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ABSTRACT 

Pemphigus vulgaris (PV) is a blistering autoimmune disease that affects the skin and mucous 

membranes. The precise mechanisms by which PV antibodies induce a complete loss of cohesion 

of keratinocytes are not fully understood. But it is accepted that the process starts with antibody 

binding to desmosomal targets which leads to its disassembly and subsequent structural changes 

to cell-cell adhesions. In vitro immunofluorescence imaging of desmosome molecules has been 

used to characterize this initial phase, often qualitatively. However, there remains an untapped 

potential of image analysis in providing us more in-depth knowledge regarding ultrastructural 

changes after antibody binding. Currently, there is no such effort to establish a quantitative 

framework from immunofluorescence images in PV pathology. We take on this effort here in a 

comprehensive study to examine the effects of antibodies on key adhesion molecules and the 

cytoskeletal network, aiming to establish a correlation of ultrastructural changes in cell-cell 

adhesion with antibody pathogenicity. Specifically, we introduced a data-driven approach to 

quantitatively evaluate perturbations in adhesion molecules, including desmoglein 3, E-cadherin, 

as well as the cytoskeleton, following antibody treatment. We identify distinct immunofluorescence 

imaging signatures that mark the impact of antibody binding on the remodeling of the adhesion 

molecules and introduce a pathogenicity score to compare the relative effects of different 

antibodies. From this analysis, we showed that the biophysical response of keratinocytes to 

distinct PV associated antibodies is highly specific, allowing for accurate prediction of their 

pathogenicity. For instance, the high pathogenicity scores of the PVIgG and AK23 antibodies 

show strong agreement with their reported PV pathology. Our data-driven approach offers a more 

detailed framework for the action of autoantibodies in pemphigus and has the potential to pave 

the way for the development of effective novel diagnostic methods and therapeutic strategies.  
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SIGNIFICANCE  

Pemphigus vulgaris (PV) presents a critical unmet medical challenge due to its autoimmune-

induced disruption of skin cell adhesion. Our study presents a data-driven approach to 

quantitatively analyze changes in adhesion molecules and the cytoskeleton upon exposure to 

various PV antibodies. By introducing a pathogenicity score, we pinpoint the specific impacts of 

different antibodies on various proteins, build association among these antibodies, and reveal the 

contribution of previously overlooked non-desmosomal antibodies, broadening the understanding 

of PV pathology. Although centered on PV, our method offers a versatile framework applicable 

for evaluating the effects of other antibodies and drugs, paving the way for new diagnostic tools 

for personalized medicine. 
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INTRODUCTION 

Pemphigus vulgaris (PV) is a rare yet severe autoimmune disorder driven by the immune system's 

aberrant production of autoantibodies against desmosomal proteins, primarily desmoglein (Dsg)-

3 and 1 (1). Binding of these antibodies ultimately disrupts desmosomal adhesion in 

keratinocytes, induces acantholysis, and leads to blister formation by mechanisms that remain to 

be elucidated (2). The pathogenic potential of auto-antibodies has been estimated in vitro using 

keratinocyte dissociation assays (3,4) and by imaging disorganized adhesion molecules along the 

cell-cell contact by immunofluorescence (5,6). In general, keratinocytes exposed to PV antibodies 

exhibit fragmented Dsg3 staining, an increased distance between Dsg3 fluorescence peaks 

across neighboring cells, and decreased Dsg3 intensity at cell-cell contacts (7) due to Dsg3 

internalization upon the initiation of desmosome disassembly. E-cadherin is also impacted in the 

PV condition either passively by the biophysical rearrangement of the cell-cell adhesion (8) or 

actively through signaling (9-11). Some reports even suggest that E-cadherin is a direct target of 

PV antibodies (12). In imaging, E-cadherin displays a distorted pattern to their tightly packed 

distribution along cell-cell contacts when keratinocytes are treated with PV antibodies (13).  

Additionally, cytoskeleton reorganization represents a direct biophysical consequence 

once adhesion integrity is compromised. Indeed, keratin retraction plays a crucial role in PV 

pathogenesis. Desmosomes tether keratins to sites of intercellular adhesion, creating a cellular 

scaffold that imparts mechanical strength to tissues (14). Desmosome disassembly after antibody 

binding physically uncouples keratin from the desmosomal complex in response to cellular tension 

(15,16). Imaging techniques reveal that keratin retracts from the cell periphery as evident by the 

decreased number of keratin filaments running perpendicular to the cell membrane, and keratin 

filaments condensed to thicker bundles with an evident curvature change (17,18). Actin 

remodeling is another biophysical transformation induced by PV antibodies (19). It has been 

reported that PV antibody interferes with actin dynamics and destabilizes the junction associated 
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actin belt (19,20). A loss of the peripheral actin band is often observed along with an enhanced 

cytoplasmic distribution of actin filaments (19). Actin dynamics are also heavily regulated by RhoA 

and P38 MARPK, molecules that are downstream of antibody binding (21).  

Different PV-associated antibodies lead to varied changes in adhesion molecules and in 

cytoskeleton remodeling, indicative of their differential action mechanism and level of 

pathogenicity. For instance, PVIgG from patients can affect both Dsg3 and Dsg1 while the 

monoclonal antibody AK23 targets only Dsg3, leading to differences in biophysical remodeling at 

cell-cell adhesions. Recent studies have now also identified non-Dsg antibodies that are 

increased in patients vs. healthy controls and potentially contribute to PV pathology (22).  

