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Natural killer (NK) cells are critical innate lymphocytes that can directly kill target cells
without prior immunization. NK cell activation is controlled by the balance of multiple
germline-encoded activating and inhibitory receptors. NK cells are a heterogeneous and
plastic population displaying a broad spectrum of functional states (resting, activating,
memory, repressed, and exhausted). In this review, we present an overview of the
epigenetic regulation of NK cell-mediated antitumor immunity, including DNA
methylation, histone modification, transcription factor changes, and microRNA
expression. NK cell-based immunotherapy has been recognized as a promising
strategy to treat cancer. Since epigenetic alterations are reversible and druggable,
these studies will help identify new ways to enhance NK cell-mediated antitumor
cytotoxicity by targeting intrinsic epigenetic regulators alone or in combination with
other strategies.

Keywords: natural killer (NK) cells, epigenetics, DNA methylation, histone modification, transcription factor,
microRNA, antitumor immunity
INTRODUCTION

Natural killer (NK) cells are potent effector lymphocytes of the innate immune system. They serve as
the first line of defense against infected or transformed cells without prior sensitization. Compared
with T and B cells, which recognize targets by their antigen-specific cell surface receptors (TCRs/
BCRs), NK cell activation is controlled by the balance between activating and inhibitory signals
from multiple germline-encoded receptors. These cells patrol for potential target cells that lack
major histocompatibility complex class I (MHC I) or overexpress ligands to activate NK cell
receptors (NCRs) (1). NK cells are initially recruited to the tumor microenvironment (TME) during
the tumor killing process and then are activated by complex signals arising from multiple ligand-
receptor interactions. Activated NK cells release cytotoxic granules containing perforin and
granzyme B upon forming an immunological synapse with the target cells (2). Perforin forms
pores in the membrane of target cells, thus allowing granzymes to enter the cell and initiate cell
death (3, 4). NK cells can also induce cell apoptosis through the engagement of Fas ligands (FasL) or
tumor necrosis factor-related apoptosis-inducing ligands (TRAIL) with Fas and TRAIL receptors on
tumor cells (5, 6). In a process known as antibody-dependent cell cytotoxicity, NK cells recognize
opsonized tumor cells via Fc receptors (CD16) and kill them by releasing cytolytic granules. Lysis
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leads to an increased release of tumor antigens and further primes
adaptive immune responses. In addition to direct cytotoxic activity,
NK cells can function as central communicators of innate and
adaptive immunity in the TME by secreting multiple chemokines
(CCL3,CCL4, CCL5, andXCL1), cytokines (IFN-g, TGF-b, and IL-
10), and growth factors (GM-CSF) (7). In this way, these cells
communicate with various immune cells within tumor tissues,
including monocytes, granulocytes, dendritic cells, T cells, and
stromal cells (8).

NK cells play important roles in cancer immunosurveillance,
particularly by eliminating early tumors and metastasis (minimal
disease). In 1970s, several groups found non-MHC-restricted
antitumor activity of NK cells in mice (9–12). Later, the rapid
and potent cytotoxicity of NK cells against target cells was also
observed in humans (13). Furthermore, an eleven-year follow-up
study found that the impaired NK cell killing capacity in the
peripheral blood is correlated with tumor incidence and
prognosis (14). Compared with the role of T cells in antitumor
immunity and adoptive cellular therapy, NK cells have certain
advantages and greater potential “off-the-shelf” utility (7). They
are as effective as T cells (15, 16) but less toxic because they cause
fewer immune-related adverse events. Mature NK cells are
effector cells with a broader reactivity to tumors due to their
independent recognition of specific receptors and antigen
presentation by MHC molecules. Their lytic responses can be
triggered within minutes without clone selection and
differentiation (1). The “ready-to-go” state is associated with
the unique epigenetic features of NK cells, as shown in the
following sections.
NK CELL PLASTICITY

NK cells are a heterogeneous and plastic population. They are
classically defined as CD3-CD56+ cells in humans and divided
into two major subsets, CD56dimCD16+ and CD56brightCD16low

(17–19). CD56dimCD16+ subsets are highly cytotoxic effector
cells that are predominantly found in peripheral blood.
CD56brightCD16low subsets are recognized as immature NK
cells with immune regulation functions through cytokine
secretion. They preferentially reside in secondary lymphoid
organs, such as lymph nodes. The surface markers of murine
NK cells vary depending on the mouse strain. In C57B/6 and SJL
mice, NK cells express NK1.1, NKp46, and CD49b (2). For other
strains, such as BALB/c, NK cells express CD49b and NKp46
while possessing allelic variants of NK1.1 (2). Tumor necrosis
factor receptor superfamily member CD27 and the integrin
CD11b are used to mark NK cell differentiation in mice. The
most cytotoxic NK cells are recognized as CD27-CD11b+,
regulatory NK cells are CD27+CD11b+, and immature NK cells
are CD27+CD11b- (20, 21).

