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The maintenance of a healthy cardiovascular system requires expression of genes
that contribute to essential biological activities and repression of those that are
associated with functions likely to be detrimental to cardiovascular homeostasis.
Vascular calcification is a major disruption to cardiovascular homeostasis, where
tissues of the cardiovascular system undergo ectopic calcification and consequent
dysfunction, but little is known about the expression of calcification genes in the
healthy cardiovascular system. Large animal models are of increasing importance
in cardiovascular disease research as they demonstrate more similar cardiovascular
features (in terms of anatomy, physiology and size) to humans than do rodent species.
We used RNA sequencing results from the sheep, which has been utilized extensively
to examine calcification of prosthetic cardiac valves, to explore the transcriptome of
the heart and cardiac valves in this large animal, in particular looking at expression
of calcification and extracellular matrix genes. We then examined genes implicated
in the process of vascular calcification in a wide array of cardiovascular tissues and
across multiple developmental stages, using RT-qPCR. Our results demonstrate that
there is a balance between genes that promote and those that suppress mineralization
during development and across cardiovascular tissues. We show extensive expression
of genes encoding proteins involved in formation and maintenance of the extracellular
matrix in cardiovascular tissues, and high expression of hematopoietic genes in the
cardiac valves. Our analysis will support future research into the functions of implicated
genes in the development of valve calcification, and increase the utility of the sheep as a
large animal model for understanding ectopic calcification in cardiovascular disease.
This study provides a foundation to explore the transcriptome of the developing
cardiovascular system and is a valuable resource for the fields of mammalian genomics
and cardiovascular research.

Keywords: sheep, cardiovascular system, extra cellular matrix, gene expression, RNA-seq, network analysis,
ectopic calcification
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INTRODUCTION

The cardiovascular system plays a crucial role not only in
the distribution of nutrients to the various cells, tissues and
organs within the mammalian body, but also in the removal of
waste products. Extensive regulatory mechanisms are required
to support this functional system, with perturbations likely to
lead to abnormalities, and thus give rise to cardiovascular-related
disease, a major cause of morbidity and mortality worldwide, with
an estimated 17.3 to 17.5 million deaths per year (Townsend et al.,
2016; World Health Organisation, 2017). Cardiac valvulopathies
are becoming increasingly prevalent in the aging population
(Nkomo et al., 2006). A recent United Kingdom study of nearly
80,000 adult patients referred for echocardiography found that
50% had some degree of cardiac valve dysfunction (Marciniak
et al., 2017). In contrast, only 12% of the same patient group had
left ventricular systolic dysfunction.

The maintenance of a healthy cardiovascular system
requires expression of genes that contribute to essential
biological activities and repression of those that are associated
with functions likely to be detrimental to cardiovascular
homeostasis. A major pathological process that disrupts
cardiovascular homeostasis is ectopic calcification, which
is associated with aging, hypertension and atherosclerosis
(Abedin et al., 2004; Towler, 2008; Zhu et al., 2012; Tsang et al.,
2016). Ectopic calcification results from abnormal mineral
metabolism, involving the deposition of calcium phosphate,
in the form of hydroxyapatite (HA). In cardiovascular tissues,
ectopic calcification most critically affects the arteries and
cardiac valves, and is a significant, independent risk factor
of cardiovascular mortality (Giachelli, 2004; Li et al., 2006;
Zhu et al., 2012). Most individuals above 60 years of age
have gradually enlarging calcium deposits in their major
arteries (Allison et al., 2004; Demer and Tintut, 2008). Ectopic
calcification is a highly regulated, active process involving
a variety of signaling pathways, with evidence suggesting
the involvement of mechanisms similarly observed in bone
formation (Boström et al., 1993; Lanzer et al., 2014). However,
the exact molecular basis underpinning the complex process of
ectopic calcification, particularly the dysregulated expression
of genes involved in cardiovascular function, has yet to
be fully defined.

A number of factors have been implicated in the phenotypic
transition of vascular smooth muscle cells (VSMCs) into
osteocytic-, osteoblastic-, and chondrocytic-like cells (Yang et al.,
2004; Li et al., 2006; Giachelli, 2009; Zhu et al., 2011, 2012).
These include increase in osteochondrogenic markers, including
TNAP (ALPL gene), osteopontin (also known as secreted
phosphoprotein 1; SPP1 gene), and the transcription factor
RUNX2 (Steitz et al., 2001; Rajamannan et al., 2003; Lomashvili
et al., 2004; Speer et al., 2009; Yang et al., 2009; Zhu et al., 2012),
as well as decrease in mineralization inhibitors, including ENPP1,
MGP, ecto-5′-nucleotidase NT5E (also known as cluster of
differentiation 73, CD73), and FBN1 (Luo et al., 1997; Schurgers
et al., 2008; Rutsch et al., 2011; St. Hilaire et al., 2011; Albright
et al., 2015). During the calcification process VSMCs enter a
synthetic state with abundant production of extracellular matrix

(ECM) proteins (Hruska et al., 2005) followed by matrix vesicle-
mediated calcification (Giachelli, 2009; Leopold, 2015). Indeed
recent comparative transcription profiling has identified over
50 ECM genes identically regulated by calcifying VSMCs and
bone-forming osteoblasts (Alves et al., 2014), with ECM proteins
likely acting in concert with each other to determine the extent
of calcification. A similar process is likely followed by cardiac
valve cells undergoing calcification. Nevertheless, although the
sequence of events leading to normal bone mineralization is
better understood, the specific mechanisms by which ectopic
calcification occurs remain ambiguous, as affected cells may
still retain their overall identity, despite acquiring osteoblastic
properties (Frink, 2002; Zhu et al., 2012; Alves et al., 2014).

In recent decades, both non-invasive and invasive therapies
for cardiovascular disease have advanced considerably. This
advancement has been underpinned by basic research, with
animal models being of key importance. Of growing value
is the use of large animal models of cardiovascular disease
(reviewed in Tsang et al., 2016). Sheep and pigs, for example,
are more similar in their cardiovascular features (in terms of
anatomy, genetics, physiology, and size) to humans than are
rodent species. Evidence suggests there are significant phenotypic
differences between mouse and human stem cells (Ginis et al.,
2004; Gabdoulline et al., 2015) and large animals might therefore
provide greater similarity to humans at the cellular and molecular
level. Early developmental stages can be studied in detail in large
animal models, which is limited in scope in both human and
mouse (Emmert et al., 2013). Finer resolution of regions of the
cardiovascular system is also possible with the increased size of
the heart and vessels of the large animal models. Sufficient RNA
for transcriptomic studies can be obtained from a single animal,
so that inter-animal variability can be assessed. The major benefit
of large animals in cardiovascular disease (CVD) clinical research
remains, however, their application in the development of
interventional technologies and implantable devices (reviewed in
Tsang et al., 2016). In particular, sheep have been used extensively
to model the outcomes of prosthetic cardiac valve implantation
(Barnhart et al., 1982; Schoen et al., 1994; Flameng et al., 2006;
Baraki et al., 2009; Fukunishi et al., 2016; Bonetti et al., 2019).
These studies revealed extensive calcification of the prosthetic
valves, which was ameliorated in decellularized prostheses. Cell
culture models using sheep aortic valve interstitial cells and
vascular smooth muscle cells have shown that the cultures
mineralize under calcifying conditions (Nigam and Srivastava,
2009; Shimizu et al., 2011; Tsang et al., 2018). Characterizing the
normal transcriptome of the healthy mammalian cardiovascular
system will allow better understanding of the cellular changes
induced by these treatments.

The increasing use of high-throughput technologies such as
RNA sequencing (RNA-seq), has been continually expanding
the number of gene expression datasets available for specific
tissues and cells. Although there are various public resources, the
transcriptomic data available for the mammalian cardiovascular
system are generally limited to the “heart” or ventricular tissue,
such as in BioGPS1 and the Expression Atlas online database

1http://biogps.org/
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(EMBL-EBI)2. In the human GTex Project (Mele et al., 2015), for
example, two cardiovascular tissues are included (Heart – Atrial
Appendage and Heart – Left Ventricle) from a large number of
individuals (n = 372 and n = 386 respectively). RNA-seq has been
used to greatly enhance resolution of cardiovascular disease in
humans (reviewed in Wirka et al., 2018) and generate baseline
estimates of gene expression in developing cardiovascular tissues
(Pervolaraki et al., 2018). However, comparable resources were
not available for large animal models, to aid in the development
of interventions and other treatments for cardiovascular disease.

This study describes gene expression in the mammalian
cardiovascular system, supporting and extending the high
resolution gene expression atlas for sheep (Clark et al., 2017).
Initially we present tissue-specific gene expression profiles
in the heart muscle and cardiac valves using RNA-seq. We
then use reverse transcriptase quantitative PCR (RT-qPCR) to
measure myocardial and arterial tissue gene expression during
development in the sheep focusing on inhibitors of calcification
in the healthy cardiovascular system.

MATERIALS AND METHODS

Sample Collection
Five developmental stages from Texel x Scottish Blackface sheep
were analyzed: 100-day gestation (fetal), newborn, 1 week,
8 weeks and 2 years (n = 3–6 per group). The adult samples were
from three male and three female adult Texel× Scottish Blackface
sheep at 2 years of age (n = 6 in total) described previously (Clark
et al., 2017). Samples were collected within an hour and 30 min
post euthanasia. 17 different tissues were collected from adults;
the equivalent tissues were collected from fetuses at day 100 of
gestation and young lambs where possible. Detailed dissection
of tissues was performed by the same two researchers, for all
sheep, in order to standardize tissue sampling. Details of the
samples included in each of the three sets of analyses described
herein (RNA-seq of eight tissues, developmental stage expression
profiles and calcification gene expression profiles) are included
in Table 1. After dissection, tissues of interest were placed into
RNAlater (Thermo Fisher Scientific) and stored according to
the manufacturer’s instructions. RNA was extracted from tissues
using TRIzol (Thermo Fisher Scientific) as described in Clark
et al. (2017). RNA integrity (RINe) was estimated on an Agilent
2200 Tapestation System (Agilent Genomics).