Image analysis of texture information, such as entropy, correlation, homogeneity, and 

contrast, has been used for the detection of subtle changes in tissues and cellular structures from 

biomedical images as a marker for disease progression. These practices have been performed 

on images collected from immunohistochemistry staining (23,24), MRI (25,26) and CT scanning 

(27). For instance, texture features were used to classify colon cancer cells from biological 

images. By employing parameters such as correlation, entropy, and contrast, normal and 

abnormal cells were distinguished with promising classification accuracy (28). These studies, 

along with the work of others (29-33), demonstrate the versatility and effectiveness of texture 

features in medical imaging applications for identifying and characterizing various biological 

conditions. In many cases, texture features are used as inputs for machine learning models, 

significantly enhancing the effectiveness in accurately classifying diseases (28,31). 

Thus far there has been no such effort in the understanding of PV pathology using 

advanced image analysis. The images we collected documenting biophysical changes in 

combination with advanced image analysis offer an unprecedented level of detail regarding 

autoantibody induced biophysical transformations relevant to disease pathomechanisms. To 

establish a correlation of ultrastructural changes in cell-cell adhesion with antibody pathogenicity, 
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we employed a data-driven approach to quantitatively evaluate immunofluorescence images 

collected from keratinocytes upon exposure to various PV antibodies. From these analyses, we 

identify distinct imaging features that mark the impact of antibody binding on the remodeling of 

the adhesion molecules and the cytoskeleton. These features show that the biophysical response 

of keratinocytes to different PV antibodies is highly specific, allowing for accurate prediction of 

antibody pathogenicity. Indeed, we introduced a pathogenicity score to compare the relative 

effects between different antibodies. The high pathogenicity scores of PVIgG and AK23 revealed 

in our studies show a strong agreement with their reported PV pathology in the literature. In 

addition to showing the relative strength of each antibody in terms of pathogenic disruption of cell-

cell adhesion, our analysis also reveals correlative similarities among different antibodies. For 

instance, we show that a patient-derived antibody, AtS13, has a strong resemblance to PVIgG in 

its effects on adhesion dissociation. Importantly, our study also shed light on anti-non-Dsg 

antibodies, such as anti-TPO, which have not been known to link tightly with PV yet. Collectively, 

our quantitative image analysis framework can be expected to facilitate the development of 

entirely new class of PV diagnostic tools.  
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MATERIALS AND METHOD 

Cell culture 

HaCaT cells, an immortalized human keratinocyte cell line, were cultured in a low-calcium 

medium. This medium was prepared from calcium-free DMEM (ThermoFisher Scientific, Cat. No. 

21068028) and supplemented with 10% fetal bovine serum (FBS) which contains calcium, 1 % 

GlutaMAX (ThermoFisher Scientific, Cat. No. 35050061), and 1% penicillin-streptomycin. The cell 

cultures were maintained at 37°C in a 5% CO2 atmosphere to ensure continuous cell division.  

Antibody treatment 

Once the cells reached 80% confluency, they were switched to a calcium-supplemented medium 

with 1.8 mM calcium overnight before undergoing antibody treatment.  All antibody treatments 

were conducted in the calcium-supplemented medium, using antibody concentrations of 2 μg/mL 

and 10 μg/mL with exposure times of 4 hours and 24 hours. PX4-4 and PX4-3, provided by Dr. 

Aimee Payne (Columbia University), are monoclonal antibodies derived from the single-chain 

variable-region fragment (ScFv) of antibodies isolated from a patient suffering from 

mucocutaneous PV. The anti-thyroid peroxidase (anti-TPO) antibody (NBP1-50811, Novus 

Biologicals) targets thyroid peroxidase, an enzyme crucial for the production of thyroid hormones. 

AtS13, developed by the Sinha group at the University at Buffalo, is a PV patient-derived anti-

human monoclonal antibody. It shows significant homology to anti-TPO antibodies and to 

antibodies targeting desmosome proteins. PVIgG represents polyclonal antibodies purified from 

the serum of a PV patient, containing high levels of anti-Dsg3 antibodies and only trace amounts 

of anti-Dsg1 antibodies. The anti-Dsg3 antibody AK23 (D219-3, MBL) specifically targets Dsg3, 

a crucial component of cell-cell adhesion in epithelial cells, predominantly affected in PV. We also 

used anti-human HLA-ABC (555551, BD Biosciences) as a control antibody that is not expected 

to bind to cell adhesion structures. 
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Immunostaining 

Antibody-treated HaCaT monolayers were washed three times with phosphate-buffered saline 

(PBS, Thermo Fisher). The cells were then fixed for 10 minutes with 4% paraformaldehyde for 

Dsg3, E-cad, and F-actin staining, or for 5 minutes with ice-cold methanol-acetone (1:1) for IF 

staining.  For RhoA staining, cells were fixed using 10% trichloroacetic acid (TCA, Sigma-Aldrich, 

T6399-5G) for 15 minutes at room temperature. Following fixation, the cells were permeabilized 

with 0.1% Triton X-100 for 5 minutes. To block nonspecific binding, the monolayers were 

incubated for 1 hour in a blocking buffer composed of 1% bovine serum albumin (BSA) (37520, 

Thermo Fisher) and 22.52 mg/mL glycine (410225, Millipore Sigma) in DPBST (Dulbecco’s 

phosphate-buffered saline with 0.1% Tween 20) (P7949, Millipore Sigma). This was followed by 

three 5-minute washes with PBS. For immunofluorescence staining, primary antibodies, including 

anti-Dsg3 (1:200, Abcam), anti-E-cadherin (1:200, Cell Signaling Technologies), anti-RhoA 26C4 

(1:200, Santa Cruz), and Pan-Keratin C11 (1:200, Cell Signaling Technology), were applied and 

incubated for 1 hour. The cells were then exposed to secondary antibodies Alexa Fluor 647 

(1:100, Thermo Fisher), Alexa Fluor 488 (1:100, Thermo Fisher), and Alexa Fluor 594 (1:100, 

Thermo Fisher) for 1 hour. F-actin was labeled using Alexa Fluor 488 Phalloidin (1:100, Thermo 

Fisher) with a 30-minute incubation. After staining, the monolayers were washed three additional 

times with PBS for 5 minutes each, then imaged following standard protocols. 

