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Huntington’s disease biomarker progression profile
identified by transcriptome sequencing in
peripheral blood

Anastasios Mastrokolias1, Yavuz Ariyurek2, Jelle J Goeman3,4, Erik van Duijn5,6, Raymund AC Roos7,
Roos C van der Mast5, GertJan B van Ommen1, Johan T den Dunnen1,2, Peter AC ’t Hoen1

and Willeke MC van Roon-Mom*,1

With several therapeutic approaches in development for Huntington’s disease, there is a need for easily accessible biomarkers to

monitor disease progression and therapy response. We performed next-generation sequencing-based transcriptome analysis of

total RNA from peripheral blood of 91 mutation carriers (27 presymptomatic and, 64 symptomatic) and 33 controls.

Transcriptome analysis by DeepSAGE identified 167 genes significantly associated with clinical total motor score in Huntington’s

disease patients. Relative to previous studies, this yielded novel genes and confirmed previously identified genes, such as

H2AFY, an overlap in results that has proven difficult in the past. Pathway analysis showed enrichment of genes of the immune

system and target genes of miRNAs, which are downregulated in Huntington’s disease models. Using a highly parallelized

microfluidics array chip (Fluidigm), we validated 12 of the top 20 significant genes in our discovery cohort and 7 in a second

independent cohort. The five genes (PROK2, ZNF238, AQP9, CYSTM1 and ANXA3) that were validated independently in both

cohorts present a candidate biomarker panel for stage determination and therapeutic readout in Huntington’s disease. Finally we

suggest a first empiric formula predicting total motor score from the expression levels of our biomarker panel. Our data support

the view that peripheral blood is a useful source to identify biomarkers for Huntington’s disease and monitor disease progression

in future clinical trials.
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INTRODUCTION

Huntington's disease (HD) is a heritable neurodegenerative disorder
that manifests itself through cognitive, psychiatric and motor symp-
toms. The pathology is caused by an expanded CAG repeat in the HTT
gene, resulting in a mutant huntingtin protein. Patients also develop
peripheral pathology1 and increasing evidence indicates that peripheral
inflammation has a role as a disease progression modulator.2 HD
brain tissue is characterized by mutant protein aggregate formation
and neuronal cell loss, with transcriptional deregulation as a promi-
nent feature.3,4 Several mechanisms have been implicated in this
deregulation such as histone modifications, transcription factor
impairment and aberrant miRNA expression.5 For HD clinical trials,
it is important to identify disease progression biomarkers. Longi-
tudinal studies have shown that imaging biomarkers and clinical
measures provide valuable information.6 However, clinical measures
can be subject to inter-rater variability and imaging is expensive.
A biomarker should be able to identify changes before clinical
symptoms, should be easily obtained and should respond well to
disease-modifying interventions. As it is impossible to measure
molecular biomarkers in the brain, the use of more accessible tissues
has been proposed, such as blood. Leukocytes involved in immune
system regulation make blood an ideal source for identifying HD

events such as peripheral inflammation. In addition, as huntingtin is
ubiquitously expressed, mutant huntingtin-specific changes could also
be reflected by gene expression changes in blood. Several studies have
identified HD blood mRNA changes using microarray technology, but
it has proven difficult to validate these across studies.7–9

Advances in next-generation sequencing offer new inroads to study
the transcriptome. The digital nature of next-generation sequencing
allows for accurate quantification of unknown transcripts, low- and
high-abundance transcripts. Sequence-based methods allow the mea-
surement of known as well as unknown transcripts, thus obviating the
past limitation to the microarray content. In addition, sequence-based
methods are more precise than microarrays and more robust across
experiments because of much greater depth and the absence of the
background signal and cross hybridization issues that were associated
with microarrays.10 One such method, the 3′ digital expression
profiling (DGE/DeepSAGE) creates 21 base pair sequences (tags) near
the 3′ ends of polyadenylated mRNAs11 and uniquely identifies
transcripts using these tags. Thus, by counting the matching trans-
cripts one can estimate differences in gene expression between
samples across a large dynamic range. In comparison with full-
length RNA sequencing, DeepSAGE has the advantage of comprehen-
sive coverage of all (transcribed) genes at great depth, at the cost of not
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detecting different splice variants. In this study, we investigated the
suitability of blood to identify HD transcriptomic biomarkers,
validated the outcome in an independent cohort and derived a first
empiric panel of biomarkers capable of predicting HD motor scores.
Finally, we examined whether patient gene expression profiles could
provide information about HD-affected biological pathways.