RNA-seq
The RNA-seq analysis we present in this manuscript is based
on a subset of data, from seven cardiovascular tissues and one
skeletal muscle (Table 1), from our high resolution atlas of
gene expression for domestic sheep (Clark et al., 2017). All
procedures were described in Clark et al. (2017). After quality
control a small number of samples, despite multiple extraction
attempts, were of insufficient quality for RNA-seq, and as such
some of the tissues in the present analysis have less than
six biological replicates (Supplementary Table S1). RNA-seq

2https://www.ebi.ac.uk/gxa

TABLE 1 | Details of the samples, number of biological replicates, and
developmental stage of all samples included in the analyses.

Tissue No. of replicates Developmental stage

RNA-seq

Aortic Valve 4 Adult (2 years)

Left AV Valve 4 Adult (2 years)

Right AV Valve 4 Adult (2 years)

Left Auricle 4 Adult (2 years)

Right Auricle 5 Adult (2 years)

Left Ventricle 6 Adult (2 years)

Right Ventricle 6 Adult (2 years)

Skeletal Muscle (Bicep) 6 Adult (2 years)

RT-qPCR (developmental stages)

Left Ventricle 3–5 Fetus d100, newborn,
8 weeks, 2 years

Interventricular Septum 3–5 Fetus d100, newborn,
1 week, 8 weeks,
2 years

Aortic Root 3–5 Newborn, 1 week,
8 weeks, 2 years

Aortic Arch 3–5 Newborn, one week,
2 years

Abdominal Aorta 3–5 Newborn, 8 weeks,
2 years

Pulmonary Artery 3–5 Newborn, 8 weeks,
2 years

RT-qPCR (calcification genes)

Left Auricle 6 Adult (2 years)

Left Atrium 6 Adult (2 years)

Left Ventricle 6 Adult (2 years)

Right Auricle 6 Adult (2 years)

Right Atrium 6 Adult (2 years)

Right Ventricle 6 Adult (2 years)

Interventricular Septum 6 Adult (2 years)

Cranial Vena Cava 6 Adult (2 years)

Aortic Valve 6 Adult (2 years)

Left AV Valve 6 Adult (2 years)

Right AV Valve 6 Adult (2 years)

Pulmonary Valve 6 Adult (2 years)

Aortic Base 6 Adult (2 years)

Aortic Arch 6 Adult (2 years)

Descending Thoracic Aorta 6 Adult (2 years)

Abdominal Aorta 6 Adult (2 years)

Pulmonary Artery 6 Adult (2 years)

AV, atrioventricular.

libraries were generated and sequenced by Edinburgh Genomics
(Edinburgh, United Kingdom). Expression was quantified using
the alignment-free transcript quantification tool Kallisto v0.43.0
(Bray et al., 2016). Kallisto generates expression level estimates
orders of magnitude faster than previous approaches and so
was ideally suited for processing the large volumes of data
constituting the expression atlas described previously (Clark
et al., 2017). However, it was contingent on the user providing
a robust set of reference transcripts as input. To obtain transcript
models that were absent from the original sheep annotation (Oar
v3.1) we performed genome-guided de novo assembly using the
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HISAT/StringTie ‘new Tuxedo’ protocol (Pertea et al., 2016), as
previously described (Clark et al., 2017). The raw RNA-seq data
are deposited in the European Nucleotide Archive (ENA) under
study accession number PRJEB191993. Supplementary Table S1
provides the details of the cardiovascular tissues included in the
sheep atlas dataset and analyzed further here. It was necessary to
normalize these estimates according to the methods described in
Bush et al. (2017) to account for the two different library types
(ribo-depleted total RNA for left ventricle and poly-A selected
mRNA for all other tissues). The gene expression estimates for
the sheep gene expression atlas dataset are publicly available on
BioGPS4, and we have included the gene expression estimates
for the subset of tissues re-analyzed here as Supplementary
Dataset S1.

Network Analysis of the Gene
Expression Estimates From RNA-seq
Expression estimates for each gene were analyzed using the
network visualization tool, BioLayout5 (Theocharidis et al., 2009;
Livigni et al., 2018). Expression values were averaged across
biological replicates for each tissue. To minimize spurious
correlations due to low expression noise, only genes with
expression > 1 TPM in at least one averaged sample were
included in the analysis. Similarities between individual gene
expression profiles were determined by the calculation of a
Pearson pairwise correlation matrix for both sample-to-sample
and gene-to-gene comparisons. The co-expression network
was laid out using the Fruchterman–Rheingold algorithm
(Fruchterman and Reingold, 1991). The dataset was filtered to
remove relationships where the Pearson correlation coefficient
(which is the statistical measure of the strength of a linear
relationship between paired data) was below a threshold of
r ≥ 0.91 (sample-to-sample) and r ≥ 0.99 (gene-to-gene).
The Markov clustering algorithm (MCL) was applied at an
inflation value (which determines cluster granularity) of 2.2
(van Dongen and Abreu-Goodger, 2012) to identify groups
of transcripts with closely related expression patterns. Clusters
were numbered in order of decreasing cluster size. The online
Database for Annotation, Visualization and Integrated Discovery
(DAVID) Functional Annotation tool6 was used for Gene
Ontology (GO) analysis.

Functional Annotation of Unannotated
Genes
In spite of the extensive annotation process undertaken for the
original sheep atlas [summarized above and described in detail
in Clark et al. (2017)], we identified a number of unannotated
or poorly annotated genes with no or minimal associated GO
terms and previously no known function. A summary of the
numbers of minimally annotated genes in the clusters discussed
in this paper is presented in Supplementary Table S2. Protein-
coding genes that contribute to common generic and cell-specific

3http://www.ebi.ac.uk/ena/data/view/PRJEB19199
4http://biogps.org/dataset/BDS_00015/sheep-atlas/
5http://biolayout.org/
6https://david.ncifcrf.gov/

cellular processes or pathways generally form co-expression
clusters, allowing the inference of the function of a gene of
previously unknown function (Oliver, 2000; Freeman et al.,
2012; Klomp and Furge, 2012; Carpanini et al., 2017). Using
this ‘guilt-by-association’ principle we were able to provide
functional annotation information for genes that were expressed
in cardiovascular tissues and previously unannotated in Oar v3.1,
based on the average expression pattern of the cluster in which
they were found.

Reverse Transcriptase Quantitative PCR
(RT-qPCR)
RNA samples (collected and purified as described above) with
RINe > 7 were used for RT-qPCR. RT-qPCR reactions were
performed using PrecisionPLUS-MX-SY Mastermix (containing
SYBR Green; Primerdesign Ltd) following the manufacturer’s
protocol. Details of the twenty-four sheep-specific primers used
are listed in Table 2. Because of the limitations of the sheep
genome sequence it was not possible to design primers for
all genes of interest. Primers were designed using the current
version of the sheep genome Oar v3.17 with Primer3 software8

to span exon–exon junctions, and obtained from Invitrogen
(Paisley, United Kingdom) or Primerdesign Ltd (Eastleigh,
United Kingdom). In addition to those in Table 2, primers were
designed for FBN3, ABCC6, SOST, ALPL (2 sets of primers),
AHSG, CA2, TRIM24, ADIPOQ, SMAD6, MCP1/CCL2, TNF,
IL1R1, FN1, MMP9, TIMP2 but were not used for further
analysis, based on cost, time constraints, expression level during
preliminary testing and optimization of the RT-qPCR. In
addition, we were unable to analyze a number of established
calcification genes, as certain genes, including ALPL, are only
up-regulated in tissues undergoing pathological calcification and
not detectable in healthy tissue. RT-qPCR was carried out on
three technical replicates for each sample. Gene expression was
normalized to the geomean of GAPDH and YWHAZ. Normalized
data were expressed as 2-1Ct values from the 2-11Ct method
(Livak and Schmittgen, 2001), and transformed using the natural
log (Loge).

Statistical Analyses
Statistical analyses of RT-qPCR results were performed using
Minitab 17 (Coventry, United Kingdom). The Kolmogorov–
Smirnov normality test was performed to check whether
experimental data were normally distributed. In this study, one-
way analysis of variance (ANOVA) using a general linear model
incorporating Fisher’s least significant difference (LSD) method
was used for pairwise comparisons. RT-qPCR gene expression
data in this study are expressed as mean ± standard deviation
(SD), and p-value < 0.05 from the ANOVA (which allows for
multiple comparisons) was considered significant. Dotplots were
made in R v3.2.29, using the R package ‘ggplot2’ with error bars
showing mean ± SD. Individual data points are also included
in the dotplots.

7https://www.ensembl.org/Ovis_aries/Info/Annotation
8http://primer3.ut.ee/
9https://www.r-project.org/
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TABLE 2 | Sheep primers for RT-qPCR.