Image processing and quantification 

Each microscope image was divided into four sub-images to ensure that the heterogeneity of the 

sample was adequately captured. To quantify texture, we focused on regions with sufficient 

signal, omitting empty areas such as those belonging to the cell nucleus. This was particularly 

important for proteins like E-cadherin, which are primarily concentrated at cell boundaries. 

To identify the regions of interest (ROI) for calculating texture parameters, the sub-images 

were further divided into 100x100 pixel segments. These segments were screened for adequate 
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signal before analysis. Specifically, a threshold was set at 5% of the maximum image intensity. If 

fewer than 80% of the pixels in a segment fell below this threshold, the segment was included in 

the analysis. Segments failing to meet this criterion were discarded. The texture parameters for 

each sub-image were calculated by averaging the parameters from the segments that were not 

discarded due to low signal. 

Normalization was applied to the segments before calculating texture parameters to avoid 

the influence of image intensity on the results. This step was necessary to account for slight 

variations in staining process that could otherwise introduce bias unrelated to the antibody effects. 

Normalization involved dividing pixel intensities by the maximum intensity within each segment, 

effectively scaling all intensities between 0 and 1, which mitigated variations caused by staining. 

The texture parameters calculated for the images included Correlation, Entropy, Contrast, 

Homogeneity, Energy, Mean, and Standard Deviation. These parameters, derived from the Gray-

Level Co-Occurrence Matrix (GLCM) analysis, provide important quantitative measures that 

reflect different aspects of the image's texture. 

Correlation measures how correlated a pixel is with its neighbors over a specified distance. 

This parameter gives insight into the linear dependencies of gray levels within an image, with 

higher values indicating stronger correlation between pixel pairs. Entropy is a measure of 

randomness or complexity in the intensity distribution of the image. A high entropy value indicates 

that the image has a complex, unpredictable texture with a wide range of pixel intensity values. 

Contrast refers to the local intensity variation between a pixel and its neighboring pixels. 

Homogeneity evaluates the similarity of pixel values in the local area. High homogeneity values 

correspond to images with more uniform intensity distributions, where pixel values are more 

similar to each other. Energy represents the uniformity of the pixel intensity distribution, calculated 

as the sum of squared pixel values in the GLCM. High energy values indicate that the image is 

dominated by certain pixel intensities, suggesting a repetitive and uniform texture. Mean is the 
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average pixel intensity within a region of interest and Standard Deviation (Std) quantifies the 

spread of intensity values around the mean.  

Together, these parameters provide a comprehensive view of the texture and structural 

features within the image, capturing both the intensity variations and the spatial relationships 

between pixels. In addition to these texture parameters, two additional metrics were calculated 

for proteins F-actin and intermediate filaments (IFs), which exhibit fibrous structures. These 

metrics were isotropy level (Iso) and circular variance (CV). The Iso parameter reflects the relative 

area of the image lacking strong fibrous structure, while CV quantifies the dispersion of fibers in 

2D, with values ranging from 0 (indicating alignment in a single direction) to 1 (indicating complete 

dispersion). In mathematical terms, the CV of a set of vectors, 𝑥𝑥𝚤𝚤�  , with direction cosines [𝑙𝑙𝑖𝑖 ,𝑚𝑚𝑖𝑖] 

( 𝑖𝑖 =  1, …   , 𝑛𝑛 ), is calculated as follows: 

𝑅𝑅� = �� 
𝑛𝑛

𝑖𝑖=1

𝑙𝑙𝑖𝑖2 + � 
𝑛𝑛

𝑖𝑖=1

𝑚𝑚𝑖𝑖
2�

0.5

 

𝐶𝐶𝐶𝐶 =
𝑛𝑛 − 𝑅𝑅�
𝑛𝑛

 

If the vectors represent fibers, another set of vectors with the opposite directions relative 

to the given vectors, i.e., −𝑥𝑥𝚤𝚤� , can equally represent the same fibers. Therefore, the above 

equation is modified to account for this property. The detailed calculation methods for these 

parameters are described in previous publications (34,35).  

Random Forest analysis 

To classify antibodies based on quantitative image parameters, we implemented a Random 

Forest algorithm in R. The dataset was split into training and testing sets, with 80% of the data 

used for training and the remaining 20% for testing. To increase the robustness of the analysis, 

the antibodies were not separated based on dose or treatment time. This approach allowed the 

model to be trained and evaluated across a range of dosing regimens and treatment durations, 
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reducing reliance on individual imaging sessions and enhancing the generalizability of the results. 

The training set was divided using stratified sampling to preserve the distribution of antibody 

classes. Specifically, we applied a five-fold cross-validation approach to optimize the model 

parameters and ensure robustness, reducing overfitting by averaging the results over multiple 

training subsets. 

The Random Forest model was built using 200 decision trees, where each tree was trained 

on a bootstrapped sample of the data. At each node split, a random subset of features was 

selected, ensuring that the model did not overly rely on any particular variable. Following model 

training, we calculated the importance of each variable to assess which features contributed the 

most to the classification task. The importance scores were derived by measuring the decrease 

in classification accuracy when a specific variable's values were permuted, effectively disrupting 

the relationship between the feature and the output. This enabled us to rank the variables and 

present their relative importance in the model. 