MATERIALS AND METHODS

Cohort assessment and characteristics
Peripheral blood from 33 controls, 27 presymptomatic mutation carriers and
64 symptomatic mutation carriers were collected for the discovery cohort
and independent validation cohort from 12 symptomatic mutation carriers and
11 controls. Collection was done with IRB approval and after informed
consent. All subjects were examined by an experienced neurologist using the
motor section of the Unified Huntington’s Disease Rating Scale (UHDRS) as
described previously.12 All the controls were free of known medical conditions.
Age considered for the analysis was the age at the time of blood collection. For a
detailed summary of the study cohort’s average age, gender composition,
UHDRS TMS and HD progression total functional capacity scores (TFC) see
Supplementary Table S3.

RNA isolation and DeepSAGE library production
RNA isolation and cDNA library production were performed as described
previously.13 In short total RNA was extracted from PAX gene blood tubes
(Qiagen, Venlo, The Netherlands), and 1 μg of total RNA was used to
synthesize double-stranded cDNA constructs for next-generation sequencing.

Sequence processing
Illumina GA Pipeline (version 1.5.1) was used for data sequence processing.
The FASTQ files were analyzed using the open source GAPSS_B pipeline
(http://www.lgtc.nl/GAPSS) as described previously.13 In addition, a custom
Perl script was used to obtain gene annotations from Biomart, and a custom
python script was used to count the tags in each Ensembl gene using the sam
output files from bowtie. To avoid batch effects, the samples were randomized
during RNA isolation and DeepSAGE sample preparation. To identify potential
sample swaps and contaminations, all samples were checked for the correct
expression of XIST and RPS4Y1 gender-specific genes. Batch effects were
assessed using multidimensional scaling (MDS) plots for gender, sequencing
flow cell and disease stage and by using the edgeR bioconductor package for
RNA-Seq. The sequencing gene expression data used for this study have been
deposited in the Gene Expression Omnibus (GEO) database under accession
number GSE51799.

Fluidigm RT-qPCR
cDNA synthesis was performed using 1 μg of total RNA from each blood
sample and using random hexamer primers with the Transcriptor First Strand
cDNA synthesis kit (Roche, Basel, Switzerland). cDNA was diluted four times
and 1.25 μl of each sample was preamplified using 2.5 μl of 2x Taqman pre-
amplification master mix (Applied Biosystems, Waltham, MA, USA) and
1.25 μl of the primer pool (0.2 pmol each primer/μl). The preamplifications
were performed using a 10min 95 °C denaturation step and 14 cycles of 15 s at
95 °C and 4min at 60 °C. The preamplified reactions were diluted 5× times in
H20. Five microliters from a sample mix containing preamplified cDNA and
amplification Master mix (20mM Mgcl2, 10mM dNTPs, FastStart Taq
polymerase, DNA binding Dye loading reagent, 50× RO× , 20× Evagreen)
was loaded into each sample inlet of the 48.48 dynamic array chip (Fluidigm
Corporation, San Francisco) and 5 μl from an assay mix containing DA assay
loading reagent, as well as forward and reverse primers (10 pmol/μl), was
loaded into each detector inlet. The chip was then placed on the NanoFlexTM
4-IFC Controller for loading and mixing. After loading, the chip was placed on
the BioMarkTM Real-Time PCR System using a cycling program of 10min at
95 °C followed by 40 cycles of 95 °C for 15 s and 60 °C for 30 s and 72 °C for
30 s. Data were analyzed using the BioMark Gene Expression Data Analysis
software to obtain Ct values and/or ΔCt values. Fluidigm data were corrected
for differences in input RNA using the geometric mean of three reference genes

ACTB, HPRT and RPL22. The array accommodated reactions for all 48
validation samples and 23 genes in duplicate (duplicate values were averaged).