Gene Category Forward primer (5′-3′) Reverse primer (5′-3′)

ADAMTS6; ADAM metallopeptidase
with thrombospondin type 1 motif 6

ECM AGGTGTATGATGCCGATGAACA CTGCGGGAATACTGTTGGTGA

ANKH; Progressive ankylosis protein Calcification inhibitor AGTTCACGTTCGTCTGCATG TGGAACCGGGAAGAAGGAAA

BGLAP; bone
gamma-carboxyglutamate protein

Calcification GCCTGGTGATGCAGAGTCG GCTCCAGCGGATCTGGGTA

BGN; Biglycan ECM GGAGAACAGCGGCTTTTGAAC GAGGGTCTCAGGGAGGTCTT

COL1A1; Collagen type I alpha 1 ECM AAGGAGACACTGGTGCCAAG GCCAGCAGGTCCAGGTTC

COL1A2; Collagen type I alpha 2 ECM TGGTCAGACTGGTCCTGCT CTGTGGTCCAACAACTCCTCT

COL3A1; Collagen type III alpha 1 ECM GCTGTTGACGGAGGATGCT ATTATGTCATCACAGAGAACGGATC

DKK3; Dickkopf WNT signaling
pathway inhibitor 3

Calcification inhibitor Not available (Primerdesign Ltd) Not available (Primerdesign Ltd)

ENPP1; Ectonucleotide
pyrophosphatase/phosphodiesterase 1

Calcification inhibitor CCCAGACTCCCTTACAGTGT GATCCGAGCTCTGTGTAGCT

FBN1; Fibrillin 1 ECM, calcification inhibitor GCTGCCAGAACATCATCGG CTGTTCGTATTGGAAGCCGG

FBN2; Fibrillin 2 ECM CTGGGAGGCTACAGGTGTG GACGAGCACTCATTCACGTC

FMOD; fibromodullin ECM GAGGAAGACTCTCACTGGTGG TGGAGAGCCGTAGGCGTAA

GAPDH; glyceraldehyde 3-phosphate
dehydrogenase

Reference gene Not available (Primerdesign Ltd) Not available (Primerdesign Ltd)

MGP; matrix Gla protein Calcification inhibitor ACAACAGAGATGGAGAGCGA CGGAAATAACGGTCGTAGGC

MMP2; matrix metalloproteinase 2 ECM ACAAATTCTGGAGATACAATGAGGT CAGGTCCACCACAGCATCC

NPPA; natriuretic peptide A Vascular remodeling Not available (Primerdesign Ltd) Not available (Primerdesign Ltd)

NT5E; ecto-5′-nucleotidase (also
known as CD73)

Calcification inhibitor TCCTTGTCAGTGGTGGAGAC GCAGAAAACTGGATCCGACC

RUNX2; Runt-related transcription
factor 2

Calcification CTCCTCCATCCATCCACTCC CAGAGGCAGAAGTCAGAGGT

SLC20A1 (PiT1); sodium-dependent
phosphate transporter 1

Calcification ACATCTTGAACGCCGCTA AGTAGCAGCAATAGCAGTGGTA

SMAD2; SMAD family member 2 Calcification inhibitor GGGAGGAGTGAGGAGTGCTC GGTTTCCTGGTTTAGCTCTCA

SPP1; osteopontin, also known as
secreted phosphoprotein 1)

Calcification TGACCCATCTCAGAAGCAGA CTCGGCCATCATTTGTGCTT

TIMP1; TIMP metallopeptidase
inhibitor 1

ECM GCCTTATACCAGCGTTATGAGAT GCAGGGGTGTAGATGAATCG

TNFRSF11B; osteoprotegerin Calcification inhibitor GGAGGCGTTCTTCAGGTTTG CGGCAAGCTTTCCATCAACT

YWHAZ; tyrosine 3-mono-oxygenase Reference gene Not available (Primerdesign Ltd) Not available (Primerdesign Ltd)

Primers in black were designed using Primer3 (http://primer3.ut.ee/) to span exon–exon junctions, and obtained from Invitrogen (Paisley, United Kingdom). Primers in blue
were obtained from Primerdesign Ltd. (Eastleigh, United Kingdom).

RESULTS

Gene Expression Profiles Reflect
Anatomical Structure
We initially took advantage of the RNA-seq data from the sheep
atlas project (Clark et al., 2017) to compare the transcriptomes
of skeletal muscle, heart and cardiac valves. The network
visualization generated by BioLayout for sample-to-sample
analysis is similar to a principal components analysis and creates
a network graph where the tissue samples (averaged across
biological replicates from up to 6 adult sheep; Supplementary
Dataset S1) with highly similar expression profiles are located
close together. The resultant graph contained all 8 nodes (tissue
samples) that were connected by 10 edges (connections between
nodes at a correlation coefficient of ≥ 0.91; Figure 1A). Two
distinct elements were identified: an element containing the five
myocardium/skeletal muscle samples and a cardiac valve element
(red and blue respectively in Figure 1A). The network indicated

that there were close similarities in the overall expression profiles
of genes in skeletal muscle and heart muscle, which were distinct
from the cardiac valve tissues. Similar grouping of skeletal muscle
and heart muscle tissues was previously observed by Lukk et al.
(2010).

Tissue-Specific Expression Clusters in
the Cardiovascular System
Network-based gene-to-gene analysis of Supplementary Dataset
S1 grouped genes according to their expression pattern across
the muscle and valve samples, producing a gene co-expression
network (GCN) (Gaiteri et al., 2014). A high correlation
coefficient of r ≥ 0.99 was necessary to discriminate expression
patterns due to the similarity of expression in the relatively small
set of samples being analyzed. The resultant graph (Figure 1B)
included 11,341 nodes (genes) with 938,652 edges (correlations at
r ≥ 0.99 between them). There was one main extended element
containing the majority of the genes and 331 smaller elements of
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FIGURE 1 | Cardiovascular gene co-expression networks. (A) Sample-to-sample analysis. Network layout of 8 tissue types revealed two distinct components: the
first containing cardiac valve samples (blue), and the second with myocardium/skeletal muscle tissues (red). Pearson correlation co-efficient r ≥ 0.91.
(B) Gene-to-gene analysis. Circles represent genes and lines correlation between them of r ≥ 0.99. Circles of the same color were allocated to the same expression
cluster by Markov clustering algorithm (MCL) clustering of the graph (inflation value 2.2). The labels indicate the tissues where clusters of genes were most highly
expressed. The gene-to-gene network was comprised of 11,341 nodes (genes) with 938,652 connections and resulted in 555 clusters containing > 3 genes (the
figure shows only the larger elements).

less than 30 genes. MCL clustering of the graph (inflation = 2.2)
resulted in 555 clusters containing > 3 genes. We focused on 143
clusters with ≥10 genes. All genes with high expression in one

or more of the cardiac valves were close together in the network
(Figure 1B), and there were also regions containing genes with
high expression in all muscle, bicep muscle, heart muscle and
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the different heart chambers, as indicated in Figure 1B. Details
of the genes in the clusters and average expression profiles are
included in Supplementary Dataset S2. Some clusters (where
the difference in average expression was less than 3-fold; 88
clusters) were considered ubiquitous and generally contained
housekeeping genes. For 36 of the 143 clusters, expression
was at least 3-fold higher in the three valve samples than in
the heart and skeletal muscle. Seven of these showed high
expression only in aortic valve while four were highest in the
right atrioventricular (tricuspid) valve and 3 were higher in
the left atrioventricular (mitral) valve. Several clusters contained
genes that were higher in skeletal muscle than cardiac muscle
or valves, and some were high in the myocardium samples only.
Two clusters contained genes that were high only in the skeletal
(bicuspid) muscle and left ventricle. There was no cluster of genes
that were high in the ventricles alone, or in a single myocardium
sample, but two clusters contained genes that were higher in
the auricles than in the other tissues sampled. Interestingly
there were some clusters of genes with higher expression in
the skeletal muscle and heart valves than the myocardium or
with higher expression in the skeletal muscle and left ventricle
(Supplementary Dataset S2). Expression profiles of a subset of
ECM, VC and heart function genes are shown in Supplementary
Figure S1. Table 3 summarizes the expression patterns of four
clusters with higher expression in the cardiac valves and one
with highest expression in the heart auricles. These clusters were
chosen because they showed at least 3-fold difference in average
expression among samples and contained genes relating to the
ECM and calcification. They are discussed below along with
representative clusters showing higher expression in the heart or
biceps muscle samples.

Cluster 1 contained 3543 genes (Figure 2A). Genes in
this cluster showed approximately a 3-fold greater expression
in the cardiac valves than in the other tissues. A wide
variety of genes was included in this cluster. The cluster
contained genes enriched for GO terms associated with cell
structure, such as COL1A1 (encoding collagen type I alpha
1) and COL3A1 (collagen type III alpha 1), MMP2, -9, -
19, -20, and -28 (matrix metalloproteinases), FBN2 (fibrillin-
2) and TIMP1 (tissue inhibitor of matrix metalloproteinases
1) (Table 3). There were also multiple genes expressed
specifically by macrophages in sheep (Clark et al., 2017)
and other species (Fantom Consortium and the Riken PMI
and CLST (DGT), 2014; Lizio et al., 2015; Summers et al.,
2020), including CSF1R, AIF1, SPI1 and CSF2RA/B and a
number of interleukin and interferon responsive genes. In
addition, members of the smoothened signaling pathway
(SMO, GLI1-3) involved in cilium formation and function,
genes associated with RNA transcription and processing (for
example POLR genes) and some genes associated with cell
proliferation (for example centromere protein genes) were
in this cluster. Cluster 1 also contained genes associated
with TGF beta signaling, including TGFB3, TGFBI, TGFBR2,
and TGFBR3.

Cluster 3 (Figure 2B) contained 192 genes with highest
expression in the cardiac valves, particularly the aortic valve,
at approximately 4.5 to 18-fold higher than the myocardial
and skeletal muscle tissues. This cluster was enriched for GO

terms associated with extracellular matrix organization, skeletal
system development, osteoblast differentiation and cartilage
morphogenesis. Genes in this cluster included those encoding
bone morphogenetic protein 4 (BMP4), collagen type I alpha 2
(COL1A2) and bone gamma-carboxyglutamate protein (BGLAP,
also known as osteocalcin) (Table 3). Other valve specific
genes in this cluster included MYH10 (myosin heavy chain
10), Potassium channel gene KCNU1 and BGN (ECM protein
biglycan) which was 15- to 20-fold higher in the valves. Genes
encoding various transcription factors were also contained within
this cluster, including FOS like 2, AP-1 transcription factor
subunit (FOSL2), Twist basic helix-loop-helix transcription
factor 2 (TWIST2), Snail family transcriptional repressor 1
and 2 (SNAI1 and SNAI2) and Sry homeobox 8 (SOX8). In
cluster 3, 42 genes were unannotated and not included in the
input into DAVID.

