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Antimicrobial peptides (AMPs) with antiviral activity (antiviral peptides: AVPs) have

become a research hotspot and already show immense potential to become

pharmaceutically available antiviral drugs. AVPs have exhibited huge potential in inhibiting

viruses by targeting various stages of their life cycle. Insects are the most speciose

group of animals that inhabit almost all ecosystems and habitats on the land and are a

rich source of natural AMPs. However, insect AVP mining, functional research, and drug

development are still in their infancy. This review aims to summarize the currently validated

insect AVPs, explore potential new insect AVPs and to discuss their possible mechanism

of synthesis and action, with a view to providing clues to unravel themechanisms of insect

antiviral immunity and to develop insect AVP-derived antiviral drugs.
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INTRODUCTION

The role that insects have played as models in innate immunity research is unquestionable. Since
the 1990’s, the fruit fly Drosophila melanogaster emerged as an important paradigm of genetic
analysis of innate immunity. Outstanding pioneering achievements were awarded the Nobel Prize,
which has since greatly stimulated interest in this field (1, 2). Studies in insects initially focused
on resistance to bacteria and fungi, and later slowly expanded into antiviral immunity. However,
besides the discovery that RNA interference (RNAi) is crucial in insect antiviral immunity,
knowledge of other antiviral pathways and antiviral factors is very limited (3–7). In contrast, in
mammals, a diverse series of antiviral immune responses including virus recognition, downstream
cascade reactions, and production of effectors were gradually unveiled (8–10). In particular,
hundreds of interferon-stimulated genes (ISGs), which exert numerous antiviral effector functions,
have been identified in multiple vertebrate species (11–15). This raises the question whether
antiviral host factors, similar to interferon-stimulated effectors in mammals, also exist in insects.

In insects, antimicrobial peptides (AMPs) are a group of immune proteins that mainly
function against bacteria and fungi (16, 17). A considerable number of AMP genes have been
identified in Drosophila, the honey bee Apis cerana and the silkworm Bombyx mori (18–20).
However, two antiviral screening experiments failed to show that AMPs are a class of antiviral
factors in Drosophila (21, 22). Intriguingly, other data in the literature have indicated that
AMPs have antiviral function in Drosophila and B. mori (23, 24). On the other hand, it should
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be kept in mind that the interaction between host and virus is a
complex process in which the immune response of the host is
counteracted by the immune escape mechanisms of the virus.
A recent study found that Kallithea virus (DNA virus of D.
melanogaster) gp83 inhibits Toll signaling through the regulation
of NF-κB transcription factors (25). The immunosuppression
by Kallithea virus infection is also accompanied by the general
down-regulation of AMP gene expression (25). Because the
action of AMPs may be neutralized by the virus, simple tests
cannot decide or exclude whether AMPs have antiviral activity.
In fact, AMPs with antiviral activity (antiviral peptides: AVPs)
have become a research hotspot and already show considerable
potential to become pharmaceutically available antiviral drugs
(26). AMPs and AVPs are usually derived from natural sources
but they can be readily modified by adding non-natural amino
acids or chemical groups to further enhance their stability and
activity (27). Insects are an extremely successful and diverse
group of animals that produce a wide range of AMPs which also
could display potent antiviral activity. Accordingly, a review of
insect antibacterial peptides with antiviral activity is considered
timely to provide an assessment of the current knowledge as
well as to stimulate efforts for the identification of additional
insect-derived antiviral AMPs.

Herein, we will summarize the AMPs with antiviral activity
reported in the database and literature and we will predict
the antiviral activity of insect AMPs through AVP prediction
software. This article aims to compile relevant information
from insect AVPs as important components of insect antiviral
innate immunity and to inspire the development of effective
antiviral drugs.