The performance of the model was evaluated using a confusion matrix, which displayed 

the number of true positives, false positives, false negatives, and true negatives for each antibody 

class. This matrix provided a quantitative overview of the model’s classification power, highlighting 

the frequency of correct predictions versus errors. To further investigate the misclassifications, 

we identified pairs of antibodies that were frequently confused by the model. We filtered for 

misclassifications occurring more than twice and constructed a similarity graph based on these 

misclassifications. In this graph, each antibody is represented as a node, and edges between 

nodes represent frequent misclassifications. The weight of each edge corresponds to the 

frequency of misclassification between the two antibodies. The resulting graph effectively 

displayed how similar certain antibodies were, based on the model's inability to distinguish them, 

offering insights into possible biological similarities affecting the classification. 

The pathogenicity score for each antibody was defined to quantify its effectiveness relative 

to a control. This score integrates the impact of various parameters, weighted by their importance, 
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and compares each antibody's performance to that of a control antibody. Specifically, each 

parameter's importance was determined based on its contribution to the Random Forest model. 

The importance values, reflecting the relative impact of each parameter on classification 

accuracy, were used to weight the parameters. For each parameter, the absolute difference 

between the median value of the parameter for an antibody and the median value for the control 

was computed. This difference was then normalized by dividing by the control median value to 

account for the relative change in parameter value. Finally, the weighted differences for all 

parameters were summed to yield the pathogenicity score for each antibody. This score reflects 

the extent to which the antibody deviates from the control in terms of parameter values, weighted 

by their importance. 

In mathematical terms, the pathogenicity score for each antibody can be expressed as: 

Pathogenicity = � 
𝑛𝑛

𝑖𝑖=1

�𝑤𝑤𝑖𝑖 ×
(𝑥𝑥𝑖𝑖 − �̅�𝑥𝑖𝑖)

�̅�𝑥𝑖𝑖
� 

where 𝑤𝑤𝑖𝑖 is the weight of parameter ( i ) from the importance analysis,  𝑥𝑥{𝑖𝑖}  is the median value 

of parameter ( i ) for the antibody, and  {�̅�𝑥}𝑖𝑖  is the median value of the same parameter for the 

control group. This approach allows for a comprehensive evaluation of each antibody's 

pathogenicity by integrating multiple parameters into a single score, providing insights into the 

relative effectiveness of each antibody compared to the control. 

Statistical analysis 

All statistical analyses were performed using RStudio (version 2023.09.1+494). A two-tailed t-test 

was employed to compare the mean texture values between antibody-treated and control groups, 

allowing for the identification of significant changes in texture features. Pearson’s correlation 

analysis was used to assess the relationships between texture parameters derived from 

immunofluorescence images, with the resulting correlation matrix offering insights into the 
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interdependencies among these features across different antibody treatments. All statistical tests 

were considered significant at p<0.05. 
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RESULTS 

Altered distribution of Dsg3 and E-cadherin serves as potent marker for PV pathogenicity 

Using quantitative image texture features, we investigated the distribution patterns of Dsg3 and 

E-cadherin in keratinocytes. Cell monolayers were exposed to various PV antibodies at 

concentrations of either 2 µg/ml or 10 µg/ml for durations of either 4 or 24 hours. This experimental 

design allowed us to evaluate the effects of both dose and exposure time on the remodeling of 

these adhesion molecules. Immunofluorescence images revealed antibody-induced changes in 

the distribution pattern of Dsg3 within the cell monolayer. Certain changes, such as localized 

dispersion, were qualitatively evident, as indicated by the white arrows in Fig. 1A. A quantitative 

analysis allowed us to detect more subtle variations, which are detailed in Fig. 1C-J. The analyzed 

quantitative image features included entropy, correlation, standard deviation of pixel intensity, 

mean pixel intensity, contrast, homogeneity, and energy, collectively describing the texture of the 

images. Please refer to the Methods section for definitions of these parameters. Representative 

images of all treatment groups can be found in Supplementary Information Fig. S1. 

 We employed a Random Forest (RF) analysis to classify the images based on quantitative 

texture parameters. RF algorithms are particularly advantageous due to their resistance to 

overfitting, accuracy with small training sets, and ability to efficiently handle large datasets. This 

methodology also enabled us to identify the most influential image parameters for classification. 

Fig. 1C presents the confusion matrix derived from the RF analysis. Overall, we achieved an 

accuracy of 73.6% in distinguishing distinct groups based on Dsg3 staining images. The model 

did not receive information about the dose and treatment time, and all images related to a specific 

antibody were treated equally. Anti-HLA antibody, which does not bind to desmosome was used 

as a control and had negligible effects on Dsg3. PX4-3 and PX4-4 exhibited similar effects to each 

other. PX4-4 is the non- to mildly-pathogenic version of the monoclonal anti-Dsg3 antibody; PX4-

3 targets the extracellular domain of Dsg3 (36). These factors decreased the overall accuracy of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.09.617446doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.09.617446
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

the classification. Fig. 1E illustrates the relative importance of various quantitative parameters 

derived from the RF analysis, which indicates the contribution of each parameter to the model’s 

predictive performance. Among these, Entropy emerged as the most critical parameter for image 

classification, followed by Standard Deviation, Correlation, Mean, and Energy. Homogeneity and 

Contrast did not provide additional valuable insights regarding the treatment groups. 