NK cells belong to the family of innate lymphoid cells (ILCs).
NK cells and ILC1s are grouped into group I innate lymphoid
cells (22). ILC1s reside in tissues and function as cytokine
secretors. Conventional NK (cNK) cells and ILCs arise from
distinct progenitors (23). However, many surface markers
Frontiers in Immunology | www.frontiersin.org 2
initially described on NK cells, such as CD122, NK1.1, and
NKp46, can be expressed on ILC1s (24). The mixed phenotype
can be explained by imprinting the effects of the tissue
microenvironment and cell activation state. Therefore, at
present, the definition of NK cells based on their phenotype is
essentially at a steady state (24). The majority of human mature
NK cells can be identified as CD3-CD127-CD7+CD56+ (or
NKp46+)T-bet+Eomes+ lymphocytes, and mature mouse NK
cells can be identified as CD3−CD127−NK1.1+ (or NKp46+)T-
bet+Eomes+ lymphocytes. There are no markers that can
unambiguously distinguish NK cells and ILC1s in human or
mouse tissues during infection or inflammation (25).

The conversion between NK cells and ILC1s in the TME was
recently described (26). Transforming growth factor-b (TGF-b) in
the TME could drive NK cells (CD49a−CD49b+Eomes+) to convert
into intermediate ILC1 (intILC1, CD49a+CD49b+Eomes+)
populations and ILC1 (CD49a+CD49b−Eomesint) populations.
IntILC1s and ILC1s are less cytotoxic and cannot control local
tumor growth and metastasis (27). SMAD4, which is a unique
common SMAD, acts as a central mediator that facilitates the
canonical TGF-b signaling pathway (28). TGF-b induces salivary
gland ILC differentiation by suppressing Eomes through a JNK-
dependent, Smad4-independent pathway (29). However, Smad4
deficiencydoesnot affect ILC1differentiationbut surprisingly alters
the phenotype of cNK cells. Cortez et al. reported that Smad4-
deficient NK cells showed features of ILC1s and lost effector
functions to control tumor metastasis. Mechanistically, SMAD4
restrained noncanonical TGF-b signalingmediated by the cytokine
receptor TGFbR1 in NK cells (30). A subsequent study byWang et
al. showed that selective deletion of Smad4 in NK cells led to
impaired NK cell maturation, NK cell homeostasis, and NK cell
immune surveillance against melanoma metastases and
cytomegalovirus. These changes were associated with a
downregulation of granzyme B (Gzmb), Kit, and Prdm1 in
Smad4-deficient NK cells and independent of canonical TCF-b
signaling (31).

Of note, it has become increasingly clear that various subsets of
tissue-residentNK (trNK) cells exist, which differ from cNK cells in
their origin, development, and function (reviewed in Ref. 32-34)
(32–34). Unlike circulating and widely distributed cNK cells, trNK
cells were found to populatemultiple tissue sites, including the liver,
lung, skin, uterus, salivary gland, adipose tissue, and kidneys (32).
trNK cells are distinct from cNK cells in the expression of surface
markers and transcription factors. For example, murine liver trNK
(LrNK) cells express relatively low levels of NK cell maturation-
associated markers, such as CD11b, CD49b (DX5), and Ly49
receptors (35). The development of LrNK is independent of
Eomes, while T-bet, Hobit, PLZF, and AhR are more critical for
LrNK cell development than cNK cells (34). trNK cells are actively
involved in multiple processes, such as antiviral infection,
mediating immune tolerance, and promoting fetal growth (34).
The accumulation of LrNK cells in hepatocellular carcinoma
patients is correlated with poor prognosis (36), suggesting a
potential role in tumor development. More comprehensive
studies are needed to investigate the role of trNK in
antitumor immunity.
May 2021 | Volume 12 | Article 672328
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Although historically known as innate lymphoid cells, NK
cells can also achieve memory characteristics similar to those of
adaptive immune cells, such as antigen specificity, longevity, and
enhanced recall responses. Memory NK responses were first
reported in mouse models of anti-murine cytomegalovirus
(MCMV) infection (37) and delayed hypersensitivity reactions
to chemical haptens and viral antigens (38, 39). During
secondary MCMV infection, memory NK cells bearing the
virus-specific Ly49H receptor can rapidly proliferate,
degranulate and produce cytokines by recognizing the MCMV-
encoded glycoprotein m157 (37). Memory NK cells have also
been described in humans expressing NKG2C in HCMV-
seropositive individuals (40). Growing evidence suggests that
memory-like NK cell responses may occur in response to a
broader range of viral, bacterial, and even eukaryotic pathogens
(41). The responses of memory-like NK cells against tumors are
poorly understood, and two key questions remain to be
answered: (1) whether NK cells can acquire memory properties
during the antitumor process and (2) whether memory NK cells
from infection models can acquire stronger in vivo killing
capacity targeting tumor cells.