DATABASES AND WEBSITES OF INSECT
AVPS

AVPs are considered as a subset of AMPswhich act as the first line
of defense in many organisms as an innate immune response to
viral infection. Compared to a hot field such as the development
of antiviral and antitumor drugs in human medicine, the concept
of AVP has not appeared often in the field of insect research,
although the idea appeared more than 10 years ago (28, 29).
With increasing interest for natural AMPs as potential new drugs,
many databases, such as APD (30), AVPdb (31) and ParaPep
(32), have been developed to centralize information about AMPs.
Among AMP databases, a few databases integrate the AMPs
with antiviral activity such as APD (30), AVPdb (31), DRAMP
2.0 (33), and dbAMP (34). The information incorporated in
DRAMP 2.0 and dbAMP is relatively new and complete. The
advantage of AVPdb is that it summarizes AVPs according to
various anti-virus mechanisms. In addition, software for AVP
prediction has been developed, e.g., AVPpred (35), AntiVPP 1.0
(36), and Meta-iAVP (37). Based on a series of concepts relevant
to insect AVP research, we have cataloged several user-friendly
and recently released databases and websites that are suitable
for insect AVP research (Table 1). The data of known AVPs and
prediction methods in this article also come from these databases
and websites.

INSECT AMPS WITH ANTIVIRAL
ACTIVITIES: THE INSECT AVPS IN PUBLIC
DATABASES

The dbAMP was recently created as a useful resource for
accumulating synthetic and natural AMPs from public AMP
databases and scientific literature (34). In the dbAMP database, a
total of 305 AVPs and 596 insect AMPs are collected (Figure 1A).
Nine insect AVPs were obtained from the intersection of these
two data sets in the dbAMP (Figure 1A). DRAMP 2.0 is an open-
access comprehensive database containing general, patented
and clinical AMPs (33). From this database, we identified 8
insect AVPs from a total 214 AVPs (Figure 1B). Integrating
the insect AVPs information from the dbAMP and DRAMP
2.0 database, we obtained a total of 13 insect AVPs, which
are shown in Figure 1C. Among hundreds of insect AMPs in
the database, only 13 were associated with antiviral activity,
which suggests that the research on insect AVP is still in
in its infancy and requires more data. It can be assumed
that many insect AMPs need to be explored for potential
antiviral activity. Thus, the 596 insect AMPs in dbAMP database
were further used to predict antiviral activity using Meta-iAVP
(37). Unexpectedly, 392 insect AMPs were predicted as AVPs
(predicted value >0.5) (Supplementary File 1). These predicted
insect AVPs originated from B. mori, Galleria mellonella, Aedes
aegypti, Pachycondyla goeldii (Ponerine ant), Manduca sexta,
D. melanogaster, Danaus plexippus, Anopheles gambiae, Apis
mellifera and others (Figure 1D). Based on this evidence, we
have reason to believe that insect AMPs are a potential source
for identification of AVPs, which is worthy of more in-depth
study. However, at present, there is no special insect AMP
database that can incorporate the latest review articles of
insect AVPs. The existing databases continue to have omissions
unless the information also becomes curated by professional
insect researchers.

INSECT AMPS WITH ANTIVIRAL
ACTIVITIES: THE INSECT AVPS IN
PUBLISHED LITERATURE

Although the study of insect AVP as an important part of
insect antiviral research was promoted more than 10 years ago
(29), the available literature is still very limited. Surprisingly,
until recently, few insect-derived AMPs were reported with
documented antiviral activity. As shown in Table 2, ten insect
AVPs were found to be involved in the antiviral response and
the antiviral action was directed against both mammalian and
insect viruses.

Cecropin-A was one of the first animal antimicrobial peptides
to be isolated and fully characterized from the hemolymph of
the moth Hyalophora cecropia (43, 44). Subsequent research
confirmed that Cecropin-A has inhibitory activity against human
immunodefciency virus 1 (HIV-1; Retroviridae), herpes simplex
virus 1 and 2 (HSV; Herpesviridae) and against the arenavirus
Junin virus (JV) (39, 40).
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TABLE 1 | Databases and websites suitable for insect AVP research.

Name Websites Function References

dbAMP http://csb.cse.yzu.edu.tw/dbAMP/ Search for AVPs and insect-derived AMPs (34)

DRAMP 2.0 http://dramp.cpu-bioinfor.org/ Search for insect AVPs (33)

AVPdb http://crdd.osdd.net/servers/avpdb/index.php Antiviral mechanism of AVPs for reference (31)

SignalP-5.0 http://www.cbs.dtu.dk/services/SignalP/ Prediction of AMPs signal peptide (38)

Meta-iAVP http://codes.bio/meta-iavp/ Prediction of AVPs (37)

FIGURE 1 | Prediction of insect AVPs from published databases. (A) The intersection between AMPs with potential antiviral activity and insect AMPs in the dbAMP

database. (B) Insect AMPs with predicted antiviral activity in the DRAMP 2.0 database. (C) Integration of information on predicted insect AVPs from the dbAMP and

DRAMP 2.0 databases. (D) Top 30 insects with predicted AVPs that were identified using Meta-iAVP.