 The pathogenicity score in Fig. 1F is a metric that quantifies the variations in parameters 

between the treated and control groups, considering the importance of each parameter as 

determined by the RF analysis. Notably, the antibodies AtS13, PVIgG, and AK23 exhibited the 

highest pathogenicity scores, indicating their significant influence, whereas the anti-HLA control 

displayed the lowest pathogenicity score in modulating the distribution of Dsg3. The similarity 

graph (Fig. 1G), based on the confusion matrix, illustrates the relative impact of antibodies on 

Dsg3. Antibodies that are frequently mistaken for each other are connected by thicker lines. The 

graph indicates that PX4-4 exhibits similar effects to both anti-TPO and PX4-3, while other 

similarities are comparatively weaker. The most significant quantitative imaging parameter, here 

Entropy, for various antibodies is shown in Fig. 1I. Groups that significantly differ from the control 

(p<0.05) are denoted with asterisks. Entropy was significantly elevated compared to the control 

in several groups—especially in AtS13, PVIgG, and AK23, the three antibodies with the highest 

potencies. An increase in Entropy might suggest that the distribution of Dsg3 in cells has become 

more disordered after treatment, indicating that Dsg3 proteins are less uniformly localized. Our 

immunofluorescence imaging analysis emphasizes that autoimmune antibodies distinctly alter the 

distribution patterns of Dsg3, suggesting potentially different mechanisms of action. 

Next, we evaluated the changes induced by PV antibodies in E-cadherin distribution. Initial 

qualitative observations indicated that similar to Dsg3, E-cadherin displayed varied distribution 

patterns across different antibody treatments (Fig. 1B, Fig. S2). Employing a similar 

methodological framework, we performed an RF analysis on E-cadherin-stained images. This 
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analysis yielded a notable accuracy of 79.3%, emphasizing the model’s robust capability in 

differentiating effects based on textural E-cadherin differences (Fig. 1D). Entropy, Standard 

Deviation, Correlation, and Mean were identified as the most important quantitative parameters 

for distinguishing the effects of antibodies on E-cadherin (Fig. 1E), which mirrors the relative 

importance calculated in the Dsg3 analysis. This consistency across both Dsg3 and E-cadherin 

reiterates the significance of these parameters in assessing the impact of antibody on adhesion 

molecules at the cell-cell adhesions. 

AK23, PX4-4, PX4-3, and anti-TPO exhibited the highest pathogenicity, whereas PVIgG 

showed the lowest pathogenicity (Fig. 1F). Additionally, the similarity graph in Fig. 1H 

demonstrated that PX4-4 and PX4-3 exhibited the highest similarity based on quantitative texture 

features, often leading to confusion between the two. Fig. 1J illustrates the key quantitative 

parameter, Entropy, for the effects of PV antibodies on E-cadherin. The E-cadherin entropy, in 

contrast to that of Dsg3, showed fluctuation between increases and decreases for the high 

pathogenicity antibodies. This variability suggests that antibodies that disturb Dsg3, characterized 

by an increased Entropy, might have differing specificities and affinities for other targets, such as 

E-cadherin. These variations could lead to different degrees of disruption or stabilization. 

Furthermore, the downstream effects of such treatments can differ, as E-cadherin and Dsg3 are 

both crucial for cell adhesion but operate through distinct mechanisms. For instance, the 

disruption of Dsg3 by certain antibodies such as AtS13, but not by others, may activate 

compensatory mechanisms that lead to the upregulation or reorganization of E-cadherin-

mediated adhesion. In some scenarios, this could enhance the organization of E-cadherin, 

resulting in decreased entropy. The findings collectively support the idea that PV antibodies 

induce distinguishable alterations in the distribution patterns of E-cadherin, similarly to Dsg3, 

proposing differential mechanisms affected by autoimmune mediators in keratinocytes. 
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Cytoskeletal reorganization is less indicative of antibody pathogenicity compared to 

adhesion molecular re-distribution  

In this section, we focus on the cytoskeletal components IF and F-actin, both of which are pivotal 

for cellular structure and function. Given that these proteins are fibrous in nature, we incorporated 

two additional parameters—Isotropy (Iso) and Circular Variance (CV)—in addition to our existing 

set of texture analysis metrics. For more details on these parameters, please refer to the Methods 

section. 

Representative images of IF from cells exposed to different antibodies are shown in Fig. 

2A and Fig. S3. Using an RF analysis across all antibody treatments, we achieved an accuracy 

of 70.6% in classifying changes induced by the antibodies based on images of IF (Fig. 2C). The 

parameters that emerged as most influential in this classification were Mean, Entropy, Contrast, 

and Standard Deviation (Fig. 2E). According to imaging of IF, PVIgG, AtS13, and AK23 showed 

the highest potencies, followed by other antibodies (Fig. 2F). The most similar antibodies in terms 

of the quantitative texture features of IF were PVIgG/AtS13 and AtS13/HLA, as depicted in the 

similarity graph (Fig. 2G). Although HLA is typically considered a secondary control in our 

experiments and shows low pathogenicity in other protein groups, it alters the image features of 

IF more than other proteins, making the images distinguishable from those treated with other 

antibodies; thus, based on these observations, HLA may not be an ideal control in this context. 

Fig. 2I illustrates the most important quantitative imaging parameter, here Mean, for various 

antibodies. Groups that differ significantly from the control (p<0.05) are marked with asterisks. 

Mean and Entropy—the most important parameters based on IF images—both decrease 

following antibody treatment in several groups including PVIgG, AK23, AtS13, and PX4-4. The 

reduced Entropy suggests a more predictable and orderly texture, possibly due to increased 

filament organization, filament aggregation, or reduced filament density or branching. The 

concurrent decrease in the Mean parameter in these antibodies indicates fewer high-intensity 
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pixels, pointing to reduced filament density and potential degradation or disassembly of 

intermediate filaments. This likely corresponds to keratin retraction and degradation resulting from 

the antibody effect. 