Like cluster 1, the 27 genes in cluster 22 (Figure 2C)
also showed relatively ubiquitous expression, with smaller
differential between the cardiac valves and the myocardium
and skeletal muscle than those in cluster 1 (approximately
3-fold difference) (Figure 2C). Genes in cluster 22 included
ENPP1 (ectonucleotide pyrophosphate/phosphodiesterase 1),
ADAMTS6 (ADAM metallopeptidase with thrombospondin type
1 motif 6) and SMAD2 (SMAD family member 2). Some of the
genes in this cluster are annotated as immune-related, including
C-C motif chemokine receptor 6 (CCR6), interleukin6 signal
transducer (IL6ST) and nuclear factor, interleukin 3 (NFIL3)
(Table 3) but these genes are less specific to hematopoietic cells
than those in Cluster 1 (Clark et al., 2017; BioGPS, 2020).

The 25 genes in cluster 24 (Figure 2D) were also more
highly expressed in the cardiac valves, at up to 16-fold higher
than the myocardium, and approximately 4 to 5-fold higher
than the bicep (representing skeletal muscle). Genes encoding
proteins involved in transcriptional regulation were included in
this cluster, including mesenchyme homeobox 1 (MEOX1), the
GATA-regulated gene repressor transcriptional repressor GATA
binding 1 (TRPS1) and recombination signal binding protein for
immunoglobulin kappa J region (RBPJ) (Table 3). ECM protein
encoding genes were also included, such as FBN1 (fibrillin-1),
FMOD (fibromodulin), and COL6A1 (collagen type VI alpha 1)
as well as the macrophage specific gene NLR family pyrin domain
containing 3 (NLRP3) (Table 3).

The 20 genes in cluster 36 (Figure 2E) showed high
expression in the auricles, at up to 2,000-fold higher than the
other tissues. Genes included in this cluster were involved in
muscle contraction through potassium ion transport (Table 3),
e.g., potassium voltage-gated channel subfamily Q member 3
(KCNQ3), subfamily J member 3 (KCNJ3) and subfamily K
member 3 (KCNK3), as well as peptidylglycine alpha-amidating
monooxygenase (PAM) and myosin light chains 4 and 7 (MYL4
and -7) (Table 3). Other genes to note include natriuretic peptide
A (NPPA) and Dickkopf WNT signaling pathway inhibitor
3 (DKK3) (Table 3). Examination of the wider sheep gene
expression atlas10 showed that many of the genes in this cluster
were also highly expressed in brain regions, consistent with the
function of many as ion transport channels.

10https://www.biogps.org/sheepatlas
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FIGURE 2 | Average expression of genes within clusters. Spheres (nodes) in co-expression clusters (left) denote individual genes; lines represent connections
between genes. The histograms (right) show median expression levels in transcripts per million (TPM) in the different tissues. X axis shows the samples; Y axis
shows the average expression for the cluster in TPM. AV, atrioventricular. (A) Cluster 1, the largest cluster, contained 3543 genes, with 529 unannotated genes.
A co-expression cluster highly expressed in the sheep cardiac valves compared to the myocardium and bicep. (B) Cluster 3 contained 192 genes, with 40
unannotated genes. A co-expression cluster highly expressed in the sheep cardiac valves, particularly in the aortic valves, compared to the myocardium and bicep.
(C) Cluster 22 contained 27 genes, with 5 unannotated genes. A co-expression cluster highly expressed in the sheep cardiac valves compared to the myocardium
and bicep. (D) Cluster 24 contained 25 genes, with 3 unannotated genes. A co-expression cluster highly expressed in the sheep cardiac valves compared to the
myocardium and bicep. (E) Cluster 36 contained 20 genes, with 5 unannotated genes. A co-expression cluster highly expressed in the sheep auricles compared to
the cardiac valves, the ventricles and the bicep.

A number of clusters contained genes that were high
in both bicep (representing skeletal muscle) and the heart
regions and 2- to 3-fold lower in the valves. As might be

expected, these clusters were enriched for genes involved in
mitochondrial function, reflecting the energy requirements of
muscle tissue. In contrast, Cluster 4 (164 nodes) expression

Frontiers in Genetics | www.frontiersin.org 8 September 2020 | Volume 11 | Article 919

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00919
Septem

ber6,2020
Tim

e:20:44
#

9

Tsang
etal.

C
ardiovascular

G
ene

E
xpression

in
S

heep

TABLE 3 | Summary of five clusters from the sheep cardiovascular transcriptome dataset.

Cluster Number of
genes

Number of
un-annotated

genes

Expression
profile
description

Functional class GO term EASE score (p-value) EASE score (p-value;
Benjamini corrected)

Genes included
(Gene symbols)

1 3543 529 Cardiac valves Various,
Housekeeping

* (BP) mRNA 3′-end
processing;
RNA export from
nucleus

a,b8.1E-6;

a,b1.5E-4

a,b0.0064;

a0.063,
b0.055

COL1A1, COL3A1,
MMP2, TIMP1

3 192 42 Cardiac valves
(highest in aortic
valve)

ECM organization,
bone development

(BP) extracellular matrix
organization;
skeletal system
development;
osteoblast
differentiation

6.02E-4;

0.00336;

1.12E-5

0.124;

0.31;

0.0099

BGN, COL1A2,
SPARC;
BGLAP, COL1A2,
GDF10;
BMP4, BGLAP,
SNAI1-2, SOX8

22 27 5 Cardiac valves Housekeeping,
Immune

(BP) immune response
(MF) integral
component of
membrane

0.067;
0.061

0.999;
0.928

CCR6, ENPP1, NFIL3;
CD47, ENPP1, IL6ST,
SMAD2

24 25 3 Cardiac valves
(Aortic valve >

Left AV valve >

Right AV valve)

ECM (BP) positive regulation
of transcription from
RNA polymerase II
promoter;
transcription from RNA
polymerase II promoter
(CC) extracellular matrix

0.108;

0.123;

0.045

0.999;

0.999;

0.943

MEOX1, TRPS1, RBPJ,
NLRP3;

FMOD, FBN1, COL6A1

36 20 5 Auricles
(Left > Right)

Muscle contraction (BP) potassium ion
transport;
(MF) calcium ion
binding;
(CC) extracellular space

0.002;

0.06;

0.221

0.16;

0.921;

0.999

KCNQ3, KCNJ3,
KCNK3;
MYL7, PAM, MYL4;

DKK3, NPPA, PAM

Gene Ontology (GO) term analysis was performed using DAVID Functional Annotation tool (https://david.ncifcrf.gov/). AV, atrioventricular; BP, biological processes; CC, cellular component; MF: molecular function. Full
gene lists and cardiovascular expression data are presented in Supplementary Dataset S1. *Up to 3000 genes maximum can be input into DAVID, thus two runs were performed: aGO term significant in top 3000
genes; bGO term significant in bottom 3000 genes. EASE score = modified Fisher Exact. > indicates decreasing expression.
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was high only in bicep and contained genes specific to
skeletal muscle such as a range of troponin and myosin
genes, the ryanodine receptor 1 gene (RYR1) and sodium,
potassium and calcium ion channel genes. Other bicep-
specific clusters included Clusters 23 (25 genes) and 28 (24
genes). These three clusters were comprised of genes encoding
proteins for zinc-dependent proteases, e.g., ADAMTS20 (ADAM
metallopeptidase with thrombospondin type 1 motif 20) and
genes involved in actin binding and motor activity, e.g., MYH15
(myosin heavy chain 15). A small proportion of clusters
exhibited expression patterns that were specific to skeletal
muscle (bicep) and left ventricle. The largest of these clusters
was cluster 13 (48 genes), which included genes encoding
proteins involved in hydrolysis of extracellular nucleotides, e.g.,
ectonucleotide pyrophosphatase/phosphodiesterase 3 (ENPP3)
and transcription factors, e.g., caudal type homeobox 1 (CDX1)
and solute carriers, e.g., SLC16A4 and SLC26A3. Several smaller
clusters, 66 (15 genes), 83 (13 genes) and 90 (13 genes), exhibited
left ventricle specific expression profiles and were comprised of
genes with a similar function to those within cluster 13.

In summary, the cardiac valves showed more consistent
expression of ECM genes, while both valves and the muscle
samples had detectable levels of many transcripts associated with
resident macrophage populations. The transcriptome of cardiac
muscle was similar to skeletal muscle in this analysis, although
some tissue specific gene expression could be seen. For example,
the potassium channel genes KCNJ3, KCNK3, and KCNQ3, the
myosin light chain genes MYL4 and MYL7 and a natriuretic
peptide gene, NPPA were auricle-specific (Cluster 36).

Functional Annotation of Unannotated
Genes
Each cluster contained a number of genes which had no
informative gene name. These included genes with no GO
terms, those described as pseudogenes and those encoding
uncharacterized proteins. There were also a number of genes with
homology to human open reading frames of unknown function
or with homology to uncharacterized transmembrane protein
genes and other poorly annotated gene families. A summary of
the minimally annotated genes in the clusters discussed above is
provided in Supplementary Table S2. While many of these genes
had low expression, some were highly expressed. For example,
ENSOARG00000020353 had a maximum of nearly 6,000 TPM
in aortic valve. It is described as a novel gene with a 24 amino
acid match to parathymosin (PTMS) in the bovine. According
to the ‘guilt by association’ principle (Oliver, 2000) since this
gene was found within a cluster of genes with high expression
in the cardiac valve samples it may well have a similar function
to other annotated genes that are co-expressed in Cluster 1.
Other examples include ENSOARG00000005484 in Cluster 36,
which was expressed at around 18 TPM in left and right auricle.
This gene has some homology to FAM155A and FAM155B
(Tmem28 in mouse), probably a transmembrane calcium ion
transporter (UniProtKB B1AL88 and O75949 respectively).
Further exploration of the 923 ENSOARG genes that were
included in the cluster analysis should allow attribution of

putative functions based on their presence in a cluster of genes
of known function.

