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Abstract
Halogenated natural products are widespread in the environment, and the halogen atoms

are typically vital to their bioactivities. Thus far, six families of halogenating enzymes have

been identified: cofactor-free haloperoxidases (HPO), vanadium-dependent haloperoxi-

dases (V-HPO), heme iron-dependent haloperoxidases (HI-HPO), non-heme iron-depen-

dent halogenases (NI-HG), flavin-dependent halogenases (F-HG), and S-adenosyl-L-
methionine (SAM)-dependent halogenases (S-HG). However, these halogenating enzymes

with similar biological functions but distinct structures might have evolved independently.

Phylogenetic and structural analyses suggest that the HPO, V-HPO, HI-HPO, NI-HG, F-

HG, and S-HG enzyme families may have evolutionary relationships to the α/β hydrolases,

acid phosphatases, peroxidases, chemotaxis phosphatases, oxidoreductases, and SAM

hydroxide adenosyltransferases, respectively. These halogenating enzymes have estab-

lished sequence homology, structural conservation, and mechanistic features within each

family. Understanding the distinct evolutionary history of these halogenating enzymes will

provide further insights into the study of their catalytic mechanisms and halogenation

specificity.

Introduction
Halogenated compounds are widespread in nature, particularly in marine environment, and
they have diverse structures and versatile bioactivities [1–3]. The halogen substituent is typi-
cally critical to the bioactivities of these compounds. There is great interest in the biosynthesis
and mechanistic studies of halogenated compounds, including the antibiotics vancomycin and
chloramphenicol, the antioxidants bromophenols, and the antitumor agents rebeccamycin and
salinosporamides [4–6]. Previous studies have revealed that these halogenated natural products
were biosynthesized by halogenating enzymes [5, 7]. A few examples of halogenated natural
products catalyzed by different halogenating enzymes are shown in S1 Fig. According to their
cofactor dependence, six families of halogenating enzymes have been reported so far (S1
Table), including cofactor-free haloperoxidases (HPO), vanadium-dependent haloperoxidases
(V-HPO), heme iron-dependent haloperoxidases (HI-HPO), non-heme iron-dependent
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halogenases (NI-HG), flavin-dependent halogenases (F-HG), and S-adenosyl-L-methionine
(SAM)-dependent halogenases (S-HG) [7–9].

In the cofactor-free HPO enzyme family, only five crystal structures have been determined,
all from bacterial species [9]. These structures include the chloroperoxidases CPO-A1, CPO-
A2, and CPO-T from Streptomyces aureofaciens, CPO-L from S. lividans, and CPO-F from
Pseudomonas fluorescens. Although CPO-A2 has a catalytic triad, other halogenation mecha-
nism was proposed. The cofactor-free HPO enzymes have an active site pocket, besides the spe-
cific halide-binding sites. These enzymes require organic acids, such as benzoate or propionate,
as cosubstrate for their bioactivity [9, 10].

The V-HPO family has the most well-studied halogenating enzymes from algae, fungi, and
bacteria [11, 12]. The V-HPO enzymes use vanadium (V) as a cofactor and catalyze the oxida-
tion of halides (Cl, Br and I) using hydrogen peroxide (H2O2). Several crystal structures of
V-HPO enzymes have been reported, including V-bromoperoxidases (V-BPO), V-chloroper-
oxidases (V-CPO), and V-iodoperoxidases (V-IPO) [12]. The structure-function relationships
of the V-HPO enzymes are relatively well understood and reviewed very recently [12, 13].

The HI-HPO family consists of heme-thiolate enzymes that catalyze halogenation reactions
in the presence of H2O2 [14]. Several crystal structures of HI-HPO enzymes with their respec-
tive substrates from fungi and mammals have been determined [14–16], The fungal chloroper-
oxidase (CPO) from Caldariomyces fumago is involved in caldarioymcin biosynthesis [14]. The
HI-HPO family also includes mammalian enzymes, such as human myeloperoxidase (MPO)
and animal lactoperoxidase (LPO) [15, 17]. The conserved halide-binding sites and bound sub-
strates of some HI-HPO enzymes were also determined [14–16].