Compared with cNK cells that live less than ten days (42, 43),
memory NK cells can persist for years in some individuals and
are important for controlling CMV throughout life (44, 45).
Similar to CD8+ T cells, NK cells also exhibit an “exhausted”
phenotype in individuals with malignancies or chronic viral
infections. This phenotype is represented by a loss of activating
receptors (e.g., NKG2D) and increased expression of checkpoint
receptors (e.g., NKG2A, TIGIT, PD-1, TIM-3, LAG-3), which
severely impair their antitumor function (46). Compared with
the “suppression” state, which is reversible after the withdrawal
of inhibitory signaling, the “exhaustion” state is not transient and
undergoes stable epigenetic changes (47). Antagonistic
antibodies (Abs) (e.g., anti-PD-1, anti-TIGIT, and anti-NKG2A
monoclonal Abs) can recover NK cell antitumor capacity
(46, 48). However, epigenetic intervention should be
considered to reactivate exhausted NK cells intrinsically in
future studies.
Frontiers in Immunology | www.frontiersin.org 3
EPIGENETIC REGULATORS MODULATING
NK CELL-BASED ANTITUMOR IMMUNITY

Epigenetic alterations are reversible and heritable changes that
do not alter DNA sequences, including DNA methylation,
posttranslational modifications of histone proteins, changes in
transcription factors, and noncoding RNA expression. Despite
the deep understanding of NK cell biology, research on
epigenetic regulation of NK cell function is just beginning. In
this review, we provide an overview of the epigenetic regulators
that modulate NK cell-based antitumor immunity, and the
findings will hopefully help to identify novel approaches and
potential targets for tumor immunotherapy.

DNA Methylation
DNA methylation is a heritable epigenetic marker that correlates
with gene repression. During the terminal differentiation process,
NK cells gradually acquire the ability to produce IFN-g through
demethylation and epigenetic remodeling at the IFNG promoter
(Figure 1) (49). DNA methylation has been reported to correlate
with the gene expression of a variety of NK cell receptors,
including killer Ig-like receptors (KIRs) and natural cytotoxic
receptors (NCRs). KIRs are polymorphic groups of molecules,
and some are expressed while others are silenced in the same cell.
Different KIRs can transmit inhibitory or activating signals to
NK cells, and effector function is considered to result from the
balance of these contributing signals. The expression repertoire
of KIRs is critical for NK killing ability. Moderate demethylation
of the inhibitory KIR promoter is essential for normal NK
recognition and lysis of abnormal cells. Promoter methylation
of KIR genes consistently silences KIR expression (50, 51) and
chromatin is condensed in early hemopoietic progenitor cells.
During NK cell differentiation and maturation, the chromatin
structure opens, and KIR genes sequentially become
demethylated and transcribed (Figure 1) (52). Excessive
demethylation of the inhibitory KIR promoter represses NK
cytolytic function and results in tumor escape. Some studies
demonstrated that acute exercise could cause promoter
FIGURE 1 | NK cells gradually downregulate DNA methylation levels at the gene promoters of interferon-g (IFNG) and receptors (KIRs and NKG2A) during the
differentiation process, and this activity is correlated with the upregulation of their transcription. HSPC, hemopoietic stem/progenitor cells; NKp, NK cell progenitors;
mNK, mature NK cells.
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demethylation of the activating NK-cell receptor KIR2DS4 (53)
and changed DNA methylation in 33 targets (25 genes) (54). Of
the targets, 19 showed decreased methylation and 14 showed
increased methylation. Whether these changes lead to functional
adaptations needs to be elucidated. In addition, DNA
methylation is crucial in maintaining the allele-specific
expression of the inhibitory receptor NKG2A. CpGs are
methylated in NKG2A-negative stages (hemopoietic stem cells,
NK progenitors, and NKG2A-negative NK cells) but
hypomethylated specifically in various developmental stages of
NKG2A-positive NK cells and NK cell lines (Figure 1) (55).
Natural killer group 2 member D (NKG2D) is one of the most
crucial activating receptors of NK cells for target recognition.
The methylation frequency of the NKG2D promoter can be used
as a biomarker for detecting hepatitis B virus-associated
Frontiers in Immunology | www.frontiersin.org 4
hepatocellular carcinoma (HCC). NKG2D promoter
methylation in HCC patients was higher than that in chronic
hepatitis B patients and healthy controls (56).

Hypomethylating agents 5-azacytidine (5-aza) and decitabine
(Deci) are approved for the treatment of acute myeloid leukemia
(AML) and myelodysplastic syndrome (MDS). However, the
direct effect of demethylating treatment on NK cell function
remains controversial (Table 1) and should be considered in the
application of these drugs. Both 5-aza and Deci can alter the
expression of KIRs on NK cells and may thus affect NK reactivity
against malignant hematopoietic cells (57–59). Demethylation
treatment with 5-aza significantly suppresses the cytolytic
activity of the NK-92MI cell line and human polyclonal NK
cells, which is related to the overexpression of inhibitory KIRs
and impaired granzyme B (GzmB) and perforin (Prf1) release by
TABLE 1 | Epigenetic drugs targeting DNA methylation and histone modification related to NK antitumor cytotoxicity.