Statistical analysis
All DeepSAGE downstream analyses were performed at the gene level, and in
case of multiple SAGE tags per gene, for example, as a consequence of
alternative polyadenylation, tags were summarized. All the tag counts for a
certain gene across all 124 samples were summarized. Low-abundance genes
with o124 tags were removed as were the top three overabundant genes
(HBA1, HBA2 and HBB). Gene expression analysis was performed using the
limma package and the voom function for RNA-seq data and by applying linear
modeling and empirical Bayes statistics.14 The model tested gene expression as
a function of the subject’s total motor score (TMS), while accounting for
gender, age and relative cell content (measured by the ratio of hemoglobin tags
versus total aligned tags per sample) as confounders. Fluidigm expression
analysis was performed using the linear modeling function in R and by testing
the individual Δct expression values against the subject’s TMS, while account-
ing for gender and age. Global test pathway analysis was performed using the
same model as was used for the DeepSAGE analysis. For GO pathway analysis,
the top P-value pathways that consisted of a minimum of 10 genes were
reported. For IPA analysis, the top 250 DeepSAGE genes were used (P-value
o0.001). For TMS prediction a linear regression model with a lasso penalty
was fitted using the R package penalized, optimizing the lasso tuning parameter
using leave-one-out cross-validation.15 The effects of age and gender were not
penalized.

RESULTS

Gene expression analysis
Samples were sequenced at an average library size of 23.5 million tags.
Alignment to the human genome resulted in an average library size of
20.4 million tags with at least one reported alignment (87.1%).
A detailed description of the sequenced samples RNA integrity
numbers (RIN) and sequence alignment characteristics can be seen in
Supplementary Table S4. After removal of very low abundance genes,
we could reliably detect a total of 16 657 genes. To find HD-specific
stage or progression biomarkers, the DeepSAGE gene expression data
were modeled as a function of the individual UHDRS total motor
score (TMS), while accounting for gender, age and the percentage of
hemoglobin tags (a proxy for the reticulocyte content) as confounders.
The TRACK HD study has shown that in presymptomatic HD gene
carriers the motor score scale (0–124) is a strong predictor of
subsequent clinical conversion.6 Our HD group consisted 27 pre-
symptomatic (TMS=2.4±1.8) and 64 symptomatic (TMS=37.4±24.3).
After linear modeling, a total of 167 genes significantly associated
with motor score at an adjusted P-value of 0.05 or less, suggesting
that these constitute potential disease stage biomarkers. Of
these 167 genes, 99 were positively associated with motor score and
upregulated in HD samples compared with controls, whereas 68 were
negatively associated and downregulated. The top 10 upregulated and
top 10 downregulated genes are shown in Table 1. When we grouped
the samples based on TMS, we could confirm our linear modeling
results. Boxplots for the top three upregulated genes showed a gradual
increase in gene expression with increasing TMS (Figure 1). A full list
of all the genes significantly associated with TMS as well as with total
functional capacity score (TFC) disease staging is provided in
Supplementary Tables S5 and S6, respectively. Reassuringly in the
TFC-based analysis, 60% of the genes were the same as the TMS-based
significant genes. Among the top TMS P-value significant genes were
genes involved in the regulation of circadian rhythm such as
prokineticin 2 (PROK2), genes associated with motor learning such
as protein tyrosine phosphatase non receptor 4 (PTPN4) and genes
implicated in the development of the brain cortex such as G protein-
coupled receptor 56 (GPR56).16–18 The genes with the biggest
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expression change but lacking statistical significance were the small
nuclear RNA host gene 9 (SNGH9) and the major histocompatibility
complex class II DQ alpha1 gene (HLA-DQA1). HLA-DQA1 has been
previously reported as a candidate RNA biomarker in human
lymphocyte microarray data from HD patients, ranking among the
top most changed genes.9 The highest expressed significant gene was
S100 calcium binding protein A9 (S100A9) with a log2 expression
value of 11.7, while the lowest expressed significant gene was
sperm acrosome associated 3 (SPACA3) with a value of − 2.8,
indicative of the high dynamic range of the sequencing platform
(211.7− (−2.8)= 23 170 fold).
Using EBI Gene Expression Atlas (http://www.ebi.ac.uk/gxa/) and

literature searches, we found that 40 of the 167 genes had been
previously reported as differentially expressed in at least one HD
gene expression study with the same direction in expression change.