F-actin is crucial for maintaining cell structure and mediating cellular responses to 

extracellular signals, making it an interesting target to study in the context of antibody-induced 

cellular alterations. Representative images of F-actin from cells exposed to different antibodies 

are shown in Fig. 2B and Fig. S4. The RF model achieved an overall lower accuracy of 52.2% in 

differentiating the treatment effects based on F-actin (Fig. 2D). This reduced accuracy and high 

confusion (Fig. 2H) might suggest that F-actin’s dynamic assembly and disassembly within the 

cell render its response to antibody treatments more complex and less predictable than the 

behavior of more static adhesion molecules. Regardless, the most important quantitative 

parameters for differentiating treatment groups were Entropy, Correlation, and Standard 

Deviation (Fig. 2E). PVIgG and AtS13 showed highest pathogenicity scores followed by PX4-3 

and other antibodies (Fig. 2F). Fig. 2J illustrates the most important quantitative imaging 

parameter, here Entropy, for various antibodies. The impact of PV antibodies on RhoA distribution 

pattern is examined in Supplementary Information Fig. S5 and S6. 

Collectively, the results indicate that PV-associated antibodies modulate the cytoskeletal 

reorganization of F-actin and IF, with IF being more distinctly influenced by various antibodies 

compared to F-actin. 

High dose of antibodies induces more substantial ultrastructural changes 

The impact of treatment dose on the accuracy of prediction was systematically assessed by 

selectively removing either high-dose (10 µg/mL) or low-dose (2 µg/mL) data from the analysis 

(Fig. 3A). In the original model, the accuracy based on Dsg3 data was 73.6% (Fig. 3D). Upon 

exclusion of the high-dose data, the accuracy slightly decreased to 71.5% (Fig. 3E), while 

removing the low-dose data led to a marked improvement in accuracy, reaching 80.7% (Fig. 3F). 
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This suggests that the high-dose treatment induces more significant ultrastructural changes in 

Dsg3, enhancing the model's ability to predict treatment group. A similar trend was observed for 

E-cadherin and RhoA (SI Fig. S5, S6), where the high-dose data appeared to contribute more 

prominently to the model’s predictive power (Fig. 3A). The analysis of F-actin and IF revealed a 

consistent increase in prediction accuracy regardless of whether high- or low-dose data were 

removed, with the highest accuracy observed when low-dose data were excluded (Fig. 3A). This 

indicates that high-dose antibody treatment exerts a more substantial effect on the ultrastructure 

of these proteins, leading to clearer distinctions between the treatment groups. Consistent with 

these observations, removing the low-dose data generally increased the pathogenicity scores 

across most proteins, reinforcing the idea that high-dose treatments induce more pronounced 

changes in protein structure (Fig. 3C). The relative importance of imaging parameters (Fig. 3B) 

remains consistent, revealing that Entropy and Standard Deviation consistently show high 

importance across different treatment doses for Dsg3 images. This underscores their robustness 

as key features responsive to antibody treatment. In contrast, features like Contrast and 

Homogeneity consistently demonstrate minimal impact, indicating they may be less effective in 

capturing the structural changes induced by the treatments. 

The mixed influence of treatment duration (Fig. S7) on prediction accuracy suggests that 

the temporal dynamics of ultrastructural changes vary among proteins. The overall increase in 

pathogenicity scores (Fig. S7) in the longer treatment group implies that prolonged exposure 

generally induces more pronounced changes in protein structure, consistent with literature. 

Collective remodeling of cell-cell adhesion marks antibody pathogenicity and correlation  

In the previous sections, we explored how various texture measurements can be used to quantify 

changes in the distribution of critical adhesion molecules within cells. Building on this foundation, 

we now shift our focus to evaluate the interdependencies among these changes — specifically, 

whether alterations in certain proteins are associated with modifications in others. To 
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systematically analyze these potential correlations, we aggregated the data based on antibody 

dose, exposure duration, and treatment type. We then averaged the data for all samples within 

each group to allow for pair-wise comparisons. Following data aggregation, we assessed the 

correlation between all possible pairs of parameters, computing both the correlation coefficients 

and the statistical significance of these correlations as depicted in Fig. 4 A-D. 

Our analysis revealed several significant correlations across different pairs. Notably, the 

strongest and most frequently observed correlations were between Dsg3 and E-cadherin, as well 

as between Dsg3 and RhoA. This pattern of correlation not only supports the hypothesis of 

interconnected functional pathways but also hints at possible causal relationships facilitated by 

antibody interactions. The pronounced correlation between Dsg3 and RhoA suggests a potential 

cascade effect wherein the binding of antibodies to Dsg3 may lead to downstream alterations 

affecting RhoA expression. This could imply that disruptions in Dsg3 integrity due to antibody 

binding led to cytoskeletal rearrangements mediated by RhoA, which is known for its role in 

regulating cellular shape and motility. Additionally, the significant correlation with E-cadherin could 

indicate that alterations in Dsg3 might expose or otherwise affect E-cadherin, potentially 

influencing cell adhesion properties and intercellular interactions. For instance, upon antibody 

binding to Dsg3, one might observe subsequent effects such as an increase in RhoA activity, 

which in turn could modulate the organization and stability of actin filaments, impacting cellular 

mechanics and adhesion dynamics. This might further cascade to affect the stability and exposure 

of E-Cadherin on the cell surface, altering cell-cell adhesion dynamics. 

Given the significant correlations between remodeling processes, it is clear that a holistic 

approach is informative. By integrating analyses across all proteins, we can gain a more 

comprehensive understanding of cellular remodeling dynamics. Fig. 4E illustrates the overall 

relative importance of imaging parameters, weighted by the accuracy of the RF classification for 

each protein. This plot identifies the most influential parameters, with Entropy and Standard 
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Deviation emerging as the top contributors. These findings are consistent with our analysis of 

individual proteins, further underscoring the significance of these parameters in distinguishing 

cellular states. Fig. 4F shows the overall pathogenicity score considering all proteins, again 

weighted by the RF accuracy and averaged across groups. This provides a holistic view of the 

treatment effects, revealing that certain antibodies, particularly the patient-derived antibodies 

AtS13 and polyclonal PVIgG, have a pronounced impact on cellular remodeling processes, more 

so than non-patient-derived monoclonal antibody sources. Finally, Fig. 4G illustrates a similarity 

graph combining all imaging data, showcasing the relationships between different treatment 

conditions. This network reveals clusters and connections that suggest potential common 

pathways or interactions affected by the antibody treatments. 