Agents Effects NK cytotoxicity References

Hypomethylating
agent

5-aza ↑inhibitory KIRs ↓ (57, 58)
↓granzyme B and perforin release
↑Ki-67+ NK cells ↑ (59)
↑IFN-g production
↑degranulation
- inhibitory KIRs ↑ (60)
↑NK precursor differentiation

Deci ↑inhibitory KIRs U-shaped response (lowest at
intermediate dose)

(61)
↓NKG2D expression
↑NKp44 expression
↑NKG2DL (ULBP and MICB) on AML cells ↑ (62, 63)

HATi Curcumin ↓NKG2D transcription ↓ (64)
↓NKG2D-dependent NK cell degranulation and IFN-g secretion

HDACi Entinostat
(class I HDACi)

↑MIC expression, Death receptors and PD-L1 expression on
tumor targets

↑ (65, 66)

↑NKG2D expression
SAHA
(Pan-HDACi)

- degranulation ↓ (67)

Panobinostat ↓NKG2D, CD16 and NKp46 expression ↓ (67)
↓degranulation

Romidepsin - NKG2D, CD16 and NKp46 expression ↓ (67)
↓degranulation

TSA ↓NK degranulation ↓ (68, 69)
(Pan-HDACi) ↓IFN-g production
VPA ↓NKG2D and NKp46 expression on resting NK cells
(class I and IIa HDACi) ↓NKG2D, NKp44 and NKp46 expression on NK cells stimulated

with IL-12, IL-15 and IL-18NaB
(class I and IIa HDACi)

Histone methylase
inhibitor

UNC1999 ↑NK degranulation ↑ (70)
EPZ005687 ↑CD122 & NKG2D on NK cells
(EZH2 inhibitor)
GSK343 ↑NKG2D-Ligand on tumor cell surface ↑ (71)
GSK126
(EZH2 inhibitor)
GSK-J4 ↓IFN-g,TNFa,GM-CSF and IL-10 – (72)
(JMJD3/UTX inhibitor ) ↓granzyme B, perforin, NCRs, ULBPs in mRNA level

Histone
demethylase
inhibitor

SP-2509 ↓NK cell metabolism ↓ (73, 74)
SP-2577
(scaffolding LSD1 inhibitor)
May 2021 | Volume 12 | A
↑, up-regulated; ↓, down-regulated; -, unchanged.
5-aza, 5-azacytidine; KIRs, killer immunoglobulin-like receptors; IFN-g ; interferon-g; Deci, decitabine; NKG2DL, NKG2D ligands; ULBP, UL16-binding protein; MICAB, MHC class I chain-
related gene B; AML, acute myeloid leukemia; HATi, histone acetyltransferases inhibitor; HDACi, histone deacetylases inhibitor; PD-L1, programmed death ligand-1; SAHA, suberoylanilide
hydroxamic acid; TSA, trichostatin A; VPA, valproic acid; NaB, sodium butyrate; EZH2, enhancer of zeste homolog 2; NCR; natural cytotoxicity receptors; JMJD3, jumonji domain-
containing protein D3; TNFa, tumor necrosis factor-alpha; GM-CSF, granulocyte-macrophage colony-stimulating factor; LSD1, lysine-specific histone demethylase 1.
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these cells (57, 58). However, another study reported that
systemic treatment with 5-aza leads to an increased proportion
of Ki-67+ NK cells expressing multiple KIRs in MDS patients.
These proliferating NK cells exhibit increased IFN-g production
and degranulation towards tumor target cells (59). However,
Kubler et al. found that low-dose and long-term treatment of
humanized NSG mice with 5-aza does not induce common
inhibitory KIR expression but instead promotes the
differentiation of various NK-cell precursor subsets to enhance
the antitumor (pediatric BCP-ALL in vivo) response (60). The
different effects could be determined based on the dose, with high
doses of the demethylating agents showing cytotoxicity and
lower doses mediating DNA hypomethylation. Deci decreases
NK cell cytotoxicity at intermediate concentrations and leads to a
U-shaped dose-response curve (0-20 mM). In contrast, increased
inhibitory KIRs (KIR3DL1, KIR2DL1, KIR2DL2/DL3),
decreased NKG2D, and increased NKp44 expression have been
induced by Deci treatment in a linear dose-response manner
(61). However, another group reported that low-dose Deci (0.2
mg/kg) reduces the antitumor response of NK cells in tumor-
bearing mice (75), and Deci has also been shown to increase the
cell surface expression of recombinant UL16 binding protein
(ULBP) (62) and MHC class I-related molecule B (MICB) (63),
the ligands of NKG2D in AML cells, and the NKG2D-dependent
sensitivity of these cells to NK-mediated killing in vitro.

Histone Modification
Histone modifications are associated with the opening or closing
state of the chromatin structure, which results in the activation or
repression of gene transcription (76). Of particular importance
are histone acetylation and methylation. The acetylation of lysine
residues on histone 3 (AcH3) and 4 (AcH4) is associated with
active transcription (77), while methylation contributes to both
active and suppressed states of gene expression. The methylation
of histone 3 lysine 9 (H3K9) and H3K27 is inhibitory, whereas
the methylation of H3K4, H3K36, and H3K79 is activating (78).
The level of histone modification is controlled by the interplay
between enzymes: e.g., histone acetyltransferases (HATs) vs.
deacetylases (HDACs) (79) and histone methyltransferases vs.
demethylases. The dynamic histone modification states
determine NK cell activation and effector function in
antitumor immunity (80).