The NI-HG family is a class of highly homologous enzymes that halogenate amino acid
methyl groups, using non-heme iron (Fe2+), O2 and α-ketoglutarate (α-KG) as cofactors [18].
Four enzymes of the NI-HG family have been well characterized [18–21]. CmaB (P. syringae)
is involved in chlorinating the γ-position of L-allo-isoleucine during coronamic acid biosynthe-
sis [18]. SyrB2 (P. syringae) is involved in the chlorination of threonine during the biosynthesis
of syringomycin E [19]. CytC3 (Streptomyces sp.) catalyzes a double chlorination reaction dur-
ing the γ,γ-dichloroaminobutyrate biosynthesis [20]. CurA-Hal (Lyngbya majuscula) catalyzes
the cyclopropane ring formation of the curacin A [21]. After the crystal structures of SyrB2,
CytC3 and CurA-Hal were determined, their halogenating mechanisms were also extensively
studied [22–24].

All of the F-HG family enzymes contain a conserved flavin (FADH2) binding site, and six of
them have crystal structures reported [8]. PyrH (S. rugosporu) is a regioselective tryptophan
5-halogenase during pyrroindomycin biosynthesis [25]. PrnA (P. fluorescens) is a tryptophan
7-halogenase with regioselective chlorination during pyrrolnitrin biosynthesis [26]. RebH
(Lechevalieria aerocolonigenes) is also a tryptophan 7-halogenase, showing regioselective arene
halogenation during rebeccamycin synthesis [27]. CmlS (S. venezuelae) has a covalent flavin-
aspartate bond and is involved in chloramphenicol biosynthesis [28]. CndH (Chondromyces
crocatus) is a myxobacterial chondrochloren halogenase of a new variant group [29]. PltA (P.
fluorescens) is a FADH2-dependent halogenase that catalyzes dichlorination during pyoluteorin
biosynthesis [30].

The S-HG family contains SAM-dependent halogenating enzymes that use a nucleophilic
substitution mechanism [31]. The 5'-fluoro-5'-deoxyadenosine synthase (FDAS) from Strepto-
myces cattleya is the first native fluorinating enzyme discovered that catalyzes the formation of
a C-F bond using nucleophilic substitution [32, 33]. SalL (Salinispora tropica) is a marine bac-
terial SAM-dependent chlorinase that is involved in the biosynthesis of the anticancer agent
salinosporamide A [34]. The fluorinase FDAS also has chlorinase activity; whereas the chlori-
nase SalL also utilizes bromide and iodide as substrates [34, 35].
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These six families of halogenating enzymes have similar biological functions, but the various
enzyme structures suggest that they might have divergent evolutionary processes. It was sug-
gested that the V-HPO family have evolutionary relationship to the acid phosphatases [11, 12].
Based on the crystal structures and catalytic mechanisms, phylogenetic and structural analyses
suggest that these halogenating enzymes may be evolutionarily related to other enzymes. The
elucidation of their divergent evolutionary history will be helpful for the future investigation of
their halogenating mechanisms and substrate selectivity.

Materials and Methods
All the halogenating enzyme homologues with biological relevance were obtained using the
position-specific iterated (PSI)-BLAST in the GenBank [36]. The conserved domain database
(CDD) and the Pfam protein families database for putative conserved domains were also used
[37, 38]. Distant homologues with similar structural macromolecular complexes were also
tracked by the vector alignment search tool (VAST+) in the molecular modeling database
(MMDB), and by the FUGUE 2.0 program using sequence-structure comparisons in the pro-
tein data bank (PDB) [39, 40]. The multiple sequence alignment (MSA) was aligned using the
MUSCLE program in the MEGA 6.0 suite [41]. The structure-based MSA analyses were per-
formed and visualized using the ESPript 3.0 program [42]. The predictions of protein quater-
nary structure were performed using the SWISS-MODEL homology-modeling server [43]. The
3D molecular structures of enzymes were visualized and prepared using the PyMOL molecular
graphics system.