Melittin belongs to the class of bee venom-derived AVPs and
was isolated from the honeybee A. mellifera (45). This AVP was
also tested against HSV, HIV-1 and JV, showing inhibition of viral
replication for all tested viruses (40, 46). In addition, melittin
also curbs infectivity of a diverse array of viruses including
Coxsackie Virus and other enteroviruses (Picornaviridae),
Influenza A viruses (Orthomyxoviridae), Respiratory Syncytial
Virus (RSV; Pneumoviridae), Vesicular Stomatitis Virus (VSV;
Rhabdoviridae) and the plant virus tobacco mosaic virus (TMV;
Virgaviridae) (47). More information about the antiviral activity
of melittin can be found in a review by Memariani et al. (47).

The insect AMP alloferon 1 and 2, derived from the
hemolymph of blow fly Calliphora vicina, showed antiviral
activity against influenza virus A and influenza virus B (28).

Additional research also found that alloferon 1 inhibits human
herpes virus type 1 (HHV-1; Herpesviridae) and analogs were
active against coxsackievirus in vitro using cell lines (48, 49).
Despite the mechanism of antiviral activity of alloferon is
still unknown, Alloferon 1 and its analogs are considered as
promising candidates for the design of new AVPs (50).

The antiviral compound N-myristoylated-peptide containing
only six amino acids with molecular weight of 916 Da was
purified from larval hemolymph of the tobacco budworm
Heliothis virescens (41). Insect myristoylated-peptide has been
confirmed to be effective against HIV-1 and HSV-1 (41). The
N-terminus of N-myristoylated-peptide contains the fatty acid
myristoyl and the C-terminus contains histidine with two methyl
groups giving the histidine a permanent positive charge (41). The
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TABLE 2 | Insect AVP reported in the literature.

Insect AVP Organism Virus References

Cecropin-A H. cecropia HSV-1/ HIV-1/ JV (39, 40)

Melittin A. mellifera HSV-1/HIV-1/JV/

influenza A viruses/

RSV/VSV/TMV/

enterovirus/

coxsackievirus

(39, 40)

Alloferon 1 C. vicina Influenza viruses A/B/

HHV-1

(28)

Alloferon 2 C. vicina Influenza viruses A/B (28)

Myristoylated-

peptide

H. virescens HIV-1/HSV-1 (41)

TnGlv1 T. ni AcMNPV (42)

TnGlv2 T. ni AcMNPV (42)

attC Drosophila SINV (23)

dptB Drosophila SINV (23)

C-lysozyme B. mori BmNPV (24)

structure of the antiviral compound resembles the “myristate plus
basic” motif present in particular viral proteins for binding to
the cytoplasmic side of the plasma membrane to initiate virus
assembly and budding from a host cell (41). It is speculated that
the N-myristoylated-peptide is therefore able to specifically block
or inhibit viruses like HIV-1 and HSV-1 that use this motif for
exit from a host cell (41, 51).

Gloverin, a small cationic antibacterial protein, has been
isolated from the hemolymph of various insects such as the
giant silk moth Hyalophora (52) and the cabbage looper
Trichoplusia ni (53). Two T. ni gloverin peptides named
TnGlv1 and TnGlv2 showed resistance to the budded virus
(BV) of Autographa californica multiple nucleopolyhedrovirus
(AcMNPV; Baculoviridae) (42). The antiviral mechanism was
speculated to be based on the accumulation of gloverin on the
surface of BVs that may cause membrane strain or formation of
pores that disrupt the BV envelope (42).

Two Drosophila AMP coding genes, diptericin B (dptB) and
attacin C (attC), are upregulated in transgenic flies expressing
a Sindbis virus (SINV) replicon. Silencing their expression
led to a significant increase in SINV titers, suggesting that
dptB and attC involved in Drosophila antiviral response to
SINV (23). However, their mechanism of action remains to
be elucidated.