Histone Acetylation
Histone acetylation precedes the transcription of many genes
(e.g., IFNG and NKG2D) involved in regulating NK cell function
(81–83). Chang et al. compared long-range histone
hyperacetylation patterns across the Ifng gene region in T cells
and NK cells and found that histone acetylation of the Ifng gene
depends on stimulation and the transcription factors Stat4 and
T-bet in T cells. In contrast, even in resting NK cells, histones
along Ifng gene region are already acetylated, and additional
proximal domains are hyperacetylated after stimulation of
transcription (84). These characteristics may partially explain
the quick response of NK cells without prior sensitization. The
NKL cell line exhibits high levels of AcH3, AcH4, and H3K4me3
in the NKG2D gene. A significantly high level of AcH3, especially
Frontiers in Immunology | www.frontiersin.org 5
H3K9ac, was observed in the NKG2D gene of NK cells from
peripheral blood, while a low level of H3K4me3 was present.
Repressive histone modifications (H3K27me3 and H3K9me2) to
the NKG2D gene in both NKL and peripheral NK cells were
hardly detectable (64).

HAT inhibitor (curcumin) incubation reduced H3K9Ac
levels of the NKG2D gene, downregulated NKG2D
transcription, and led to a marked reduction in NKG2D-
dependent NK cell degranulation and IFN-g secretion by NKL
cells (64). HDAC inhibitors (HDACis) have emerged as novel
immunomodulatory drugs and have been reported to affect NK
cell cytotoxicity against tumors through both receptor and ligand
modulation. The expression of activating ligands for NK cell
recognition was increased after HDACi treatment on the cell
surfaces of neuroblastoma, melanoma, osteosarcoma, colon, and
Merkel cell carcinomas (65, 85). However, different HDAC
inhibitors were reported to have varying effects on the NK cell
phenotype (Table 1). There are four subclasses of HDACs
(HDAC I, II, III, IV). Treatment with a histone deacetylase
inhibitor (trichostatin A, TSA) alone was sufficient to induce
inhibitory NKG2A receptor expression in mice (55). Entinostat
(a class I HDACi) treatment induced NK activation via increased
MIC expression in tumor targets as well as enhanced NKG2D
expression and ADCC-mediated lysis in primary human NK
cells (65, 66). Many HDACis have been reported to negatively
regulate the NK antitumor response, including vorinostat
(SAHA), panobinostat, romidepsin, TSA, valproic acid (VPA),
and sodium butyrate (NaB) (Table 1) (67). They affect NK cell
activation through cytokine receptors and activating receptors
involved in tumor cell recognition (68, 69). The inhibitory effect
on nuclear mobilization of p50 and NK-kB activation caused by
HDAC inhibitors also resulted in impaired NK cell
activation (82).

Histone Methylation
Li et al. screened 4 upregulated (KMT2C, KDM6B, UTY, and
JARID2) and 4 downregulated (ASH1L, PRMT2, KDM2B, and
KDM4B) histone methyltransferases/demethylases upon
activation of human NK cells by gene expression profiling,
which was further confirmed by qPCR and western blot in
NK92MI cells. These enzymes were mainly associated with
H3K4 methylation and H3K27 methylation, and they only
affected limited gene loci instead of the global modification
state. Bivalent marks with both H3K4me3 and H3K27me3
determined the “poised” chromatin state of many genes
associated with NK activation. This state helps the rapid shift
in expression above the baseline during the target recognition
process. Treatment with UNC1999 could induce NK cell
degranulation. In addition, the expression of IFN-g and TNF-a
is increased after treatment with OG-L002 and MM102 (80).

Histone lysine N-methyltransferase Ezh2 (enhancer of zeste
homolog 2) contributes to histone repressive marks H3K27me3.
Loss of Ezh2 or inhibition of its enzymatic activity with small
molecules in both mouse and human hematopoietic stem and
progenitor cells enhanced NK cell expansion and cytotoxicity
against tumor cells through upregulation of CD122 and NKG2D
(Table 1) (70). The Ezh2 inhibitor EPZ011989 and combination
May 2021 | Volume 12 | Article 672328
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treatment with cisplatin in HT1376 (bladder cancer cell line)
xenografts led to increased expression of CD86, MIP-1a, and
CD3d at the transcript level as well as CD56 and NCR1 at the
protein level, indicating an active state of NK cells (86). Ezh2 was
also found to be a transcriptional repressor of NKG2D ligands.
Ezh2 inhibition enhanced NK cell eradication of tumor cells in
hepatocellular carcinoma (Table 1) (71). Jumonji-type histone
H3K27 demethylases (e.g., JMJD3/UTX) have been identified as
key regulators of cytokine production in human NK cell subsets.
The JMJD3/UTX inhibitor GSK-J4 increased global levels of the
repressive H3K27me3 mark around the transcription starting
site (TSS) of effector cytokine genes. However, NK cell cytotoxic
killing activity against tumor cells was unaffected after treatment
with GSK-J4 (Table 1) (72).

Methylation of H3K4 is an activating mark for gene
transcription. An H3K4me1-marked latent enhancer at the
Ifng locus was essential for NK memory in a systemic
endotoxemia model (87). The H3K4me3 demethylase Kdm5a
associates with p50 and binds to the suppressor of cytokine
signaling 1 (Socs1) promoter region in resting NK cells, thus
leading to a repressive chromatin configuration. Kdm5a
deficiency impairs the activation of NK cells, leading to
decreased IFN-g production and impaired phosphorylation and
nuclear localization of STAT4 (88). LSD1 is a histone
demethylase of H3K4me1/2 and H3K9me1/2. Catalytic LSD1
inhibitors blocking demethylase activity are unaffected on NK
cells, while scaffolding inhibitors disrupting epigenetic
complexes, including LSD1, impair NK cell metabolism and
cytotoxicity through depletion of glutathione (Table 1) (73, 74).