Collectively, these findings underline the complex interplay between different adhesion-

regulating molecules in response to specific antibody treatments. By integrating these 

relationships through advanced data analysis and imaging techniques, we gain a more 

comprehensive understanding of the pathophysiological mechanisms underpinning disorders like 

PV. This integrative approach underscores the importance of considering collective changes in 

protein distributions rather than isolated events, offering insights into potential therapeutic targets 

and disease dynamics. 

Texture features differentiate the responses of Dsg3 and IF to cyclic and static stretching 

following AK23 treatment 

To showcase the predictive power and broad applicability of our data-driven approach, we 

examined the effects of different mechanical stretching protocols on Dsg3 and IF image features, 

using a dataset from reference (13). Representative images used are shown in Fig. S8. The six 

experimental groups comprised a control, cyclic stretch (CS), static stretch (SS), AK23 antibody 

treatment, AK23+CS, and AK23+SS. This approach builds on our previous work, where we 
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established that cyclic stretch was more effective than static stretch in stabilizing cell-cell 

adhesion, mitigating the dissociative effects of anti-Dsg3 antibody AK23. 

The analysis of Dsg3 texture features from the immunofluorescence images, presented in 

Fig. 5A-C, reveals that static stretch did not cause significant changes to Dsg3 distribution. This 

suggests that static stretch has minimal impact on Dsg3 organization in the control group. In 

contrast, cyclic stretch led to significant alterations in 2 of the 3 image parameters, i.e. entropy 

and correlation, indicating that Dsg3 is more responsive to cyclic mechanical forces. The AK23 

antibody treatment resulted in significant changes in all texture parameters, supporting the use of 

these features to robustly characterize antibody-induced dissociation. Notably, the combination 

of AK23 and cyclic stretch further deviated the texture parameters from the control, while AK23 

with static stretch brought the parameters closer to control levels. Under these experimental 

conditions static stretching may offer a more protective effect on Dsg3 integrity, in contrast to our 

previous results (13). It is important to acknowledge that the quality of Dsg3 images in the previous 

study, which lacked the use of a confocal microscope, may have contributed to differences in the 

conclusions, as lower-quality images could obscure subtle effects. 

For the IF texture features shown in Fig. 5D-F, both cyclic and static stretch significantly 

affected IF structure, with one exception. Among the texture metrics, Entropy was particularly 

sensitive to the type of mechanical loading, allowing differentiation between the effects of cyclic 

and static stretch on IF organization. The AK23 treatment caused significant changes in 2 out of 

3 texture parameters, confirming its disruptive influence on IF organization. Interestingly, in 

parameters affected by AK23 treatment—Mean and Entropy—cyclic stretch, combined with 

AK23, restored the texture features to control-like values, effectively reversing the damage 

induced by AK23. In contrast, the combination of static stretch and AK23 did not fully restore 

these features, resulting in values that remained significantly different from the control. This 

observation aligns with our previous conclusions that cyclic stretch has a protective and 
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restorative effect against AK23-induced dissociation, while static stretch does not. The higher 

image quality of the IF data could partly explain the more robust findings in the IF analysis.  
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DISCUSSION  

Our study uses a data-driven approach to analyze images of keratinocyte monolayers obtained 

from in vitro experiments, and we demonstrate that the disruption of cell-cell adhesion molecules 

and the cytoskeleton remodeling can serve as robust markers for antibody pathogenicity for PV. 

Specifically, we showed that the patterns of Dsg3 distribution at cell-cell contacts accurately 

distinguish Ab-treated groups from controls. While staining of Dsg3 in control keratinocytes show 

tightly packed Dsg3 at the cell-cell borders, keratinocytes after antibody treatment have a 

dispersed Dsg3 distribution and non-continuous cell-cell borders. These features are captured in 

the image analysis, most dominantly by a change in entropy from control samples. A high entropy 

value indicates that an image has a complex and unpredictable texture. In the context of biological 

images, entropy may be indicative of complex organization or heterogeneous protein expression. 

Similar accuracy was achieved using the patterns of E-cadherin distribution, which was also 

significantly distorted with PV antibody treatment.  

Cytoskeleton remodeling after PV antibody treatment, particularly the remodeling of 

keratin, can also be captured with image analysis with high accuracy. This is not surprising given 

that the immediate impact of desmosome disassembly is the initiation of keratin retraction, which 

results in the loss of keratin in cell periphery and the change of keratin curvature at the cell 

periphery. These biophysical features are primarily captured using entropy parameters, along with 

several other parameters. Further, our analysis also matches the time course of antibody action. 

For instance, it has been shown that keratin retraction and Dsg3 depletion occur after 2 hours of 

antibody treatment (18). Our data at 4 hours also starts to show significant changes after 

treatment with PV-associated antibodies compared with controls. It is worth noting that the 

cytoskeleton remodeling data is corroborated by our analysis of RhoA imaging.  

One of the main contributions of this work is that our data-driven model can reveal the 

pathogenicity of antibodies. Based on the overall analysis, we found patient-derived AtS13 and 
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PVIgG to be the most pathogenic while anti-HLA antibodies, which are not expected to bind to 

cell-cell adhesion structures, have the lowest pathogenicity score. This pathogenic score data 

matches with our dissociation assay results, where we show PVIgG induces the most fragments 

(7). This data is also consistent with our previous findings showing that PVIgG leads to the most 

significant tension loss in Dsg3 molecules from FRET sensor studies compared with AK23, a 

monoclonal anti-Dsg3 antibody (7). 

