRNA, and the
epitranscriptome includes more than 170 chemical
modifications that modify coding and noncoding RNAs.
Therefore, the association of hundreds of other RNA
modifications with coding and noncoding RNAs remains to
be explored. To explore the specific biological functions of
various RNA modifications, it is first necessary to develop
systematic methods and tools for rapid and quantitative
detection of RNA modifications. Most existing sequencing
methods are based on second generation sequencing
technology, which cannot accurately identify chemical
modifications on RNA. When researchers detect specific
RNA modifications, they often need to detect RNA
modifications using specific antibody-based immunoprecipitation
techniques or indirect methods such as chemical labeling and the

unique base modification properties of RNA pairings. Although
thesemethods have good feasibility, its reproducibility is still low due
to the reasons such as technology and incomplete algorithms.
Therefore, future detection technologies and methods for various
RNA modifications still need further research and exploration.

To date, treatments for colorectal cancer are still very
limited. The rapid development of experimental
technologies based on high-throughput sequencing and
proteomics provides more possibilities for a deep study of
the mechanism of RNA modification in colorectal cancer. In
colorectal cancer, the complex of methyltransferase modified
by m6A methylation, including METTL3, which plays a major
catalytic role, has been thoroughly studied and is involved in
the regulation of multiple classical signaling pathways in
tumor development and apoptosis. However, there are still
few studies on other writer molecules, and the roles of WTAP
and METTL16, which can act independently, in colorectal
tumors are still unclear. Similarly, eraser and reader proteins
have been shown to contribute to the occurrence,
development, metastasis and drug resistance of colorectal
cancers by regulating classical signaling pathways, such as
the Wnt pathway and the PI3K/AKT pathway, as well as
changing the m6A modification level of noncoding RNAs,
but there is still wide room for improvement in the
transformation from basic to clinical. Although m6A
methylation modification is abundant at the mRNA level,
tumor-associated noncoding RNAs (miRNAs, lncRNAs and
circRNAs) are also regulated by m6A methylation and act in
the disease progression of colorectal cancer. circRNAs have
recently been found to encode polypeptides. Whether m6A
modification plays a key role and the specific mechanism has
attracted the attention of researchers. Therefore, it is also
essential to pay attention to tumor-associated noncoding
RNAs. In addition, few eraser proteins have been found and
only two more abundantly studied molecules, FTO and
ALKBH5. ALKBH3 has been confirmed to have the
function of demethylase, but there are still many areas that
we have not studied in the Alk homolog family. It is still a
research direction to explore whether more members of this
family can function as demethylases. There are many types of
reader proteins, and it is still unknown that reader proteins
specifically read m6A modifications on different RNAs and
play different downstream functions.

Various RNA modifications including m6A, m5C and ψ
function in the regulation of stem cell function and cell
survival under stress. The regulation of these RNA
modifications may be of great value in reducing tumor cell
chemotherapy resistance and tumor recurrence. The
identification of precise epitranscriptomic biomarkers in a
specific cell type or tumor microenvironment and the
identification of aberrantly modified oncogenic or tumor
suppressor effects are of great significance for finding
precise molecular targets and developing highly selective
and effective therapeutic approaches (Table 1). In the
future, precision medicine based on epitranscriptomic
signatures may be used for the diagnosis and treatment of
colorectal cancer (Figure 4).

FIGURE 4 | Schematic diagram of RNA methylation application in the
clinic.
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