The reconstruction of phylogenetic trees was performed using neighbor-joining (NJ), mini-
mum-evolution (ME), and maximum likelihood (ML) methods [44]. The phylogeny was tested
by the bootstrap and interior-branch methods with 1000 replications. The substitution models
were analyzed using the p-distance model for NJ trees and the Poisson model with gamma dis-
tributed correction for NJ, ME and ML methods in the MEGA 6.0 suite [45]. The gaps/missing
data treatment is using partial deletion [41]. The ML trees were firstly to find best models and
then reconstructed using the MEGA 6.0 software [45]. Similar topologies were obtained from
different methods, and only the most robust phylogenetic trees from the NJ methods are
shown.

Results and Discussion

The HPO family relationships to the α/β hydrolases
The crystal structures of five cofactor-free HPO family enzymes (CPO-A1, CPO-A2, CPO-T,
CPO-L and CPO-F) from bacteria have been determined [9]. These HPO enzymes share more
than 39% sequence identity. The HPO structures showed great similarity with the general
topology of the α/β hydrolase fold [9, 10]. In order to further understand their evolutionary
relationships, these HPO enzyme homologues (particularly distant homologues) were obtained
from the GenBank and the PDB databases. After MSA analysis, phylogenetic trees were recon-
structed using various methods. As shown in Fig 1, these HPO family enzymes clustered sepa-
rately, some of them with homologues of the α/β hydrolase family. For example, CPO-A2 and
CPO-T (S. aureofaciens) closely clustered with the hydrolase 1HL7 (Microbacterium sp.); and
the CPO (Burkholderia cenocepacia) appears to be closely related to the hydrolase EST (P.
putida) [46]. Some remote homologues of the α/β hydrolase family clustered as a separate
clade, such as the hydrolases MhpC (Escherichia coli) and Bphd (Rhodococcus jostii) [47].

Structure-based MSA analysis (S2 Fig) showed that the structures of the HPO enzymes also
have the featured α/β hydrolase fold with a catalytic triad (S98-D228-H257) in the active
sites for halogenation [10]. Comparing the general scheme of the HPO enzymes and the α/β
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hydrolases, we found that the central β-sheet and six covering helices are mostly conserved.
Additional conserved residues included the GYR and DRRGmotifs, and also several other resi-
dues (HG, D-G-G-S and G-S-G-G) for structure arrangement and stabilization [9, 48]. The
comparison between crystal structures of the HPO enzymes and the α/β hydrolases suggest
that they all have similar overall topology, which is featured with the α/β hydrolase fold (S3
Fig). The α/β hydrolase family also contains some esterases and lipases, which are structurally
related but have diverse substrate specificity [49]. These enzymes have conserved arrangement
of catalytic triad residues and structural features, and may share a common ancestor [50, 51].
The cofactor-free HPO enzymes may need organic acids as cosubstrates, such as CPO-T with
benzoate and CPO-F with propionate [9]. The reaction mechanism may involve a conserved
substrate-binding pocket for hydrophobic compounds halogenation at specific carbon center.
These HPO enzymes may catalyze chlorination and bromination reactions, although no halo-
genated natural products have been proved yet [9]. Based on the phylogenetic clusters and
structural similarities, the cofactor-free HPO family might have evolutionary relationships
with the α/β hydrolases, with similar substrates and bioactivities.

The V-HPO family relationships to the acid phosphatases
Crystal structures of the V-BPO, V-CPO, and V-IPO enzymes (sequence identity 17~33%)
have been determined from brown and red algae, fungi, and bacteria [13, 52–54]. The V-HPO
enzymes can catalyze chlorination, bromination, and iodination reactions, with different effi-
ciency [12]. Previous studies suggest that the V-HPO family may have relationships to the acid
phosphatases [11, 12, 55]. Phylogenetic analysis of the V-HPO homologues showed that the
V-HPO enzymes from different origins clustered closely together (S4 Fig). It suggests that
these enzymes might be derived from a common ancestor. During the course of divergent evo-
lution, the bacterial V-HPO enzymes may become clustered independently and have similari-
ties to the type 2 phosphatidic acid phosphatase (PAP2) family [55]. The PAP2 superfamily
includes the bacterial non-specific acid phosphatases and a variety of HPO enzymes, which
may share a similar evolutionary history [12, 56].