Transcription Factors
Transcription factors (TFs) are specific kinds of proteins that can
activate or suppress the transcriptional activity of target DNA
sequences by specifically recognizing and binding them. Many
TFs have been shown to highly modulate the function of human
or murine NK cells and affect the eradication of tumor cells
(Figure 2A) (reviewed in Ref. 89-91) (89–91). Kwon HJ et al.
reported that silencing the expression of the NF-kB p65 subunit
caused a significant reduction in the mRNA levels of IFN-g,
TNF-a, MIP-1a/b, GramB, and IkBa induced by NKG2D and
2B4 coengagement (92). The T-box transcription factors T-bet
and Eomes are both critical in driving the differentiation and
function of NK cells (93). T-bet deficiency impairs the longevity
and function of NK cells in inhibiting cancer metastasis, which
further precludes the initiation of a potent adaptive response to
tumors in mice. Adoptive transfer of wild-type activated NK cells
(but not T-bet-/- NK cells) protects T-bet-/- animals after
melanoma challenge (94). Aiolos is required for the maturation
of CD11b+CD27- NK cells. However, NK cells lacking Aiolos are
strongly hyperreactive to various NK cell-mediated tumor
models but impaired in controlling viral infection (95). Foxo1
was identified as a negative intrinsic regulator of NK cell homing,
late-stage maturation, and effector functions, and it can directly
target IFN-g expression; moreover, Foxo1 deficiency increases
the NK cell killing capacity of tumor cells ex vivo and the
antimetastatic activity in vivo. Foxo1 suppresses Tbx21
expression through direct binding to its promoter in human
Frontiers in Immunology | www.frontiersin.org 6
NKcells and throughassociationwith thepromoter via recruitment
by Sp1 in murine NK cells (96). Phosphorylation-mediated
inactivation of Foxo1 facilitates the activating receptor CD226
regulation of NK cell antitumor responses (97). Krupple-like
factor 2 (KLF2) is a key TF responsible for expanding transferred
NKcells and prolonging their functionality within the tumor. KLF2
imprints a homeostatic pattern onmatureNKcells that allows them
to migrate to IL-15-rich microenvironments (98). Cells adapt to
hypoxia in solid tumors byupregulatingHIF-1a. InhibitionofHIF-
1a unleashes the antitumor activity of human tumor-infiltrating
NK cells associated with high expression of IFN-g in an IL-18-
dependent manner (99).

It has been reported that the signal transducer and activator
of transcription (STAT) family (STAT1, STAT3, STAT4,
STAT5) positively or negatively regulates NK cell activity
(Figure 2A) (100). STAT1 dysfunction in humans and genetic
deletion in mice leads to impaired NK cell antitumor cytotoxicity
(101). Mutation of the S727 phosphorylation site of STAT1
(Stat1-S727A) increases the expression of perforin and
A

B

FIGURE 2 | Transcription factors (TFs) that modulate NK cell cytotoxicity and
transdifferentiation. (A) TFs that positively and negatively regulate NK
antitumor cytotoxicity are indicated separately. (B) Schematic representation
of multiple TFs involved in the transdifferentiation between NK cells and other
immune cells. DN, double-negative cells in the thymus; DP, double-positive
cells in the thymus; SP, single-positive cells in the thymus; ILC, innate
lymphoid cells.
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granzyme B and enhances NK cell cytotoxicity in various tumor
models, including for melanoma, leukemia, and metastasizing
breast cancer. Inhibition of upstream cyclin-dependent kinase 8
(CDK8) may be a therapeutic strategy for stimulating NK cell-
mediated tumor surveillance (102). Full-length STAT1a is efficient
for NK cell maturation and tumor control in mice, while NK cells
from the C-terminally truncated STAT1b isoform show impaired
maturation and effector functions (103). STAT-3 regulates all
aspects of NK biology, including almost all of the pathways for
target cell killing and the reciprocal regulatory interaction between
NK cells and other components of the immune system, which has
been presented in detail by Nicholas A. Cacalono (104). STAT4
signaling in NK cells could be activated by IL-2 (105) and IL-12
(106), which specifically bind to the human perforin gene and
induce activation of NK antitumor activity. Eckelhart et al. found
that STAT5fl/flNcr1-iCreTagmice show amarked reduction inNK
cells in the spleen and lymph nodes and severely impaired NK-
dependent antitumor activity (107). There are two homologs of
STAT5, STAT5A and STAT5B, which can form homos,
heterodimers, and tetramers. It was reported that the loss of
STAT5B (but not STAT5A) reduces NK cell numbers and
cytotoxicity (108). However, recent studies have shown that
STAT5A deficiency is sufficient to compromise NK cell
homeostasis, responsiveness, and tumoricidal function (109, 110).