These included mechanistic target of rapamycin (MTOR), a potential
target for therapy in HD, H2A histone family member Y (H2AFY), a
gene whose transcript levels have been recently reported to mark HD
activity in human and mouse, CDC-like kinase 3 (CLK3) another gene
from the top 99 genes from the previous study, and aquaporin 9
(AQP9), a gene that has been described as a potential biomarker in
blood.8,9,19

Global test pathway analysis
To elucidate affected biological pathways in HD blood that were
associated with TMS, we used the Global test bioconductor package.20

We included KEGG pathways, GO terms and predicted/validated
target genes of miRNAs (BROAD-GSEA). In the KEGG pathway
analysis (see Supplementary Table S7), we found terms frequently
reported in HD and neurodegenerative disorder pathway analyses such

Table 1 DeepSAGE top 10 upregulated (coefficient +) and downregulated (coefficient − ) genes in HD blood samples

Gene Description Coefficienta Expressionb Adjusted P-Value Protein Function

HYAL2 Hyaluronoglucosaminidase 2 +0.4 2.6 1.0E−03 Hydrolyzes hyaluronic acid

LMO2 LIM domain only 2 +0.3 6.6 1.0E−03 Yolk sac hematopoiesis

MARC1 Mitochondrial amidoxime reducing C1 +0.4 5.0 5.0E−03 N-hydroxylate prodrug conversion

NT5DC2 5′-Nucleotidase domain containing 2 +0.4 2.8 9.0E−03 Hydrolase and metal ion binding

RNF135 Ring finger protein 135 +0.3 5.8 9.0E−03 DDX58 Ubiquitination~ IFN-β
PROK2 Prokineticin 2 +0.5 7.9 1.0E−02 Circadian clock—GI contraction

RPN1 Ribophorin I +0.3 5.5 1.0E−02 26S Proteasome ubiquitin binding

CYSTM1 Cysteine-rich transmembrane module 1 +0.4 6.0 1.0E−02 Stress tolerance

VCAN Versican +0.3 8.2 1.6E−02 Intercellular signaling Binds hyal. acid

NCF4 Neutrophil cytosolic factor 4 +0.3 8.9 1.8E−02 NADPH-oxidase component

ARL4C ADP-Ribosylation factor-like 4C −0.3 8.2 1.0E−03 Microtubule vesicular transport

TMEM109 Transmembrane protein 109 (Mg23) −0.3 7.0 6.0E−03 UVC αB-Crystallin protection

MACF1 Microtubule-actin crosslinking factor 1 −0.2 7.2 6.0E−03 Actin-microtubule stabilization

MDN1 Midasin homolog −0.2 5.3 7.0E−03 AAA-ATPase(dynein)

PTPN4 Protein tyrosine phosphatase NR type 4 −0.3 5.1 9.0E−03 Glutamate receptor signaling

PRF1 Perforin 1 −0.4 9.5 1.0E−02 Cytolysis

CD3G CD3g Molecule gamma −0.3 7.5 1.0E−02 CD3 complex signal transduction

NMT2 N-Myristoyltransferase 2 −0.3 3.4 1.0E−02 N-terminal Myristoylation

KLRD1 Killer cell lectin receptor subfamily D 1 −0.4 6.1 1.0E−02 Recognition of MHC class I HLA-E