Importantly, our data also highlight the importance of anti-non Dsg antibodies in PV. 

Specifically, we found that anti-TPO, an antibody that is less known to be related to PV but has 

been found in the serum of a high percentage of PV patients (37), exhibits relatively high 

pathogenicity in altering proteins, such as E-cadherin. Its mechanism of action and role in PV 

pathology is yet to be fully explored. In addition to pathogenicity scores, analyzing image features 

after antibody treatment also reveals the correlation between different PV antibodies. For 

instance, we were able to show the similarity of PX4-3 and PX4-4 based on the analysis of Dsg3 

patterns and IF remodeling. Another interesting outcome is the correlation of AtS13 antibody 

activity with that of PVIgG. The target of AtS13 has not been identified but is distinct from Dsg3/1.  

Admittedly, the predicting power of our method is strongly dependent on the quality of 

immunofluorescence images. For instance, we have shown that Entropy was proved to be an 

effective feature on Dsg3 images from a confocal microscope for revealing adhesion dissociation. 

However, when applied to lower-quality Dsg3 images collected with a regular fluorescence 

microscope, the restoring effect of cyclic stretch cannot be predicted, suggesting a re-training of 

feature parameters on these sets of images. However, this restoring effect of cyclic stretch can 

be predicted with high-quality IF images collected using confocal microscope.   

Our data driven approach to assess pathogenicity of specific antibodies within PV 

subgroups may be of potential use in understanding varying clinical presentations. For instance, 

pathogenicity scores could stratify antibody potency and pathogenicity within and across 
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individuals who are in various clinical categorizations, such as active vs. early/late remission 

stages of disease, or to lesional localizations, such as mucosal vs. mucocutaneous blister 

distributions. This information would be helpful to clarify our thus-far opaque understanding of 

disease pathomechanisms, the evolution of disease, and clinical heterogeneity. This experimental 

approach will also be valuable to compare and contrast the effects of anti-Dsg vs. anti-non Dsg 

antibodies, whose functional role in lesional development has yet to be fully characterized. 

Pathogenicity scores of all specific PV related autoantibodies, in isolation and in combination 

within individual patients may pave the path towards immune specific and personalized and 

management strategies. In their future applications these analyses may also help to determine 

the in-situ effects of new and emerging therapeutics.  
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FIGURES 

 

Figure 1. Influence of PV antibodies on immunofluorescence images of Dsg3 (red) and E-

cadherin (green). A and B: Representative images for the 10 µg/ml – 24h group. The scale bar 

represents a distance of 25 µm. C and D: Confusion matrices resulting from the random forest 

analyses. A minimum of 60 images per condition were fed into the model. E: Relative importance 

of different image quantification parameters. F: Pathogenicity score of different antibodies. G and 

H: Network graphs resulting from the confusion matrices. Misclassified antibodies are connected 

with thicker lines. I and J: Variation of the most important parameter across different treatment 

groups. *Indicates a statistically significant difference (p<0.05) when the antibody group is 

compared to the control. 
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Figure 2. Influence of PV antibodies on immunofluorescence images of IF (red) and F-actin 

(green). A and B: Representative images for the 10 µg/ml – 24h group. The scale bar represents 

a distance of 25 µm. C and D: Confusion matrices resulting from the random forest analyses. A 

minimum of 60 images per condition were fed into the model. E: Relative importance of different 

image quantification parameters. F: Pathogenicity score of different antibodies. G and H: Network 

graphs resulting from the confusion matrices. Misclassified antibodies are connected with thicker 

lines. I and J: Variation of the most important parameter across different treatment groups. 

*Indicates a statistically significant difference (p<0.05) when the antibody is compared to the 

control. 
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Figure 3. Impact of treatment dose on model predictive power. A: Prediction accuracy across 

various protein images. The overall accuracy, considering all antibodies, is presented. The orange 

color represents the complete data set from the original analysis, whereas the blue and green 

colors represent the data sets with the 10 µg/ml and 2 µg/ml data removed, respectively. Both the 

4h and 24h treatment groups remained in the dataset and were not differentiated. B: Relative 

importance of imaging parameters derived from Dsg3 images. C: Pathogenicity scores calculated 

from Dsg3 images. D-F: Confusion matrices for different analyses based on Dsg3 images. 
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Figure 4. Correlation between all possible pairs of parameter-AB groups and integrative 

analysis. A: Correlation matrix showing all possible pairs of parameters and antibody groups, 

highlighting significant correlations (p<0.05). Non-significant correlations are not shown. The data 

are aggregated based on antibody dose, exposure duration, and treatment type. Each cell in the 
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matrix is color-coded to represent correlation strength and direction, where blue signifies a 

positive correlation and red indicates a negative correlation. The size of each dot correlates with 

the strength of the correlation. B-D: Scatter plots illustrating representative correlations from the 

matrix. Colors are used to differentiate antibodies, but the dose and treatment duration are not 

distinguished. E: Overall relative importance of imaging parameters, averaged across all proteins 

and weighted by classification accuracy. F: Overall pathogenicity scores. G: Overall antibody 

similarity graph.  
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Figure 5. Quantification of texture features in Dsg3 and IF images under various 

mechanical and antibody treatment conditions. Boxplots representing the distribution of 

texture parameters for Dsg3 (A-C) and IF (D-F) under six experimental groups: Control, Cyclic 

Stretch (CS), Static Stretch (SS), AK23 antibody treatment, AK23 + CS, and AK23 + SS. The 

texture features quantified include Entropy (A, E), Standard Deviation (Std) (B), Correlation (C), 

Mean (D), and Contrast (F). Statistical significance is indicated as follows: *p<0.05, **p<0.01, 

**p<0.001. 
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