Lysozyme is a ubiquitous peptide that is widely distributed
in animals, plants, bacteria and viruses (54). The antibacterial,
immunomodulatory and antiviral functions of lysozyme are well-
known in vertebrates (55–57). More than fifty lysozyme genes
have been identified from several insects (58), but the antiviral
activity of insect lysozymes has not been widely investigated. In a
recent study, the overexpression of C-lysozyme of B. mori could
reduce B. mori nucleopolyhedrovirus (BmNPV) production and
progeny virus virulence in vivo and in vitro (24). Further
research is required to elucidate the antiviral mechanism of
lysozyme peptides.

POTENTIAL AVPS IN FRUIT FLY,
HONEYBEE AND SILKWORM

Insects are the most speciose group of animals that inhabit
almost all ecosystems and habitats on the land (17, 59).
Although insects are a rich source of natural AMPs (17),
only few insect AMPs have been confirmed with antiviral
activity (Figure 1C, Table 2). In this study we have predicted
392 potential AVPs from 596 insect AMPs in the dbAMP
database (Figure 1D, Supplementary File 1). This information
may stimulate researchers to carry out in-depth and extensive
research on the activity of the predicted insect AVPs. Insects,
especially D. melanogaster, has been widely used as model for
the study of innate immunity and microbial pathogens and for
assessing the in vivo efficacy of antimicrobial agents (60). The
silkworm and honeybee are well-known representative economic
insects. In the following section, we will elaborate on potential
AVPs in the fruit fly D. melanogaster, the two honeybee species
A. mellifera and A. cerana and the silkworm B. mori.

D. melanogaster
In general, seven well-characterized families including 21
inducible AMP/AMP-like genes have been identified in
Drosophila (61, 62). The functions of Drosophila AMPs are
not only involved in host defense, but expand also to gut
microbiota homeostasis, tumor control, lifespan regulation and
neurological processes (62, 63). However, to our knowledge,
only two Drosophila AMPs, attC and dptB, have been reported
to have antiviral function (23). Since the first animal AMP was
discovered in insects (44), D. melanogaster has emerged as a
powerful model for their characterization. Unfortunately, the
research on antiviral immunity involving Drosophila AMPs has
not received enough attention. After downloading the latest
updated Drosophila AMP/AMP-like genes (including lysozyme)
and their corresponding peptides from the NCBI database,
their antiviral activity was predicted using Meta-iAVP (37).
For AMP genes for which the mature peptide sequence was
not determined, SignalP-5.0 was employed to predict the signal
peptide and mature peptide (38).

Following this procedure, as shown in Table 3, a total of
23 potential AVPs were identified in D. melanogaster. We
further analyzed these potential AVPs for their induction by
viral infection in published transcriptome studies. Expression
of Defensin, Cecropin A1, Cecropin B, Andropin, Drosocin,
Drosomycin, Metchnikowin, Lysozyme S, Attacin-B, Attacin-C,
Diptericin A, and Lysozyme X was found to be induced after
viral infection in cell lines or adult flies (Table 3). Screening of
transcriptome data for identification of key viral host factors is
based on this concept (13). However, viruses may also interfere
with the expression of antiviral factors as an immune escape
strategy. Determination of antiviral activity based by induction
of expression during viral infection is only indicative and cannot
be considered as conclusive. But for screening of antiviral
genes it can turn out to be a simple and effective method.
Therefore, AMPs/AVPs that are up-regulated by a specific virus
may be relatively reliable candidate host antiviral factors, for
which further verification experiments have to be performed. It
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TABLE 3 | Predicted AVPs in Drosophila.