GPR56 G Protein-coupled receptor 56 −0.4 7.3 1.0E−02 Brain cortical patterning

aCoefficients of gene expression change per motor score unit multiplied by average motor score. bAverage log2 gene expression levels. Protein function based on Genecards.
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Figure 1 Boxplots of the DeepSAGE expression values for the top three upregulated genes discovered from linear modeling with TMS and for all 124
samples. The plot confirmed our linear modelling analysis and demonstrated a gradual increase in gene expression across the different total motor score
groups.
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as neuroactive ligand receptor interaction, amyotrophic lateral sclero-
sis and long-term depression. We also found less common terms such
as the pentose phosphate pathway (PPP), Jak-STAT signaling and type
II diabetes mellitus. The genes that contributed most to PPP were
glucose phosphate isomerase (GPI), aldolase A (ALDOA), phospho-
gluconolactonase (PGLS) and transketolase-like 1 (TKTL1), an enzyme
linking PPP with the glycolytic pathway. Mitochondria-associated
metabolic dysfunction and increased glycolytic rate have been pre-
viously associated with HD.21 The Jak-STAT pathway, a common
signaling pathway used by many cytokines, was characterized by the
upregulation of serine-threonine protein kinase (AKT1), suppressor of
cytokine signaling 3 (SOCS3), son of sevenless homolog 2 (SOS2) and
interferon-alpha/beta receptor beta chain (IFNAR2). Finally, for
diabetes for which an increased frequency in HD patients has been
previously described, the most significant genes were MTOR and
protein kinase C delta (PRKCD).22 In the GO analysis, we identified
terms such as NADP binding, positive regulation of interleukin 6
production and response to cholesterol. The most significant genes for
NADP binding were neuronal nitric oxide synthase 1 (NOS1), flavin
containing monooxygenase 4 (FMO4) and homocysteine methyltrans-
ferase reductase (MTRR). The deregulation of genes linked to response
to cholesterol could also be important as cholesterol biosynthesis has
been shown to be impaired in HD cells, while Leoni et al.23 have
demonstrated that 24OHC, a brain cholesterol turnover marker,
correlated with disease progression. All the genes reported for response
to cholesterol can be seen in a Global test covariate plot in
Supplementary Figure S5A. This result was also in agreement with
Chou et al.24 who showed that the mutant HTT protein suppresses the
secretion of CCL5. The analysis for enrichment of target genes of
miRNAs showed enrichment of miR-138 and miR-218 targets. These
miRNAs were found downregulated in YAC128 and R6/2 HD mouse
models.25 For the miR-138 and miR-218 target genes, a separate
enrichment analysis, using DAVID (http://david.abcc.ncifcrf.gov),
showed that terms enriched specifically for miR-138 target genes were
histone modification and axon guidance, while terms enriched
specifically for miR-218 target genes were ubiquitin-like conjugation,
proto-oncogene and mental retardation. Other potentially interesting
miRNAs that were identified previously were miR-18a, miR-504,
miR-337 and miR-492.26,27 To further validate our Global test
pathway analysis results and obtain a better visual representation of
the interconnections of the genes involved in the above biological
processes, we also analyzed our data through the use of the Ingenuity
Pathway Analysis (IPA) (Ingenuity Systems, www.ingenuity.com). Top
diseases and functions reported by IPA network analysis were nervous
system development, skeletal and muscular disorders but also immune
cell trafficking and inflammatory response (Supplementary Table S8).
The gene network plot for the genes and molecules involved in the
IPA network 6 and for skeletal and muscular disorders, connective
tissue disorder and cancer is shown in Supplementary Figure S5B.
Interestingly, this gene plot interconnected terms such as histones, 26s
proteasome, pro-inflammatory cytokines, Hsp70 and insulin; all of
which have previously been implicated in HD. Canonical pathway
analysis using IPA further confirmed our initial Global test results, as
common pathways reported were those of diabetes mellitus, Toll-like
receptor and T-cell receptor signaling. Finally, upstream regulators
from our top genes were reported to be IL-2, IL-6 and IL-12(complex)
by IPA analysis, which was also in good correlation with the Global
test analysis.