Myocardial Tissue Gene Expression
During Development
To explore the gene expression differences in the whole
cardiovascular system, we used RT-qPCR to analyze selected
genes involved in extracellular matrix (ECM) composition
and in maintenance of calcium homeostasis, in a range of
samples from pre- and post-natal developmental stages of the
sheep. A number of genes which are the focus of studies
in our group because they are associated with cardiovascular
pathology and/or ectopic calcification were examined. The
genes and the diseases associated with them are listed
in Supplementary Table S3. The RT-qPCR results for all
genes analyzed including standard deviations are included in
Supplementary Dataset S3. A summary of the results for
the developmental stages is presented in Table 4 and the full
results with significance levels can be seen in Supplementary
Figures S2–S7. Results for different tissues in the adult sheep
are summarized in Figure 3 and full results with significance
levels can be found in Supplementary Figures S8–S10. Below
we highlight the differences in expression for selected genes.
All differences reported below were significant at p < 0.05
by ANOVA analysis.

In the left ventricle free wall, the ECM protein-encoding
genes showed significant decreases in relative expression
during development from 100 days gestation to 2 years
of age, although the timing varied, with BGN and TIMP1
declining before birth while COL1A1, MMP2 and FBN2
decreased after birth. FBN1 dropped rapidly before birth
but then increased at 8 weeks (Table 4 and Supplementary
Figure S2). The expression of SPP1 (also known as OPN),
which promotes calcification, decreased overall with age
while RUNX2, which is also involved in mineralization
increased during development. The mineralization inhibitor
ANKH showed increases in relative mRNA expression, while
TNFRSF11B (also known as OPG and thought to restrict
calcification) showed a significant decrease in its expression
levels after birth. Overall, the expression levels of RUNX2
and TNFRSF11B were low compared to the other tested
genes and MMP2, BGN and MGP were the highest compared
to the other genes in the left ventricle (Table 4 and
Supplementary Figure S2).

In contrast, in the interventricular septum, the ECM
genes COL1A1, BGN and MMP2 were largely unchanged
during development while FBN1 and FBN2 exhibited decreases
in mRNA expression as development progressed (Table 4
and Supplementary Figure S3). In general, SPP1 expression
decreased with age in the interventricular septum although
higher expression was observed in the 1 week old lambs
compared to newborn lambs (p < 0.05). As in the left ventricle,
the expression of ANKH showed an increasing trend with age,
but with a significant increase between the fetal and newborn
lamb samples (p < 0.05). Overall, the expression of MGP
(mineralization inhibitor) did not change, although the 1 week
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TABLE 4 | Summary of expression profiles of ECM and calcification genes during pre- to post- natal development in the sheep cardiovascular system.

Tissue Genes that increased in
expression through

development

Genes that decreased in
expression through

development

Gene(s) with highest
expression through

development

Gene(s) with lowest
expression through

development

Myocardium

Left ventricle ANKH COL1A1 MMP2 TNFRSF11B

RUNX2 FBN2

MMP2

SPP1

FBN1

BGN

TIMP1

TNFRSF11B

Interventricular septum ANKH BGN BGN TNFRSF11B

MGP FBN2 FBN1

SPP1 MGP

FBN1

COL1A1

Arteries

Pulmonary artery TIMP1 FBN2 MGP RUNX2

ENPP1 SPP1

RUNX2

Aortic root – COL1A1 MGP RUNX2

BGN SPP1

FBN1 ANKH

FBN2

MMP2

ENPP1

SPP1

RUNX2

Aortic arch TNFRSF11B FBN2 MGP RUNX2

MGP SPP1

RUNX2

Abdominal aorta COL1A1 FBN2 MMP2 RUNX2

FBN1 SPP1 MGP

TIMP1 RUNX2 BGN

ANKH

TNFRSF11B

Color key for myocardial tissue only (no fetal samples were available for arterial tissues): Red – Overall changed expression from fetal to adult; Green – Changed expression
from pre- to post- natal stages; Blue – Changed expression during post-natal stages.

old lambs showed statistically significant higher expression
compared to the fetal lambs (p < 0.05). Genes that were most
highly expressed in the interventricular septum were BGN, MGP
and FBN1, whereas TNFRSF11B showed the lowest levels of
expression within this tissue (Table 4).

Arterial Tissue Expression During
Development
It was not possible to obtain samples from the fetal animals for the
arteries, but we examined gene expression changes from newborn
to adult. In the pulmonary artery, FBN2 expression decreased
and TIMP1 expression increased between birth and 2 years
of age (Table 4 and Supplementary Figure S4). Expression
of both RUNX2 and ENPP1 (likely to have opposing effects

on mineralization) was significantly higher in the 2-year old
sheep (p < 0.01; Table 4 and Supplementary Figure S4).
SPP1 was significantly lower in the 2-year old sheep compared
to both newborn and 8-week old lambs (p < 0.01). In
the pulmonary artery, MGP was the most highly expressed
of the genes tested, followed by BGN, MMP2, ENPP1 and
COL1A1, with RUNX2 as the gene with the lowest expression
levels (Table 4).

In the aortic root, all the significant changes involved
a decrease from young lambs to 2-year-old adults. Both
the ECM protein genes (COL1A1, BGN, MMP2, FBN1,
and FBN2) and the genes with opposing effects on
mineralization (ENPP1 and SPP1) showed decreases in
their expression (Table 4), and were significantly lower at
2 years of age compared to newborn and 1 week old lambs
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FIGURE 3 | Summary of mRNA expression profiles of key vascular calcification genes in the sheep cardiovascular system. Blue blocks indicate where genes were
found to be most highly expressed in this study. AV, atrioventricular.

(Supplementary Figure S5). Overall, in the aortic root, MGP
followed by BGN, MMP2 and FBN1 showed the highest levels
of expression, whereas the lowest levels of expression were
observed for RUNX2 and SPP1 and ANKH in some adult
samples (Table 4).

In the aortic arch many of the selected genes were
not significantly changed through development (Table 4 and
Supplementary Figure S6) FBN2 expression decreased in 2-
year old sheep compared to newborn and 1 week old lambs
(p < 0.01). SPP1 expression was also significantly lower in adult

sheep compared to newborn and 1 week old lambs (p < 0.05).
In contrast the mineralization inhibitor genes TNFRSF11B and
MGP increased with age as did RUNX2. Within the aortic arch,
the highest levels of expression were seen in MGP, BGN and
ENPP1, and the lowest in RUNX2 and TNFRSF11B (newborn
lambs) and FBN2 and SPP1 (2-year old adults) (Table 4).

In the abdominal aorta, expression of the mRNAs of ECM
protein-encoding genes COL1A1 and FBN1 peaked in 8-week
old lambs (Supplementary Figure S7) while FBN2 expression
decreased from 8 weeks of age to 2 years of age (p < 0.01).
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TIMP1 expression was found to increase with age. For the key
calcification genes, SPP1 showed a reduction in its expression
from 8-week old lambs to 2-year old sheep (p < 0.05), and
RUNX2 was decreased from newborn to 8-week old lambs
(p < 0.05; Supplementary Figure S7). ANKH and TNFRSF11B
expression was significantly increased in the 8-week old and 2-
year old sheep compared to newborn lambs (p < 0.05). In the
abdominal aorta, the highest levels of expression were observed
for MMP2, MGP, BGN and FBN1, and the lowest overall for
RUNX2 (Table 4).

Vascular Calcification (VC) Inhibitors
Expressed in the Healthy Adult
Cardiovascular System
Using RT-qPCR, the expression profiles of various key inhibitors
of ectopic calcification in the cardiovascular system (ANKH,
ENPP1, FBN1, MGP, NT5E, TNFRSF11B) were investigated in
different cardiovascular regions, in the six adult sheep. Figure 3
summarizes where these genes were highly expressed in the
cardiovascular tissues. Overall, the key VC genes tended to be
more highly expressed in the cardiac valves than the other tissues;
expression in the myocardium was lowest (Figure 3).

Of the genes examined, FBN1 and TNFRSF11B showed the
greatest variation across the cardiovascular system. FBN1 was
most highly expressed in the valves, which had significantly
higher expression than the myocardium and vena cava tissues
(p < 0.01; Figure 4). Overall, FBN1 expression was approximately
4-fold lower in the aortic samples than the cardiac valves
(p < 0.05), There was no significant difference between the
aortic arch compared to the left AV valve, the abdominal aorta
compared to the left AV, right AV and pulmonary valves, and
the pulmonary artery compared to the left AV valve (Figure 4).
Expression of FBN1 in the arteries was in general higher (4-
fold) than in the myocardium and cranial vena cava (p < 0.05).
TNFRSF11B expression was higher in the arteries and cardiac
valves compared to the myocardium and cranial vena cava
(Figure 4). The levels of TNFRSF11B expression in the aortic
samples, pulmonary artery, aortic valve and left AV valve were
significantly higher compared to the myocardium and cranial
vena cava (p < 0.05; Figure 4). The expression of TNFRSF11B was
generally very low in the myocardium (approximately 1000-fold
lower than in the arteries) (Figure 4).