Fig 1. Evolutionary relationships between the cofactor-free HPO and the α/β hydrolases. The
phylogenetic tree was reconstructed using the Neighbor-Joining method. The representative HPO enzymes
are marked (▲).

doi:10.1371/journal.pone.0154619.g001
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Structure-based MSA analysis showed that the V-HPO enzymes contain many α-helices,
and the C-terminal has several conserved sites (S5 Fig). Despite a relatively low level of
sequence identity, several short motifs in the C-terminal were still highly conserved between
the V-HPO enzymes and acid phosphatases, including the cofactor vanadate coordination sites
RP, Y-SGH, and R-G-H-D [12, 13]. The overall shape of the V-HPO family monomer enzyme
looks like a cylinder, with a variable N-terminal helix-bundle and a conserved C-terminal
helix-bundle (S6 Fig). The most conserved sites for VO4 coordination were located at the end
of the C-terminal helix-bundle [12]. The non-specific acid phosphatase, such as EB-NSAP
from Escherichia blattae, has only one helix-bundle motif, which contains 5 helixes [55]. There
is also great similarity in the structural fold between the V-HPO and the acid phosphatases [11,
12]. Phylogenetic analyses and structural similarities suggest that the V-HPO enzymes and the
acid phosphatases are evolutionarily related, which may share a common ancestor. Gene dupli-
cation and fusion might have played a vital role during the divergent evolution of the V-HPO
family [12, 13]. The significance of these events to function is that they may have similar bioac-
tivity, due to the high similarity in structure and cofactor-binding manner [12]. For example,
the V-CPO (C. inaequalis) was reported to exhibit phosphatase activity [57]. These all suggest
that the V-HPO family may have evolutionary and functional relationships to the acid phos-
phatases [11, 12].

The HI-HPO family relationships to the peroxidases
Only one enzyme crystal structure of the HI-HPO family has been determined from fungi, the
fungal CPO from C. fumago [14, 58]. Phylogenetic trees were reconstructed after MSA analysis
of CPO homologues, and the NJ tree is shown in Fig 2. The CPO (C. fumago) was closely clus-
tered with other peroxidase family members. The peroxidase family 2 also includes cytochrome
P450-like oxygenases; whereas the CPO was proved to be a functional hybrid of peroxidase-
P450 [58]. The relatively close homologue (sequence identity 24%) is the fungal enzyme
AaeAPO from Agrocybe aegerita. AaeAPO was the first reported aromatic peroxygenases,
which also represents an evolutionary link between heme peroxidases and P450 [16]. Other
distant homologues clustered separately, including the mammalian heme peroxidases MPO
and LPO [15, 17]. The HI-HPO enzymes could oxidize the halides with a lower electronegativ-
ity. For example, the CPO may also accepts bromide and iodide [7].

Structure-based MSA analysis of the HI-HPO and peroxidases (S7 Fig) suggest that the
highly conserved regions include: the proximal heme-binding motif (D-R-PCP-N-LA-H) at
the N-terminal, the E-D-S motif for heme propionates in the middle, and the acid-base catalyst
E residue in the distal heme pocket [59, 60]. The specific residues in the substrate binding
pocket of these enzymes might be variable to ensure their catalytic specificity [14, 16]. Compar-
ison of the overall structures between the HI-HPO and the peroxidases also showed some
structural similarities (S8 Fig). These enzymes are rich in α-helixes, particularly in the highly
conserved core heme-binding site and the halide-binding pocket [16]. Moreover, their catalytic
properties are also somewhat similar. For example, the typical CPO (C. fumago) has catalase
and P450-like monooxygenase activity; whereas the predominant peroxygenase AaeAPO (A.
aegerita) also displayed weak bromoperoxidase activity [14, 16, 61]. These indicate that there
might be evolutionary and functional relationships between the HI-HPO enzymes and the
peroxidases.