Validation
To validate the DeepSAGE gene expression results, we performed
nanoliter RT-qPCR using the Fluidigm Biomark microfluidics chip28

using 25 samples from the original discovery cohort as technical
validation, supplemented with 23 patient and control samples as a
biological validation in an independent cohort. Twenty genes in total,
all from our DeepSAGE list of 167 significantly differentially expressed
genes, were examined; the top 12 based on P-value, 6 further down the
167 gene list based on differential expression in previous HD studies
(H2AFY, AQP9, ANXA3, RGS14, ZNF238, NOL3) and another 2 genes
from the same list based on possible involvement in HD pathology
(CEBPA, TAF15).3,8,9,19,29–31 Fluidigm data were analyzed using a
linear model as a function of TMS, while accounting for gender and
age. In the basic validation cohort, 12 out of the 20 genes tested
were significantly associated with TMS, while, in the independent
validation cohort, 7 out of the 20 genes were significant (see
Table 2). Most other genes, while not reaching significance, showed
trends in the same direction as in the discovery cohort. Five of the
20 genes (PROK2, ZNF238, AQP9, CYSTM1 and ANXA3) were the
most robust and significantly associated with TMS in both
the discovery and the independent cohort. The intergroup relative
expression levels of these five genes across HD versus control
samples, irrespective of TMS, can also be seen in Figure 2. Finally,
when the linear modeling analysis was performed on all Fluidigm
samples (n= 48), we were able to validate 12 of the 20 genes tested
(see rightmost column of Table 2).

Biomarker motor score prediction
To evaluate which panel of genes would optimally predict TMS, we
fitted a linear regression model with a lasso penalty using the Fluidigm
expression data, age and gender as predictors and TMS as the
response. The gene expression values of three genes (AQP9, ANXA3
and ARL4C), together with age and gender, were the best predictors of
TMS. The last gene (ARL4C) was non-significantly downregulated in
HD blood and specifically served the purpose of enlarging the
‘biomarker chip’ set towards tolerance for smaller individual gene
changes, providing additional informativeness. The results of the
cross-validated prediction analysis can be seen in Figure 3.
The prediction model performed better for earlier disease stages
(Stage I, II), while it was less accurate for later stages (Stage III-V)
and especially for patients with a motor score of 50 points and
over. Only one patient was assigned a predicted TMS 450 points
(patient no.29). This patient was the oldest HD carrier (470
years). We also observed that for one patient the blood-based
signature indicated a higher predicted motor score compared with
the clinical motor score. This could be explained by the fact that
this patient had a much lower TFC score (TFC= 4) compared with
other patients with similar motor score, indicative of a more
advanced disease stage. Finally, the control sample with the highest
clinical motor score (control no.4) was our oldest control sample
(69 years) and also received a higher predicted score. When we
plotted the DeepSAGE gene expression levels of these three genes
across the controls, the presymptomatic carriers and the different
HD TFC-based disease stages, we could confirm that for ANXA3
and AQP9 there was an increase in gene expression even in the
presymptomatic stage. For ARL4C, contrary to ANXA3 and AQP9
there was a decrease in gene expression, the expression changes
were more prominent in the more advanced disease stages and
hence provided complementary information to the other two genes
(Figure 4). On the basis of this analysis, we formulated the
following TMS predictive equation to measure the disease stage
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based on gene expression of the three genes:

Ptms ¼ �1:476 � Gender þ 0:964 � Age � 8:868 � Xarl4cð
þ3:801 � Xanxa3þ 14:159 � Xaqp9Þ=� 33:59

where Ptms is the gene expression predicted TMS, gender is 0 or 1 for
male or female and X the respective, housekeeping gene corrected, ΔCt
RT-qPCR value.

DISCUSSION

To date, thousands of disease biomarkers have been published while
o100 have been validated in independent cohorts.32 This inability to
validate disease biomarkers has been attributed to the lack of large
enough study cohorts as well as standardization in sample collection
and storage.33 For HD, validation has been even more challenging as
the disease presents itself through a variety of symptoms and
progression rates. For these reasons, we performed gene expression
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Figure 2 Relative expression of the most significant Fluidigm RT-qPCR genes across the two independent cohorts for controls and HD patients. Asterisks
represent statistical significance from a Student’s t-test (*Po0.05, **Po0.01). Error bars represent SEM values.