Of the other vascular calcification genes investigated, MGP
showed the highest levels of expression compared to the other
tested genes with expression being similar in all tissues, although
the aortic valve showed higher expression than the aortic arch,
the cranial vena cava and the myocardial tissues (p < 0.05;
Supplementary Figure S8). The expression of ANKH was
similar in all tested tissues, but the pulmonary artery showed
significantly higher expression levels than the right atrium
and left auricle (p < 0.05; Supplementary Figure S8). NT5E
expression was found to be higher in the cardiac valves and
the pulmonary artery compared to the other tissues included in
this study (p < 0.05; Supplementary Figure S9). Some arterial
tissues exhibited higher expression than the myocardial samples,
including the aortic root, aortic arch and abdominal aorta

compared to the right atrium, left ventricle and interventricular
septum (p < 0.05; Supplementary Figure S9). The expression
of ENPP1 was significantly higher in the cardiac valves and
aortic arch compared to the myocardium and vena cava
(p < 0.05; Supplementary Figure S10). The remaining aortic
samples showed intermediate expression between the valves
and myocardium (Supplementary Figure S10). Similarly the
expression of SPP1 was found to be higher in the cardiac
valves compared to the myocardium and the aortic root
(p < 0.05; Supplementary Figure S10). Other than in the
cardiac valves, SPP1 expression was generally very low in the
tested cardiovascular tissues, reaching levels similar to that of
the bone marker RUNX2 (Supplementary Figure S10). The
expression of RUNX2 was low in all tested samples. However,
the aortic valve showed higher RUNX2 expression compared to
the myocardium, the cranial vena cava and aortic root (p < 0.05;
Supplementary Figure S9).

Comparative Analysis of RT-qPCR and
RNA-seq Results
We examined the genes analyzed by qPCR in the network
analysis. The cluster and expression level (as TPM) for each
of these genes are included in Supplementary Dataset S2. In
summary, many of the genes analyzed by RT-qPCR were included
in the large cluster 1 (high in cardiac valves, lower in muscle).
This included COL1A1, FBN2, MMP2, TIMP1, COL3A1. Others
were in Clusters 22 and 24, which showed a bigger differential
between the valves (high) and the muscle (low), including
ADAMTS6, SMAD2, NFIL3, FMOD, FBN1. Cluster 3, in which
the aortic valve showed higher expression than the other cardiac
valves, and all valves were higher than the muscle samples,
contained COL1A2, BGLAP, BGN. Two genes of interest (NPPA
and DKK3) were in Cluster 36 (high only in auricles). Some of
the genes of interest were not detected in the network analysis
(e.g., RUNX2 and ANKH), either because their expression level
in the healthy tissues was too low or they did not correlate with
any other gene at the correlation coefficient of 0.99 used.

DISCUSSION

The maintenance of a healthy cardiovascular system requires
expression of genes that contribute to essential biological
activities and repression of those that are associated with
functions likely to be detrimental to cardiovascular homeostasis.
As cardiovascular disease is of major clinical importance,
understanding the roles of genes in co-expression networks
and their associated molecular pathways will be useful in
understanding their dysregulation in pathological events.
Detailed analysis of gene expression of tissues and cell types
in the cardiovascular system provides a powerful resource for
investigation of healthy cardiovascular system function (reviewed
in Wirka et al., 2018). However, analysis of the cardiovascular
system in humans is often jeopardized due to tissues being only
available post-mortem, where frequently the health status of
the individual is not known and the quality of the RNA may be
poor (Ferreira et al., 2018). A large animal model, where tissues
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FIGURE 4 | mRNA expression levels for individual animals, determined by RT-qPCR. (A) FBN1 and (B) TNFRSF11B (osteoprotegerin). Gene expression levels were
normalized to the geomean of GAPDH and YWHAZ. Dot plots show individual data points (black dot), the mean expression for each tissue (red dot) and standard
deviation (red error bars).
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can be collected quickly post mortem from healthy animals,
offers the opportunity to perform a detailed characterization of
the mammalian cardiovascular transcriptome. In this study we
took advantage of the recently published sheep gene expression
atlas (Clark et al., 2017; BioGPS, 2020) to examine individual
components of the cardiovascular system in the sheep, which are
similar to humans in their physiology and genetics (reviewed in
Hamernik, 2019). We then explored a number of genes related
to ectopic calcification and the extracellular matrix in additional
tissues and developmental stages, from the same animals, but not
initially presented as part of the sheep transcriptional atlas, using
RT-qPCR. The insights from this novel analysis of the sheep
cardiovascular system will be valuable in understanding the
physiology of the healthy mammalian cardiovascular system and
will help to facilitate the development of clinical and therapeutic
approaches for the prevention and treatment of cardiovascular
diseases, particularly those related to ectopic calcification.

Our results from both approaches demonstrate that there
is extensive expression of genes encoding proteins involved in
formation and maintenance of the extracellular matrix (ECM)
in cardiovascular tissues, particularly the cardiac valves and
aorta. The cardiovascular system consists of specialized cells
surrounded by a dynamic ECM that not only provides structure
through connections of cells within the network, but also directs
cellular function. The ECM is an important provider of structural
and biomechanical support, and helps to regulate molecular
interactions between growth factors and cell surface receptors
(Kim et al., 2011; Davis and Summers, 2012). The ECM is
also necessary for providing mechanical signals that result in
cell responses including migration, proliferation and apoptosis.
A detailed understanding of the gene expression profile
underpinning how cells respond to the ECM by remodeling
their microenvironment in the healthy cardiovascular system
is crucial, given the dysregulation of this remodeling process
in cardiovascular-related diseases including ectopic calcification,
atherosclerosis and hypertension (Ponticos and Smith, 2014).
The cardiac valves showed higher expression of a range of ECM
genes relative to cardiac muscle, both by RNA-seq and by RT-
qPCR. This is consistent with continuous remodeling of the
ECM in cardiac valves due to the normal functional stresses
(mechanical and blood-flow induced shear) that the valve is
subjected to. During development, most ECM genes decreased
in expression, particularly in the left ventricle, intraventricular
septum and aortic root. This accords with the results from
RNA-seq, where the heart muscle from adult sheep showed
lower expression of ECM genes than the cardiac valves, and
probably reflects the completion of organ development, after
which the requirement for expression would depend on the
turnover of the proteins to maintain ECM homeostasis. However,
with aging, expression and de novo synthesis may not be sufficient
to balance turnover of the proteins, leading to a loss of structural
support in the ECM over time. Different ECM genes were
activated at different times during development. For example,
two members of the fibrillin family, key components of the
ECM (Sakai et al., 1986; Ramirez and Pereira, 1999; Davis and
Summers, 2012) were expressed in the cardiovascular system.
The gene encoding FBN2, traditionally regarded as a fetal protein

which is involved at the beginning of elastogenesis and early
morphogenesis (Zhang et al., 1995), appeared to be activated
earlier in cardiovascular development than the gene for FBN1,
which has been attributed functions late in morphogenesis and
organogenesis (Zhang et al., 1995). Both genes exhibited highest
expression in the cardiac valves and decreased in expression
during cardiovascular development. Expression of FBN1 mRNA
in the aorta supports the role of FBN1 in maintaining the
structural integrity of this major artery. In Marfan syndrome, the
dysfunction of FBN1 leads to aortic aneurysms and elastic fiber
calcification (Pereira et al., 1999; Bunton et al., 2001). Both RNA-
seq and RT-qPCR results showed highest expression of FBN1 in
the cardiac valves, particularly the aortic valve, consistent with
the valve failure seen in patients with Marfan syndrome. Other
ECM genes that decreased with age included COL1A1 and BGN.
The ECM proteases known as matrix metallopeptidases (MMPs)
and their tissue inhibitors, TIMPs, are important modulators of
matrix protein turnover (Elmore et al., 1998; Hughes and Jacobs,
2017). It is thought that alterations of the balance between MMPs
and TIMPs are critical in the formation of aortic aneurysms
and age-associated physiological changes in the cardiovascular
system (Rabkin, 2014; Meschiari et al., 2017). In this study, the
level of MMP2 expression was amongst the highest of the genes
examined in the abdominal aorta, and TIMP1 expression was
found to increase with age in this tissue. The increase in TIMP1
expression may help prevent the development of abdominal
aortic aneurysms in a healthy animal by inhibiting degradation of
ECM structural proteins. MMPs and TIMPs may also be crucial
in myocardial function, where increases in their levels have been
found to correlate with age in human and mouse (Meschiari
et al., 2017). Furthermore, these ECM regulators have also been
reported to be important in the remodeling process in the left
ventricle after experimentally induced myocardial infarction in
mice, where the local endogenous control of MMPs by TIMP1
was suggested to be important for the ECM structure, as well
as myocardial function and myocyte growth (Creemers et al.,
2003). In the RNA-seq analysis, both MMP2 and TIMP1 mRNAs
were high in the cardiac valves (both at around 600 TPM) and
minimal in the heart and skeletal muscle, suggesting that they
balance each other in healthy tissue. Additional studies on the
expression of other MMPs and TIMPs may be useful to determine
their involvement in the development of CVD.

We detected transcripts associated with macrophages in all
samples in the RNA-seq analysis, notably enriched in the valves.
The homeostatic functions of resident macrophages in arterial
and cardiac tissue have been widely studied (Swirski et al., 2016;
Lim et al., 2018). The presence of resident macrophages in human
and mouse valve tissue has also been recognized previously
(Sraeyes et al., 2018). In the mouse, heterogeneous resident valve
macrophage populations are established in the postnatal period
and the population is expanded by monocyte recruitment in a
model of myxomatous disease (Hulin et al., 2018). Damaged
cardiac valves are prone to life-threatening infectious and
non-infectious endocarditis (Yang and Frazee, 2018), which is
common in elderly humans, and ongoing surveillance and repair
are necessary to prevent pathological outcomes. The sheep is an
ideal animal to investigate the aging heart further, since the sheep
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life span is around 10 years11 and elderly animals can be obtained
from commercial sources at the end their productive life, rather
than needing to be aged for the investigation.