In addition, several TFs have been shown to control the
transdifferentiation between NK cells and other immune cells (T
cells, ILCs) (Figure 2B). Downregulation of Eomes by TGF-b
signaling in the TME could induce the conversion of mouse NK
cells to an NK-ILC1 intermediate cell type (intILC1s) and,
finally, to ILC1s, which are less cytotoxic and cannot control
local tumor growth and metastasis (27). Cortez et al. found that
SMAD4 is a negative regulator of NK-ILC1s conversion in a
noncanonical TGF-b signaling pathway (30). SMAD4 is the only
common SMAD in TGF-b signaling that usually impedes
immune cell activation in the tumor microenvironment.
Selective deletion of Smad4 in NK cells impairs tumor cell
rejection, promotes tumor cell metastases, and impedes NK
cell homeostasis and maturation. GzmB was identified as a
direct target of a transcriptional complex formed by SMAD4
and JUNB (31). It was also found that ILC3 could
transdifferentiate into IFN-g-producing ILC1 and NK cells by
IL-1b plus IL-12 stimulation, which is associated with the
upregulation of T-bet and Aiolos. Degradation of Aiolos and
Ikaros proteins by lenalidomide inhibits ILC1/NK cell
transdifferentiation and ILC1/NK cell function (111). Bcl11b, a
zinc finger transcription factor, is essential for the maintenance
of T-cell identity. Upon Bcl11b deletion, immature thymic T cells
could convert to NK cells and acquire NK cell properties (112,
113). The converted NK cells were called T-to-natural killer
(ITNK) cells and exhibited enhanced antitumor activity. They
are considered an attractive cell source for cancer
immunotherapy (114).

miRNA
MicroRNAs (miRNAs) are small single-stranded noncoding
RNAs that target mRNA and promote degradation by binding
Frontiers in Immunology | www.frontiersin.org 7
to the 3’ untranslated region (UTR) (115). miRNAs can
modulate gene expression involved in the development,
maturation, and effector functions of NK cells (Figure 3)
(reviewed in Ref. 116) (116).

Prf1 and GzmB are the main effector molecules of NK cells.
Prf1 could be targeted by miR-30e (117) and miR-150 (118),
GzmB could be targeted by miR-378 (117), while both could be
targeted directly by miR-27a* (119) in resting and activated
states and indirectly by miR-27a-5p (120) by downregulating the
expression of C-X3-C motif chemokine receptor 1 (CX3CR1)
under TGF-b1 signaling. Tumor cells upregulate miR-561-5p,
which in turn inhibits the production of CX3CL1 and
subsequently reduces NK cell recruitment to the tumor (Figure
3A) (121). Wang et al. reported that miR-146a negatively
regulates IFN-g production in human NK cells by targeting the
NK-kB signaling pathway (Figure 3A) (122). MiR-146a
overexpression significantly suppresses the cytotoxic activity of
NK92 cells by targeting STAT1 signal transduction (123). In
contrast, miR-181 was found to promote IFN-g production in
primary NK cells in response to cytokine stimulation by targeting
nemo-like kinase (NLK), an inhibitor of Notch signaling (124).
MiR-362-5p overexpression upregulated Prf1, GzmB, IFN-g, and
CD107a in human NK cells (125). Several reports have shown
that miR-155 can enhance NK cell functions by regulating
molecules involved in NK cell activation and IFN-g release
(126–128).

Moreover, miRNAs can control the expression of activating
and inhibitory receptors on the surface of NK cells or that of their
ligands on tumor cells (Figure 3B). Human miR-1245 could
downregulate NKG2D on NK cells and, therefore, impair
NKG2D-mediated functions of NK cells (129). NKG2D ligands
(MICA/B) could also be repressed by miR-20a, miR-93, miR-
106b, miR-373, and miR-520d in human cancer cells (HeLa,
293T, DU145, and glioma cells) (130, 131). In breast cancer cells,
the miR-17-92 cluster (miR-20a, miR-20b, miR-93, and miR-
106b), which could be inhibited by the HDAC inhibitors SAHA
and VPA, downregulates the expression of MICA/B by targeting
the mRNA 3’-UTR and downregulates ULBP2 by inhibiting the
MAPK/ERK signaling pathway (132). The transcription and
translation of DNAX-activating protein 12 kDa (DAP12), an
exclusive signaling adaptor of many NK cell receptors, could be
repressed by human miR-183, thus leading to the abrogation of
NK cell antitumor function (133). In contrast, miR-30c-1* (134)
promotes NK cell cytotoxicity against hepatoma cells by
targeting the transcription factor HMBOX1 and miR-30c (135)
could promote the cytotoxicity of NKL cells in vitro by
upregulating the expression levels of NKG2D, CD107a, and
FasL. Inhibitory receptors (e.g., KIRs, NKG2A, PD-1, TIGIT,
TIM-3) function as immune checkpoints associated with NK cell
exhaustion and the immune escape of tumor cells. MiR-146a-5p
can downregulate the expression of both KIR2DL1 and
KIR2DL2 (136). Three miRNAs, miR-26a-5p, miR-26b-5p, and
miR-185-5p, were identified as inhibitors of the expression of
inhibitory KIR3DL3, whose function has not yet been
demonstrated (137). MiR-182 mediates a complex modulation
of NKG2D and NKG2A levels at different stages of human
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hepatocellular carcinoma, resulting in increased Prf1 expression
(138). Some miRNAs have been found to target PD-1 [miR-28
(139), miR-138 (140), miR-4717 (141)] and TIM-3 [miR-28
(139)] in T cells and cause T cell exhaustion. Thus, these
miRNAs may also play a regulatory role in NK cells; however,
experimental evidence has not been presented.
PERSPECTIVES