Table 2 Fluidigm RT-qPCR technical and biological validation results of DeepSAGE genes

Discovery cohort (n=25) Independent cohort (n=23) All samples (n=48)

Gene Description P-value Coeff.a P-value Coeff. P-value

CYSTM1 Cysteine-rich transmembrane module 1 6.0E−03 0.5 2.0E−03 0.5 1.0E−04

PROK2 Prokineticin 2 1.0E−02 1.0 2.0E−03 0.7 1.0E−03

AQP9 Aquaporin 9 2.0E−03 0.5 6.0E−05 0.7 2.0E−05

ZNF238 Zinc finger protein 238 2.0E−02 0.3 8.0E−03 0.5 1.0E−03

ANXA3 Annexin 3 4.0E−02 0.5 6.0E−03 0.7 7.0E−04

RNF135 Ring finger protein 135 7.0E−02 0.2 7.0E−03 0.2 6.0E−03

LMO2 LIM domain only 2 3.0E−02 0.2 7.0E−02 0.2 6.0E−03

ARL4C ADP-ribosylation factor like 4 3.0E−02 −0.3 9.0E−01 0.02 7.0E−03

TMEM109 Transmembrane protein 109 4.0E−02 −0.2 5.0E−01 −0.04 1.0E−02

CEBPA CCAAT/enhancer binding A 2.0E−02 0.4 1.0E−01 0.2 1.0E−02

MACF1 Microtubule-actin crosslinking F1 2.0E−02 −0.3 6.0E−01 −0.04 1.0E−02

PTPN4 Protein tyrosine phosphatase NR 4 1.0E−02 −0.35 6.0E−01 −0.04 3.0E−02

MARC1 Mitochondrial amidoxime reducing C1 2.0E−02 0.5 1.0E−01 0.4 6.0E−02

H2AFY H2A histone family, member Y 1.0E−01 0.15 1.0E−01 0.15 1.0E−01

HYAL2 Hyaluronoglucosaminidase 2 1.0E−01 0.20 4.0E−02 0.2 1.0E−01

NOL3 Nucleolar protein 3 2.0E−01 0.15 8.0E−02 0.2 2.0E−01

MDN1 Midasin homolog 2.0E−01 −0.15 9.0E−01 NCb 1.0E−01

NT5DC2 5′-Nucleotidase domain containing 2 5.0E−01 0.1 2.0E−01 0.4 3.0E−01

RGS14 Regulator of G-protein signaling 14 1.0E−01 0.2 5.0E−01 0.2 3.0E−01

TAF15 TATA box—associated factor 1.0E−01 −0.1 2.0E−01 0.15 2.0E−01

aCoeff.=Coefficients of gene expression change per motor score unit multiplied by group average motor score. bNC=No change.
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profiling, taking advantage of the sensitivity of next-generation
sequencing and Fluidigm technologies, and our experience in stan-
dardized blood collection and sample analysis.34,35 Using the UHDRS
TMS as a clinical parameter, we identified a set of 167 genes
differentially expressed in HD blood. Furthermore, we validated our
findings by a targeted approach, using an entirely different technology.
Technical validation (in the same cohort) confirmed 12/20 of the
discovered genes and biological validation (in a different cohort)
confirmed 7/20 of the discovered genes in a different cohort. Our
discovery and validation cohorts (n= 124 and n= 48) are to our
knowledge among the largest to have been used in HD
gene expression studies. In contrast to previous studies, we have
selected a sizable group of 20 genes for validation in duplicate (~2300

reactions). Indeed, the very fact that so many of the top 20 discovered
genes can be validated argues in favor of the robustness of the
discovery approach. Genes with more variation or smaller changes in
principle are more difficult to validate in a small cohort. Yet, we
should stress that these biomarkers presently constitute a candidate
biomarker set that requires further validation in other HD cohorts
before further used in a clinical setting.
The Fluidigm qPCR analysis yielded a panel of five genes (PROK2,