Cardiovascular calcification is a common occurrence
in patients affected with numerous devastating chronic
diseases including diabetes, chronic kidney disease (CKD),
and atherosclerosis. It is also a hallmark of rare genetic diseases
including pseudoxanthoma elasticum (PXE), generalized arterial
calcification of infancy (GACI), Keutel syndrome, and progeria
(Rashdan et al., 2016). Endogenous calcification inhibitors
represent a crucial defense mechanism against cardiovascular
calcification, as recently highlighted by a consensus statement
from the COST Action EuroSoftCalcNet (Bäck et al., 2019).
A striking finding of our analysis was the expression of genes
associated with bone formation and ectopic calcification in the
cardiovascular system of healthy sheep throughout development.
These included both genes encoding proteins that promote
bone formation and calcification (such as SPP1, SPARC, BMP4
and BGLAP) and those which suppress mineralization (such as
ENPP1, ANKH, FBN1, MGP, TNFRSF11B and NT5E). Ectopic
calcification can develop in various tissues, and many reports
include the aorta and the aortic valve as sites of VC (Demer and
Tintut, 2009; New and Aikawa, 2011). The expression of genes
associated with suppression of bone formation would likely be
advantageous in preventing VC, but the predisposing factors
and pathways that infer the susceptibility of specific tissues to
calcification are still unknown. Moreover, differences in the
mechanisms behind intimal, median and valvular calcification
may exist (Côté et al., 2012; Patel et al., 2017; Qian et al., 2017).
Expression of ENPP1 decreased throughout development.
ENPP1 has a role in regulating extracellular nucleotide levels
and potentially a dual role in VC (Côté et al., 2012). ENPP1
may contribute to normal cardiovascular function through
the regulation of extracellular ATP concentrations and the
generation of the calcification inhibitor PPi (Nam et al., 2011;
Côté et al., 2012). Deficiency of ENPP1 leads to generalized
arterial calcification (Mackenzie et al., 2012). ANKH mRNA
was also increased. ANKH transports cytoplasmic PPi out of
the cell (Harmey et al., 2004). ANKH may provide a protective
effect against the development of VC, since patients with VC
have been found to have decreased ANKH expression (Zhao
et al., 2012). MGP is also a calcification inhibitor, possibly via its
ability to block BMP signaling (Zebboudj et al., 2002; Yao et al.,
2010). RNA-seq analysis showed that SPP1 was highest in the
aortic and left atrioventricular valves (Cluster 57) and SPARC,
BMP4, and BGLAP were all in Cluster 3, also with highest
expression in aortic valves and slightly lower in the other valves,
consistent with a role in promoting mineralization in these sites.
Calcification inhibitors ENPP1, FBN1, MGP, TNFRSF11B, and
NT5E were in different clusters, all with high expression in the
valves. MGP expression was extremely high (∼32,000 TPM)
in aortic valve, possibly to balance the expression of SPARC
(also high at 1,800 TPM). Expression of BMP4 and SPARC in
the cardiac valves in the sheep gene expression atlas dataset
analyzed here, supports the importance of calcification inhibitors

11http://www.sheep101.info

like MGP in preventing the development of calcification,
especially in tissues which express genes associated with bone
development. The expression of MGP was consistently high
in all the different ages and tissues investigated and this factor
may play a cardioprotective role against the development of
calcification. SPP1 encodes secreted phosphoprotein 1, also
known as osteopontin, which is associated with bone formation
and calcification, and is a constituent of normal elastic fibers in
the aorta and skin (Rutsch et al., 2011). SPP1 in the valves is
likely to be associated with the resident macrophages, since it was
the most highly expressed transcript in isolated macrophages in
the sheep atlas, at least 100-fold higher than in any tissue other
than placenta (Clark et al., 2017; BioGPS, 2020). SPP1 is similarly
macrophage-enriched in humans [Fantom Consortium and
the Riken PMI and CLST (DGT), 2014; Lizio et al., 2015] and
pig (Summers et al., 2020). Increased SPP1 mRNA expression
and plasma osteopontin levels have been linked with cardiac
allograft vascular disease (CAVD) (Rajamannan et al., 2003; Yu
et al., 2009), whereas it has been reported to have inhibitory
effects on arterial calcification (Wada et al., 1999; Speer et al.,
2002). Examples of its reported roles include bone remodeling,
anti-apoptotic signaling and inflammatory regulation (Denhardt
et al., 2001). SPP1 can exist in different states (phosphorylated
and glycosylated), and it is thought that these specific forms
have distinct functions (Denhardt et al., 2001). There was a
decrease in expression of SPP1 mRNA with age in the sheep
cardiovascular tissues. Increased expression of SPP1 has been
implicated in VC development, as well as coronary artery disease
and heart failure (Rosenberg et al., 2008; New and Aikawa, 2011;
Dai et al., 2014). Our results suggest that SPP1 is important
in the earlier stages of cardiovascular development, whereas
higher expression in later life may lead to these adverse clinical
outcomes. ENPP1 was also strongly macrophage-enriched
in the wider sheep atlas (Clark et al., 2017; BioGPS, 2020).
The expression profiles of SPP1 and ENPP1 were very similar
suggesting that they contribute to a balance between promotion
and suppression of calcification in cardiovascular tissues. MGP
expression was high compared to the other genes in this study.
Although it has been established that MGP has a role in the
inhibition of VC, its particular role within the cardiovascular
system is still unclear. As with SPP1, MGP can exist in different
states, and the levels of these different states are thought to
affect the CVD risk of an individual (Dalmeijer et al., 2013).
Elevated dephosphorylated MGP (dpMGP) has been found in
patients with CKD, heart failure, CAVD, aortic stenosis and other
CVD events (Schurgers et al., 2008; Mayer et al., 2014; Vassalle
and Iervasi, 2014). The locally produced active form of MGP
(phosphorylated and gammacarboxylated) has been implicated
to have cardioprotective effects (Schurgers et al., 2010; El Asmar
et al., 2014; Liu et al., 2015) such as through its inhibition of VC,
where it has been reported to inhibit BMP signaling (Zebboudj
et al., 2002; Yao et al., 2010). In addition, decreased active MGP
was found in aortic valvular interstitial cells (VICs) derived
from patients with CAVD (Venardos et al., 2015). More studies
into the numerous genes that have been implicated in VC and
into the post-translational processing the proteins undergo are
required in order to understand their expression patterns within
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the cardiovascular system, and to gain additional insights into
their physiological functions.

One outcome of this study is the functional annotation of
previously novel genes. At present, there are many predicted
mammalian protein-coding loci and non-protein-coding genes
that are yet to have informative annotation (Oliver, 2000;
Klomp and Furge, 2012). Protein-coding genes that contribute to
common generic and cell-specific cellular processes or pathways
generally form co-expression clusters, allowing the inference
of the function of a gene (of previously unknown function)
using the ‘guilt-by-association’ principle (Oliver, 2000; Freeman
et al., 2012; Klomp and Furge, 2012). Martherus et al. (2010),
for example, used this method effectively to identify heart
enriched mitochondrial genes. We have previously identified
novel macrophage and nervous system specific genes (Hume
et al., 2010; Carpanini et al., 2017). In the pig we found that
many unannotated transcripts were fragments of known genes;
these were highlighted because they shared expression pattern
with the annotated fragment of the same gene (Summers et al.,
2020). In our study a number of co-expression clusters were
found that distinguished the cardiac valves from heart muscle.
The novel (unannotated) genes within the tissue-specific clusters
described here potentially have the same functions as other
genes in the cluster, which allows for functional annotation of
these genes. For example, the gene ENSOARG00000005484 from
Cluster 36 encodes a protein involved in calcium ion transport
across membranes, consistent with the other ion channel genes
in this cluster. The high level of expression of some of these novel
genes suggests that they are an important part of the process of
development and differentiation in the cardiovascular system. As
such they warrant further investigation using knock out animals
or functional validation in relevant cell lines using CRISPR
to examine consequences of their dysfunction (as reviewed in
van Kampen and van Rooij, 2019).

As the RNA-seq analysis we present here only included
seven cardiovascular tissues (three cardiac valves and the four
chambers of the heart), we were not able to define gene
expression clusters associated with other cardiovascular tissues,
such as the veins, arteries and other regions of the heart. We
used RT-qPCR to examine a limited number of genes in the
extended cardiovascular system at several developmental stages.
Transcriptomic analysis using RNA-seq of a wider sub-set of
samples, including more tissue types and developmental stages,
would identify specific expression patterns, for example for
different parts of the aorta. In addition, we did not cluster
the cardiovascular samples with other tissues (other than a
representative of skeletal muscle) from the wider sheep gene
expression atlas dataset (Clark et al., 2017; BioGPS, 2020) since
this study focused on transcriptional differences within the sheep
cardiovascular system. The results should be validated using
functional analysis of the encoded proteins as mRNA levels do
not necessarily reflect protein levels, and many proteins (such
as MGP discussed above) must be modified post-translationally
for full activity. The study is also limited by the lack of fetal
arterial tissues. Earlier studies in mouse and human (Aikawa
et al., 2006; Cui et al., 2019; Hulin et al., 2019) have shown
transcriptomic differences in human cardiac valves before and

after birth with changes in collagen and elastin content and
structure and differences in activation of vascular endothelial and
interstitial cells with the switch from fetal to neonatal circulation.
It would be interesting to know whether the same is true for the
developing arteries.