Predicted AVP Gene ID Peptide ID Value/

precursor

Value/mature Up-regulated by virus

Defensin 36047 NP_523672.1 0.524 1 DCV (64, 65), DXV (64)

Cecropin A1 43596 NP_524588.1 0.908 0.946 DCV (66, 67), Sigma virus (64),

CrPV (68)

Cecropin A2 43597 NP_524589.1 0.908 0.64

Cecropin C 43599 NP_524591.1 1 0.744

Cecropin B 43598 NP_524590.1 1 1 DCV (67)

Andropin 43595 NP_524587.1 0.762 0.524 DCV (67), FHV (69)

Drosocin 36635 NP_001246324.1/NP_523744.1 1 0.508 DXV (70), Sigma Virus (64)

Drosomycin 38419 NP_523901.1 0.992 0.524 DCV (64, 65, 71), DXV (64)

Drosomycin-like 5 38409 NP_647803.1 1 0.716

Drosomycin-like 2 38408 NP_728860.2 1 0.946

Drosomycin-like 3 317955 NP_728861.1 1 0.954

Drosomycin-like 6 38416 NP_728873.1 0.92 0.892

Drosomycin-like 1 326207 NP_728872.1 0.928 0.668

Metchnikowin 36708 NP_523752.1 1 0.962 DCV (64, 65, 67, 71), DXV (64),

SINV (23), CrPV (68)

Lysozyme P 38129 NP_476828.1 0.43(Non-AVP) 0.966

Lysozyme S 38130 NP_476829.1 0.93 0.892 DCV (64), CrPV (68)

Attacin-B 36637 NP_001163152.1 0.64 0.07(Non-AVP) DCV (66, 71), DXV (70), Sigma

Virus (64), FHV (71), CrPV (68)

Attacin-C 36484 NP_523729.3 0.616 0(Non-AVP) DCV (67, 71), SINV (23), FHV

(71), CrPV (68)

Diptericin A 37183 NP_476808.1 0.86 0(Non-AVP) Sigma Virus (64), CrPV (68)

Lysozyme B 38125 NP_001261245.1 0.986 0.282(Non-AVP)

Lysozyme X 38122 NP_523881.1 0.774 0.272(Non-AVP) FHV (71)

Lysozyme E 38128 NP_476827.2 1 0.008(Non-AVP)

should also be noted that dptB has been shown to inhibit SINV
replication (23), but it is not among the predicted candidate AVPs
(Table 3). Thus, a strategy that screens virus-inducible genes
clearly will not identify all potential AVPs.

In addition, some non-classical AMPs such as Bomanins
(72), Daishos (73) and Listericin (74) in Drosophila have also
attracted our attention. An effector peptide family encoded by
twelve Bomanin (Bom) genes has been found to be essential
for effective Drosophila Toll-mediated immune responses (72).
Daisho peptides, a new class of innate immune effectors in
Drosophila, were recently found to have humoral activity against
a set of filamentous fungi (73). Currently, these Drosophila
peptides have not been confirmed to have antiviral activity.
Using Meta-iAVP (37) prediction, we found that BomS1, BomS4,
BomS6, BomT1, BomBc2, and Listericin have potential AVPs
activity (Supplementary File 2).

A. mellifera and A. cerana
Honeybees are important plant pollinators in both natural and
agricultural ecosystems (75). Through pollination of flowering
plants, honeybees do not only help tomaintain biodiversity but in
addition they also supply commodities such as honey, royal jelly,
propolis (bee glue), pollen and wax. Viruses are significant threats
to the health and well-being of the honeybee (76). Due to the
abundance and economic importance of the honeybee, research

on the interaction with bee viruses has received a lot of research
interest. Honeybee antiviral defense mechanisms include
RNAi, endocytosis, melanization, encapsulation, autophagy,
pathogen-associated molecular pattern (PAMP)-triggered signal
transduction cascades, and generation of reactive oxygen species
(7, 77). There is currently no evidence that AMPs are involved
in the antiviral response of honeybees (7, 77). However, melittin,
the principal constituent in the venom of A. mellifera, has
been demonstrated to be effective against the infectivity of a
diverse array of mammalian viruses such as HIV and HSV
(47). Venom-derived AMPs may not play a role in the antiviral
response of its host, but the results of the antiviral experiments in
vitro are an important reference of which the significance is not
clear yet.

Following infection by pathogens, AMPs of four families
comprising apidaecins (78), abaecins (79), hymenoptaecins
(80), and defensins (81) are synthesized, representing a broad
spectrum of antimicrobial activity in the haemolymph. Detailed
comparison of these four AMP gene families betweenA. mellifera
and A. cerana revealed that there are many similarities in
the number and amino acid composition of the peptides in
the abaecin, defensing, and apidaecin families, while many
more hymenoptaecin peptides are found in A. cerana than in
A. mellifera (19). Compared to A. mellifera that has a longer
history of domestication, selection on A. cerana has favored
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TABLE 4 | Predicted AVPs in A. mellifera and A. cerana.