NK cells play a crucial role in preventing tumor initiation and
metastasis. Many studies have illustrated the epigenetic
regulatory mechanism of NK cell antitumor cytotoxicity, and
Frontiers in Immunology | www.frontiersin.org 8
they mainly focused on the expression of NK cell receptors and
effector molecules, as we reviewed above. Multiple modulators
always participate in epigenetic regulation. For example, histone
modifications determine the open/closed state of chromatin,
which affects the binding of transcription factors to specific
regulatory sites. Additional research should focus on the
interactions between different epigenetic modulators rather
than just studying individual molecules. Recent technological
advances have allowed us to gain a deeper understanding of NK
cells. For example, single-cell RNA sequencing helps decipher
the similarities and differences between humans and mice and
between blood and splenic NK cells (142). Very recently, Li et al.
applied the transposase accessible chromatin with sequencing
A

B

FIGURE 3 | MicroRNAs involved in the effector functions of NK cells. (A) MicroRNAs that positively (green) or negatively (red) regulate the expression of effector
molecules (perforin, granzyme B, and interferon-g). NLK: nemo-like kinase, Notch signaling inhibitor. (B) MicroRNAs that regulate the expression of receptors on NK
cells and ligands on tumor cells. CX3CR1, C-X3-C motif chemokine receptor 1; CX3CL1, C-X3-C motif chemokine ligand 1; DAP12, DNAX-activating protein 12
kDa, an exclusive signaling adaptor of many NK cell receptors; HLA-I, human leukocyte antigen, class I; HLA-E, human leukocyte antigen, Class I, E; KIR2DL1, killer
cell immunoglobulin-like receptor, two Ig domains and long cytoplasmic tail 1; KIR2DL2, killer cell immunoglobulin-like receptor, two Ig domains and long cytoplasmic
tail 2; KIR3DL3, killer cell immunoglobulin-like receptor, three Ig domains and long cytoplasmic tail 3; MICA/B, MHC class I-related molecule A/B; NKG2A, natural-
killer group 2 member A; NKG2D, natural-killer group 2 member D; SAHA, suberoylanilide hydroxamic acid (vorinostat), histone deacetylase inhibitor; TIGIT, T cell
immunoreceptor with Ig and ITIM domains; TIM-3, T cell immunoglobulin and mucin domain-containing protein 3; ULBP, UL16 binding protein; VPA, valproic acid,
histone deacetylase inhibitor.
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(ATAC-seq) technique to define two distinct TF clusters that
dynamically regulate NK cell differentiation in a homemade in
vitro NK cell differentiation system (143). NK cells are a
heterogeneous population that consists of multiple subsets and
various states. The tissue site shapes the functional potential of
NK cell subsets. Whole transcriptome profiling reveals the site-
specific variations of NK cells in the lymph node, lung, blood,
bone marrow, and spleen (33). However, the epigenetic features
of these subsets are still a mystery.

The “states” (resting, activating, memory, repressed, and
exhausted) of NK cells are controlled epigenetically, although
insights into the underlying mechanism are very limited.
Adaptive NK cells exhibit a unique whole-genome epigenetic
signature similar to that of effector memory CD8+ T cells but not
conventional NK cells (144). Chronic stimulation (NKG2C Abs
with IL-15) could induce exhaustion in primary adaptive NK
cells, thereby upregulating the expression of checkpoint
receptors LAG-3 and PD-1. These NK cells are dysfunctional
when challenged with tumor targets and exhibit a whole
genome-DNA methylation profile similar to the epigenetically
remodeled profiles of exhausted CD8+ T cells (145). It is
reasonable to presume that NK cells are similar to T cells and
show susceptibility to exhaustion during the antitumor war.
However, there is a lack of consensus on the defining features
of NK cell dysfunctional states, such as senescence, suppression,
and exhaustion (47). Further consideration is needed to
determine the state of NK cells in the antitumor response and
how their epigenetic landscape changes during the process.

NK cell-based immunotherapy is an effective supplement to T
cell-based therapy. Various approaches have been introduced to
activate NK cells in adoptive cell therapy for better clinical
outcomes, including generating CAR-NKs and inducing ADCC
by mAbs, immune checkpoint blockade, engineered cytokine
stimulatory, and so on (146). Even so, NK cell-based therapies
are still in the early stages of development. Other than these
“extrinsic” strategies, approaches that target “intrinsic”
Frontiers in Immunology | www.frontiersin.org 9
epigenetic regulators should be taken into consideration.
Research on the epigenetic control of NK cell functions will
provide new evidence for developing drugs and effective cancer
prevention approaches. For example, demethylating agents can
restore the absence of transcription of NKG2DL associated with
high levels of DNA methylation in tumor cells. Some histone
modification regulators (e.g., EZH2 and LSD1) have been found
to be aberrantly overexpressed in various malignant tumors.
Small molecular inhibitors are in clinical or preclinical
development. From our perspective, these inhibitors also have
potential applications in improving the in vitro expansion of NK
cell cytotoxicity. More studies are needed to further elucidate the
app l ica t ion of epigenet ic drugs in NK cel l -based
immunotherapy, alone or in combination with other strategies.
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