The NI-HG family relationships to the chemotaxis phosphatases
Four chlorinases of the NI-HG family have been characterized, including CmaB (P. syringae),
SyrB2 (P. syringae), CytC3 (Streptomyces sp.), and CurA-Hal (Lyngbya majuscula), which
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could also catalyze bromination [18–20, 24]. These NI-HG enzymes share about 20~57%
sequence identity. Phylogenetic trees were reconstructed using these protein homologues, and
the NJ tree is shown in Fig 3. The NI-HG homologues also include BarB1 and BarB2, which is
involved in a trichlorination during the biosynthesis of barbamide in the cyanobacterium

Fig 2. Evolutionary relationships between the HI-HPO and the peroxidases. The phylogenetic tree was
reconstructed using the Neighbor-Joining method. The representative HI-HPO enzymes are marked (◆).

doi:10.1371/journal.pone.0154619.g002

Fig 3. Evolutionary relationships between the NI-HG and the chemotaxis phosphatases. The
phylogenetic tree was reconstructed using the Neighbor-Joining method. The representative NI-HG enzymes
are marked (&).

doi:10.1371/journal.pone.0154619.g003

Independent Evolution of Halogenating Enzymes

PLOSONE | DOI:10.1371/journal.pone.0154619 May 6, 2016 6 / 13



Lyngbya majuscula [62]. Surprisingly, the BlastP search of the SyrB2 and CytC3 homologues
also revealed many chemotaxis proteins CheX in the GenBank database. The CheX protein is
one of the phosphatases in the chemotaxis signal transduction system of bacteria [63, 64].
Some of the CheX coding genes (such as ALE76934) are located on plasmids, which suggest
that horizontal gene transfer might play a role during the evolutionary process.

Structure-based MSA analysis (S9 Fig) showed that the NI-HG family has conserved motifs
(HLD-H and HQA-H) for iron coordination, and also contains conserved active site residues
(H, F, R and S) in a hydrophobic pocket for chloride binding [19]. The overall structures of the
NI-HG enzymes are slightly different from the chemotaxis protein CheX; however, the con-
served fold might be similar in these distant homologues (S10 Fig). Within the core structure
of the NI-HG enzymes is a β-sandwich ‘jelly-roll’motif (cupin fold) composed of eight anti-
parallel strands [19, 20]. The chemotaxis proteins of the CheX family were reported to have a
conserved (E-xx-N) motif; whereas only crystal structures of CheX in Thermotoga maritima
and Borrelia burgdorferi have been determined [63, 64]. No other close homologue between
the two families has been reported, and therefore more experimental data regarding the cata-
lytic mechanisms and evolutionary relationships are needed.

The F-HG family relationships to the oxidoreductases
The F-HG family enzymes all contain a conserved flavin-binding fold [8]. Thus far, six halo-
genase crystal structures have been determined, including PyrH (S. rugosporu), PrnA (P. fluor-
escens), RebH (L. aerocolonigenes), CmlS (S. venezuelae), CndH (C. crocatus), and PltA (P.
fluorescens) [8, 25–29]. These F-HG enzymes share about 20~56% sequence identity. Phyloge-
netic trees were reconstructed using the close and distant homologues of the F-HG enzymes.
As shown in Fig 4, the F-HG family enzymes form two main subgroups. The PyrH, PrnA, and
RebH were categorized as tryptophan halogenases; the CmlS, CndH, and PltA were categorized
as non-tryptophan halogenases. The F-HG enzymes were classified based on their halogena-
tion substrates: variant A enzymes utilize free small molecules like tryptophan; variant B
enzymes catalyze substrates that bind as a thioester [8, 28]. The tryptophan halogenases clus-
tered closely together on a separate branch; whereas the non-tryptophan halogenases clustered
on different sub-branches. These differences in clustering may be due to the substrate specific-
ity of these enzymes. There might be no clear boundary between the two variants [8]. All of the
F-HG enzymes reported are chlorinases, which can also function as brominases [7, 65, 66].
Moreover, distant homologues of the F-HG enzymes may also include some members of the
glutathione reductase (GR) superfamily [8, 67].