Predicted AVP/

A. mellifera

Gene ID (NCBI) Peptide ID Value/

precursor

Value/mature Up-regulated by virus

Defensin 1 406143 NP_001011616.2 0.966 0.772 DWV+SBV (82)

Defensin 2 413397 NP_001011638.1 0.916 0.43 (Non-AVP) DWV+SBV (82)

Abaecin 406144 NP_001011617.1 1 0.64 DWV+SBV (82), BQCV (83)

Apisimin 406093 NP_001011582.1 0.586 0.974 DWV+SBV (82)

Hymenoptaecin 406142 NP_001011615.1 0.282 (Non-AVP) 0.542 DWV+SBV (82), IAPV (84),

BQCV (83)

Lysozyme 1/2 724899 XP_026300526.1 0.078 (Non-AVP) 0.548

lysozyme 3 409663 XP_393161.3 0.64 0.98 DWV+SBV (82)

A. cerana

Defensin-2 108000415 XP_016916212.1 0.992 1

Abaecin 108002218 XP_016919244.1 0.354 (Non-AVP) 0.906 CSBV (85)

Apidaecins type

22

108000468 XP_016916307.1 0.542 0.876

Hymenoptaecin 107993492 XP_016905415.1 0.694 0 (Non-AVP) CSBV (85)

Apisimin 108003250 XP_016920890.1 0.994 0.98

AcDef7 EU727274 ACH96390.1 0.986 0.932

AcHym3 EU727299 ACH96415.1 0.508 0.752

AcHym16 EU727312 ACH96428.1 0.104 (Non-AVP) 0.536

AcHym18 EU727314 ACH96430.1 0.696 0.028 (Non-AVP)

AcHym1 EU727297 ACH96413.1 0.268 (Non-AVP) 0.696

AcHym4 EU727300 ACH96416.1 0.716 0 (Non-AVP)

AcHym7 EU727303 ACH96419.1 0.072 (Non-AVP) 0.876

AcHym9 EU727305 ACH96421.1 0.694 0 (Non-AVP)

AcHym25 EU835174 ACJ22829.1 0.508 0.752

Lysozyme-like 108000169 XP_028523646.1 0.078 (Non-AVP) 1

Lysozyme-like 114577830 XP_028523645.1 0.746 1

the generation of more variable AMPs as protection against
pathogens (19).

Using the predictive tools of Meta-iAVP (37), a total of 7
and 16 AVPs were obtained from A. mellifera and A. cerana,
respectively (Table 4). Potential AVP genes of A. mellifera such
as defensin 1, defensin 2, abaecin, apisimin, hymenoptaecin,
and lysozyme 3 were found to be up-regulated after infection
with viruses such as Deformed wing virus (DWV), Sacbrood
virus (SBV), black queen cell virus (BQCV), and Israeli
acute paralysis virus (IAPV) in transcriptome data (Table 4).
Almost all honeybee transcriptome studies that analyze virus
infection are restricted to A. mellifera while little related
research has been conducted on A. cerana. Recent research
found that in A. cerana the predicted AVP genes abaecin
and hymenoptaecin were significantly upregulated by Chinese
Sacbrood virus (CSBV) infection (85). These potential AVPs,
which are up-regulated by a specific honeybee virus, are
important leads for future research on the antiviral immunity of
honeybee AMPs.

B. mori
The domestic silkworm B. mori, is an important lepidopteran
insect of high scientific and economic value (86). Like in
apiculture, the viral disease can cause enormous economic loss

in sericulture (87). For viral diseases of silkworm, currently
there is no effective treatment. Although there exist specific
strains of silkworm that are resistant to some viruses, the
specific mechanism is unclear (88–90). Like other insects,
RNAi was considered as the major defense strategy against
viral infections in B. mori (91). However, the antiviral innate
immune response of silkworm has not been systematically
studied although specific antiviral molecules such as PP2A (92),
BmSTING (93), BmAtlastin-n (94), BmNOX (95), Bmlipase-
1 (96), were identified. In a review article the involvement
of AMPs in the antiviral response of silkworm was claimed
(6), but in fact very few specific cases of antiviral activity of
silkworm AMPs are known, an exception being a recent article
on inhibition of BmNPV by lysozyme (24). Interestingly, a
study reported that B. mori peptidoglycan recognition protein
S2 (BmPGRP-S2) overexpression could activate the Imd pathway
and induce AMP upregulation, enhancing silkworm antiviral
resistance (97).