In summary we have used RNA-seq and RT-qPCR results
from the sheep heart and cardiac valves to further explore
the transcriptome of the cardiovascular system in this large
animal. These data provide initial insights into tissue-specific
expression of key genes, which will be useful in understanding
their physiological function in a healthy mammal. This study
will support future research into the functions of implicated
genes in the development of VC, and increase the utility
of the sheep as a model in cardiovascular research. The
analysis of further tissues and developmental stages, such as
a wider range of prenatal ages and elderly animals would
provide further insight into the gene expression patterns of key
genes implicated in the progression of important cardiovascular
functions or disease with age, and is feasible using the sheep
as a model. Here we have built a foundation to explore the
transcriptome of the developing and aging cardiovascular system
and provided a highly useful comprehensive resource. Recent
advances in single cell RNA-seq technology provide a new
frontier to understand cell type specific gene expression and
will allow us to further de-convolute expression patterns in
cardiovascular tissues (Chaudhry et al., 2019). Further in-depth
studies will be necessary to understand the gene expression
networks and molecular pathways that exist in the different
cardiovascular structures, and how they develop and change as
the cardiovascular system matures.
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FIGURE S1 | RNA-seq expression profiles of selected genes. Expression levels
were measured using RNA-seq and shown as median expression levels in
transcripts per million (TPM; n = 4–6). Y axis shows normalized median TPM
(Bush et al., 2017). (A–D) Cluster 1 gene expression profiles. Genes include
COL1A1 (collagen type I alpha 1), COL3A1 (collagen type III alpha 1), MMP2
(matrix metalloproteinase 2) and TIMP1 (tissue inhibitor of metalloproteinases 1).
(E–G) Cluster 3 gene expression profiles. Genes include COL1A2 (collagen type I
alpha 2), BGLAP (bone gamma-carboxyglutamate protein) and BGN (biglycan).

(H–J) Cluster 22 gene expression profiles. Genes include ENPP1 (ectonucleotide
pyrophosphate/phosphodiesterase 1), ADAMTS6 (ADAM metallopeptidase with
thrombospondin type 1 motif 6) and SMAD2 (SMAD family member 2). (K,L)
Cluster 24 gene expression profiles. Genes include FBN1 (fibrillin 1) and FMOD
(fibromodullin). (M–O) Cluster 36 gene expression profiles. Genes include NPPA
(natriuretic peptide A) and DKK3 (Dickkopf WNT signaling pathway inhibitor 3).

FIGURE S2 | Gene expression profiles during development in the left ventricle.
Genes include: (A) collagen type I alpha 1, COL1A1, (B) biglycan, BGN, (C) matrix
metalloproteinase 2, MMP2, (D) TIMP metallopeptidase inhibitor 1, TIMP1, (E)
fibrillin 1, FBN1, (F) fibrillin 2, FBN2, (G) secreted phosphoprotein1/osteopontin,
SPP1, (H) progressive ankylosis protein, ANKH, (I) osteoprotegerin, TNFRSF11B,
and (J) Runt-related transcription factor 2, RUNX2. Black dots show gene
expression from individual animals (n = 3–5) and red dot and error bars show the
mean ± standard deviation (SD) per tissue. Gene expression levels were
normalized to the geomean of GAPDH and YWHAZ. In blue, asterisk (∗) denotes
significant differences compared to fetal d100 sheep, triangle (1) compared to
newborn sheep and circle (◦) compared to 8 week old sheep, where 1
symbol = 0.01 < p < 0.05, 2 symbols = 0.001, p < 0.01 and 3
symbols = p < 0.001.

FIGURE S3 | Gene expression profiles during development in the interventricular
septum. Genes include: (A) collagen type I alpha 1, COL1A1, (B) biglycan, BGN,
(C) matrix metalloproteinase 2, MMP2, (D) fibrillin 1, FBN1, (E) fibrillin 2, FBN2, (F)
secreted phosphoprotein1/osteopontin, SPP1, (G) progressive ankylosis protein,
ANKH, and (H) matrix Gla protein, MGP. Black dots show gene expression from
individual animals (n = 3–5) and red dot and error bars show the mean ± standard
deviation (SD) per tissue. Gene expression levels were normalized to the geomean
of GAPDH and YWHAZ. In blue, asterisk (∗) denotes significant differences
compared to fetal d100 sheep, triangle (1) compared to newborn sheep, circle (o)
compared to 1 week old sheep and square (�) compared to 8 week old sheep,
where 1 symbol = 0.01 < p < 0.05, 2 symbols = 0.001 < p < 0.01 and 3
symbols = p < 0.001.

FIGURE S4 | Gene expression profiles during development in the pulmonary
artery. Genes include: (A) TIMP metallopeptidase inhibitor 1, TIMP1, (B) fibrillin 2,
FBN2, (C) ectonucleotide pyrophosphatase/phosphodiesterase 1, ENPP1, (D)
secreted phosphoprotein1/osteopontin, SPP1, and (E) Runt-related transcription
factor 2, RUNX2. Black dots show gene expression from individual animals
(n = 3–5) and red dot and error bars show the mean ± standard deviation (SD) per
tissue. Gene expression levels were normalized to the geomean of GAPDH and
YWHAZ. In blue, asterisk (∗) denotes significant differences compared to newborn
sheep, triangle (1) compared to 8 week old sheep, where 1
symbol = 0.01 < p < 0.05, 2 symbols = 0.001 < p < 0.01 and 3
symbols = p < 0.001.

FIGURE S5 | Gene expression profiles during development in the aortic root.
Genes include: (A) collagen type I alpha 1, COL1A1, (B) biglycan, BGN, (C) matrix
metalloproteinase 2, MMP2, (D) fibrillin 1, FBN1, (E) fibrillin 2, FBN2, (F)
ectonucleotide pyrophosphatase/phosphodiesterase 1, ENPP1, and (G) secreted
phosphoprotein1/osteopontin, SPP1. Black dots show gene expression from
individual animals (n = 3–5) and red dot and error bars show the mean ± standard
deviation (SD) per tissue. Gene expression levels were normalized to the geomean
of GAPDH and YWHAZ. In blue, asterisk (∗) denotes significant differences
compared to newborn sheep, triangle (1) compared to 1 week old sheep and
circle (o) compared to 8 week old sheep, where 1 symbol = 0.01 < p < 0.05, 2
symbols = 0.001 < p < 0.01 and 3 symbols = p < 0.001.

FIGURE S6 | Gene expression profiles during development in the aortic arch.
Genes include: (A) fibrillin 2, FBN2, (B) secreted phosphoprotein1/osteopontin,
SPP1, (C) matrix Gla protein, MGP, (D) osteoprotegerin, TNFRSF11B, and (E)
Runt-related transcription factor 2, RUNX2. Black dots show gene expression
from individual animals (n = 3–5) and red dot and error bars show the
mean ± standard deviation (SD) per tissue. Gene expression levels were
normalized to the geomean of GAPDH and YWHAZ. In blue, asterisk (∗) denotes
significant differences compared to newborn sheep and triangle (1) compared to
1 week old sheep, where 1 symbol = 0.01 < p < 0.05, 2
symbols = 0.001 < p < 0.01 and 3 symbols = p < 0.001.
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FIGURE S7 | Gene expression profiles during development in the abdominal
aorta. Genes include: (A) collagen type I alpha 1, COL1A1, (B) TIMP
metallopeptidase inhibitor 1, TIMP1, (C) fibrillin 1, FBN1, (D) fibrillin 2, FBN2, (E)
secreted phosphoprotein1/osteopontin, SPP1, (F) progressive ankylosis protein,
ANKH, (G) osteoprotegerin, TNFRSF11B, and (H) Runt-related transcription factor
2, RUNX2. Black dots show gene expression from individual animals (n = 3–5) and
red dot and error bars show the mean ± standard deviation (SD) per tissue. Gene
expression levels were normalized to the geomean of GAPDH and YWHAZ. In
blue, asterisk (∗) denotes significant differences compared to newborn sheep and
triangle (1) compared to 8 week old sheep, where 1 symbol = 0.01 < p < 0.05, 2
symbols = 0.001 < p < 0.01 and 3 symbols = p < 0.001.

FIGURE S8 | mRNA expression profile for (A) matrix Gla protein (MGP), (B)
progressive ankylosis protein homolog (ANKH). Gene expression levels were
normalized to the geomean of GAPDH and YWHAZ. Dot plots show individual
data points (black dot), the mean expression for each tissue (red dot) and
standard deviation (red error bars).

FIGURE S9 | mRNA expression profile for (A) ecto-5′-nucleotidase (NT5E) and
(B) Runt-related transcription factor 2 (RUNX2). Gene expression levels were
normalized to the geomean of GAPDH and YWHAZ. Dot plots show individual
data points (black dot), the mean expression for each tissue (red dot) and
standard deviation (red error bars).

FIGURE S10 | mRNA expression profile for (A) ectonucleotide
pyrophosphatase/phosphodiesterase 1 (ENPP1) and (B) secreted

phosphoprotein1/osteopontin (SPP1). Gene expression levels were normalized to
the geomean of GAPDH and YWHAZ. Dot plots show individual data points (black
dot), the mean expression for each tissue (red dot) and standard deviation
(red error bars).

TABLE S1 | Details of tissues sequenced to generate the RNA-seq dataset for the
cardiovascular gene expression atlas. Skeletal muscle (bicep) was also included,
as an example of skeletal muscle tissue, for comparative analysis. All libraries were
Illumina 125 bp paired end stranded libraries.

TABLE S2 | Minimally annotated genes in clusters with defined expression
patterns.

TABLE S3 | Genes examined in sheep cardiovascular tissues during
development.

DATASET S1 | Gene expression estimates as transcripts per million (TPM) for
seven cardiovascular tissues and skeletal muscle (bicep) generated for the sheep
gene expression atlas using Kallisto.

DATASET S2 | Details of the genes in the clusters and average expression profiles
for each cluster from the gene to gene network analysis presented in
Figures 1, 2. Pearson correlation co-efficient r ≥ 0.99, MCL (inflation = 2.2).

DATASET S3 | RT-qPCR results for all genes analyzed including
standard deviations.
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