Structure-based MSA analysis (S11 Fig) showed that the F-HG family enzymes have a con-
served Rossmannoid-fold FAD-binding domain, consisting of a β-sheet flanked by helixes. All
the F-HG enzymes contain an N-terminal G-box (GxGxxG) motif, which is also conserved in
the GR superfamily [8, 67]. There is also a conserved WxWxIP motif in the C-terminal, and
several G residues are conserved for hydrogen bonding with FAD. The C-terminal domain is
variable, and contains the active site residues responsible for specific substrate binding [8, 28].
Interestingly, the VAST+ search for structurally similar homologues of the F-HG family
enzymes identified several oxidoreductases (sequence identity> 20%), including ChR43 (Cyto-
phaga hutchinsonii), SaGGR (Sulfolobus acidocaldarius), Ta0516 (Thermoplasma acidophi-
lum), and Ttha0370 (Thermus thermophilus) [8]. These enzymes have very similar overall
structures, although the C-terminal domains are different (S12 Fig). Phylogenetic and struc-
tural analyses suggest that there might be evolutionary relationships between the F-HG family
and the oxidoreductases.
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The S-HG family relationships to the SAM hydroxide adenosyltransferases
Only two crystal structures of the S-HG enzymes have been reported, the fluorinase FDAS
(Streptomyces cattleya) and the chlorinase SalL (Salinispora tropica), which share 38% sequence
identity [32, 34]. Homologues of these two S-HG enzymes were searched in the GenBank data-
base, and only a few amino acid sequences were identified (Fig 5). One close homologue is
NobA (Nocardia brasiliensis), which has 79% and 36% sequence identity to FDAS and SalL,
respectively. Interestingly, several distant homologues of the SAM hydroxide adenosyltrans-
ferases (PF01887, previously known as duf-62 family) were also found, such as PH0463 (Pyro-
coccus horikoshii) and MJ1651 (Methanococcus jannaschii) [68, 69]. The SAM hydroxide
adenosyltransferases catalyze a hydrolytic cleavage of SAM to generate adenosine and L-methi-
onine. Similar SN2 nucleophilic substitution was employed, with the replacement of the halide
ion by water or hydroxide [31].

Structure-based MSA analysis (S13 Fig) showed that two motifs (PxNGL and IDxxFGN),
and several active site residues (such as D16 and N215) are conserved. The conserved residues
in the binding pocket might form hydrogen bonds with substrate [31]. However, the key resi-
dues for the halide co-ordination are different. The S-HG family enzymes use T80-S158 in
FDAS and Y70-G131 in SalL [32, 34]. The SAM hydroxide adenosyltransferases utilize a con-
served amino acid triad (D68-R75-H127), which may activate water to hydroxide ions [68].
The variable organization of the active site may ensure their substrate specificity and reaction
in different manners. These enzymes also have very similar tertiary structures, which are
asymmetric homotrimer [31]. Each monomer unit has two domains: the N-terminal α/β/α

Fig 4. Evolutionary relationships between the F-HG and the oxidoreductases. The phylogenetic tree
was reconstructed using the Neighbor-Joining method. The representative F-HG enzymes are marked (●).

doi:10.1371/journal.pone.0154619.g004
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sandwich domain and the C-terminal anti-parallel β-sheet domain (S14 Fig). However, these
enzymes may have different biological functions. The fluorinase FADS could also act as a
chlorinase [35]. The chlorinase SalL also accepts Br- and I-, but not F- [34]. The SAM hydroxide
adenosyltransferases utilize water/hydroxide, but no halogenation activity [68]. Therefore, phy-
logenetic and structural analyses suggest the S-HG enzymes might be evolutionarily related to
the SAM hydroxide adenosyltransferases.

In summary, phylogenetic and structural analyses suggest that there might be evolutionary
and functional relationships between the HPO and the α/β hydrolases, the V-HPO and the
acid phosphatases, the HI-HPO and the peroxidases, the NI-HG and the chemotaxis phospha-
tases, the F-HG and the oxidoreductases, and the S-HG and the SAM hydroxide adenosyltrans-
ferases, respectively. These enzymes have established conserved sequence, structural, and
mechanistic features within each family. As summarized in the S1 Fig, by comparison of the
halogenated natural products and the halogenating enzymes, and also considering the phyloge-
netic clusters of each family, it is possible to map different halogen specificities to different fam-
ilies. Understanding the distinct evolutionary process might be helpful for the study of their
biological function and halogenation specificity.
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