Following the publication of the genome of the silkworm
(86), 35 silkworm AMP genes were identified based on
the silkworm genome sequence and expressed sequence tags
databases (20). These silkworm AMP genes belong to six
families including cecropins, moricins, gloverins, attacins,
enbocins, and lebocin (20). Following analysis of updated
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TABLE 5 | Predicted AVPs in B. mori.

Predicted AVP Gene ID Peptide ID Value/

precursor

Value/mature Up-regulated by virus

Attacin1 692555 NP_001037006.1 0.936 0.044 (Non-AVP) BmNPV (98)

Attacin-like 101743224 XP_004926758.1 0.726 0.986

Cecropin B 732858 NP_001096031.1 1 0.992 BmCPV (99)

Cecropin A 693029 NP_001037462.1 1 0.964 BmCPV (99)

Cecropin-like 101739821 NP_001037392.1 0.962 0.998

Cecropin-D-like peptide 101740228 NP_001036924.2 1 0.694

Cecropin D 692369 NP_001036833.1 0.988 0.892

Cecropin CBM2 692583 NP_001037031.1 0.536 0.97

Defensin 692778 NP_001037370.1 0.982 0.924

Enbocin1 693035 NP_001037472.1 0.982 0.616

Enbocin3 100101217 NP_001093310.1 0.854 0.998

Gloverin 2 692527 NP_001037683.1 0.668 0.506 BmNPV (100)

Gloverin 3 692476 NP_001093312.1 0.068 (Non-AVP) 0.678 BmNPV (98, 100)

Gloverin 4 751090 NP_001037684.1 0.07 (Non-AVP) 0.81 BmNPV (98, 100)

Gloverin 4-like 692477 NP_001036932.1 0.038 (Non-AVP) 1

Lebocin 100146108 NP_001119732.2 0.536 0.164 (Non-AVP) BmNPV (98, 100)

Moricin 692365 NP_001036829.2 0.992 0.964

Moricin-1-like 105842862 XP_012552566.1 0.536 0.908

Moricin-1-like 101742278 XP_012551343.2 0.996 0.908

Moricin-1-like 101742127 XP_012551345.2 0.554 0.818

Lysozyme 693015 NP_001037448.1 0.968 0.678 BmNPV (100)

AMP gene data in the NCBI database, 21 potential silkworm
AVPs (Table 5) were obtained using Meta-iAVP prediction
(37). Among these potential AVP genes, gloverin-2, gloverin-
3, lebocin, attacin 1, and lysozyme have been found to be
induced by BmNPV infection in both resistant and susceptible
silkworms (98, 100). It is worth noting that the expression
of the potential AVP gene gloverin-4 was significantly up-
regulated only in BmNPV-infected resistant silkworm, while
no changes were found in the BmNPV-infected susceptible
silkworm and BmN cells, further suggesting that gloverin-
4 is an AVP against BmNPV infection (98). The expression
of the potential AVP gene cecropin A and cecropin B also
tended to be up-regulated during infection with B. mori
cytoplasmic polyhedrosis virus (BmCPV), but expression levels
were too low to be considered as biologically important (99).
Moreover, it is curious that although many omics data related
to silkworm virus infection have been published, no more clues
were obtained about the involvement of AMPs in the defense
against B. mori bidensovirus (BmBDV), BmNPV and BmCPV
infection (101–105).

THE PROGRAM OF AVP SYNTHESIS AND
ITS MECHANISM OF ACTION IN INSECTS

Universally, after the virus invades the host, the host will
initiate a recognition mechanism and induce a downstream
antiviral cascade reaction. In vertebrates, during various
viral infections, virus-associated PAMPs are recognized by

pathogen recognition receptors (PRRs) such as Toll-like
receptors (TLRs), retinoic acid-inducible gene I (RIG-I)-
like receptors (RLRs), NOD-like receptors (12), interferon-γ-
inducible protein 16 (IFI16), AIM2 (absent in melanoma 2)
and cyclic GMP-AMP synthase (cGAS) that subsequently lead
to the activation of inflammatory cytokines and chemokines
as well as interferon (IFN) and ISG production through a
cascade reaction (106). However, similar antiviral response
systems have not been systematically studied in insects. At
present, we have very limited knowledge of how insects
recognize virus invasion and initiate cascade reactions to exert
antiviral functions.

In insects, a number of actual and potential PRRs such

as TLRs, peptidoglycan recognition proteins (PGRPs), Gram-
negative bacteria-binding proteins (GNBPs), scavenger receptors

(SRs), thioester-containing proteins (TEPs) and lectins have

been identified (107, 108). Unfortunately, there is currently no

evidence that any of the above-mentioned PRRs are involved

in insect virus recognition, with the exception of the nucleic
acid sensor Dicer-2 that can act as a PRR of double-stranded
RNA in parallel to the RNAi pathway (107). Recently, B. mori
cGAMP and PGRP2 were confirmed to be involved in host
responses to BmNPV (93, 109). In Drosophila, Toll, IMD and
JAK/STAT pathway may be involved in antiviral immunity
(4, 65, 110). In addition, JAK/STAT pathway could also be
activated by challenge with BmNPV and BmBDV (111). The
classical innate immune pathways are also transcriptionally
induced during pathogenic infection of Bm5 cells with RNA
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FIGURE 2 | General hypothesis of AVP synthesis and possible mechanism of action in insects. (A) Immune recognition of insect viruses. The PAMPs of insect RNA

and DNA viruses are recognized by specific PRRs located in the cell membrane or cytoplasm of hemocytes, epithelia or fat body. (B) Potential downstream signaling

cascade reactions including JAK-STAT, Toll, Imd, and other pathway to produce AVPs. (C) The mechanism of action of AVPs covers stages in almost the entire life

cycle of the virus: virion inhibition; adsorption; viral entry; endosomal escape; viral uncoating; viral genome transcription and translation, and release of mature virions.

Additionally, AVPs may inhibit viral infection by regulating the host immune system. As a counterdefense, insect viruses may employ several strategies to escape the

antiviral effect of AVPs.

virus (112). However, the insect PRRs for viral recognition and
signaling pathway activation have not been fully elucidated.
Thus, there is currently no exact mechanism identified for the
generation of AVPs and more in-depth research is needed.
Based on evidence obtained in vertebrate (mammalian) systems,
we can make the hypothesis that insect viral PAMPs are
recognized by specific PRRs located in the cell membrane
or cytoplasm of hemocytes, epithelia or fat body which then
triggers downstream signaling cascades for the production of
AVPs (Figure 2).

The AVPs possess diverse structures as well as might act
according to differentmechanisms. Based on the antiviral peptide
database AVPdb (Table 1), a total of 45 virus targeting strategies
employed by AVPs can be distinguished such as “Virus entry,”
“Virucidal on progeny virions,” “Viral assembly,” “Release,”
“Transcription,” “Translation,” “Transport,” and “Replication”
(31). The mechanism of action of AVPs summarized in the
AVPdb database covers almost the entire life cycle of the virus
(Figure 2). Additionally, AVPs may act against viral infection by
regulating the host immune system (Figure 2). For instance AVP
like alloferons from the blow fly are able to stimulate natural killer
cells (NK) activity and interferon synthesis in animal and human
models (28).

FUTURE RESEARCH

Many scientific questions about the identities of insect AVPs
and their modes of action remain unresolved. Besides, viruses
are the causative agents of various dreadful diseases in humans
and animals. Recently, the testing and discovery of AVPs
was accelerated because extraordinary advantages. Insects are
considered an important source of natural AMPs, and their
potential to act as AVPs is worthy of in-depth studies. In
future research, the research on insect AVPs can mainly focus
on the following key issues: (1) Identification of insect AVPs;
(2) Recognition by PRRs and downstream cascade reactions
involved in insect AVPs production; (3) Molecular mechanism
of action of AVPs against insect viruses and vertebrate viruses;
(4) AVP counter defense (immune escape) mechanisms by
viruses; (5) Evaluation and application of insect AVPs as
antiviral drugs.
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