ZNF238, AQP9, CYSTM1 and ANXA3) as a potential HD biomarker
set, and this was validated in both the original cohort and an
independent validation cohort. PROK2 is expressed in the suprachias-
matic nucleus (SCN) and has been proposed to have a role in the
regulation of circadian rhythms.17 Circadian rhythm alterations have
been shown to correlate with cognitive impairment in HD36 and in
HD models pharmacological imposition of sleep slows cognitive
decline and reverses deregulation of PROK2.37 As a blood marker of
HD progression PROK2 is very promising, since this could also
be reflecting brain changes. ZNF238 is a transcriptional repressor
involved in brain development and myogenesis,38 and increasing
evidence suggests that gene repression mechanisms are associated with
HD.39,40 This is in agreement with the reported involvement in HD of
H2AFY, which is also involved in transcriptional repression, and
further studies link HD with SP1, another zinc-finger protein.41

Aquaporins are water selective channels with possible roles in the
nervous system and expression levels were upregulated after brain
injury.42 The presence of AQP9 in blood could represent peripheral or
central inflammatory events, as a recent gene expression study showed
that the mRNA levels of AQP9 and four other genes can discriminate
patients with chronic inflammation from controls.43 CYSTM1 is a
relatively unknown gene and bioinformatics analysis has demonstrated
a role in stress response and confer tolerance to heavy metals such as
cadmium and copper.44 ANXA3 was upregulated in two neuronal
injury models.45,46 It is important to note that the levels of annexin
ANXA1 have also been found upregulated in a previous gene
expression study in HD blood.8

Our pathway analysis showed a wide range of processes changed in
HD. The most prominent terms pointed towards the involvement of
the immune system. It has been suggested by previous studies that
pro-inflammatory cytokines such as IL-6, IL-8 and TNF-α can be used
as peripheral HD biomarkers.47,48 Other terms such as diabetes
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mellitus could also be interesting as mouse models of HD can develop
diabetes mellitus,49 and it was shown that type II diabetes exhibits
common features with other neurodegenerative disorders.50 Finally,
we discovered enrichment of target genes of miRNAS (miR-138/218)
previously reported to be downregulated in HD models. This warrants
further investigation as miR-9 was found to be downregulated in
human HD brain samples and target complexes, such as REST, that
regulates neuronal gene expression in non-neuronal tissues.51

A disadvantage of whole blood may be considered its cellular hetero-
geneity. The more informative white blood cells comprise a small
percentage of the total cell population, while 95% of blood consists of
red blood cells, with hemoglobin transcript percentages, ranging from
30 to 90%. This could well account for the fact that until now less-
sensitive techniques failed to replicate results between different HD
blood microarray studies.52 For the same reason, in the past, most
expression studies used isolated peripheral blood mononuclear cells.
However, it is not always possible to process samples directly after
collection and preparation delays have been shown to induce biases.53

In the present study, taking advantage of the digital nature of
sequencing, we identified differentially expressed genes across a wide
dynamic range, with high sensitivity, directly from whole blood. This
provides a clearer image of the transcriptional alterations in HD,
although biomarkers with higher expression will be more useful and
easier to detect with less-sensitive routine techniques. Our motor score
prediction analysis showed that the gene expression predictive power
was stronger for early-stage and weaker for later-stage patients. While
this could be explained by the increasing impact of generalized tissue
degeneration in late disease stages, the increased reliability in earlier
stages is in fact of major benefit, as, notably in this early phase, robust
therapeutic read-outs are challenging. Furthermore, previous gene
expression studies have found small individual gene expression
changes in HD blood. In the future and for a potential ‘biomarker
chip’ to survive further validation, a larger group of genes may
be required that will better allow for variation in individual gene
expression changes. For this reason, we used the predictive capabilities
of the LASSO algorithm to see which genes would jointly perform
most optimally in UHDRS TMS prediction. The formula we have
derived links a small set of easily definable gene expression levels to the
UHRDS Total Motor Score, and is thus a promising candidate
biomarker set to monitor disease state, progression and putative
therapeutic effect of interventions. Taking into account the great
symptomatic variability in HD patients, different sets of biomarkers
can be further trained and optimized, depending on the disease stage
that is most prominent in the group of patients included in each study.
Considering the complexity of HD most likely a collection of

biomarkers will best define disease progression and response to
therapy. The biomarker changes found in this study monitor disease
progression in blood and may be relatively independent of the changes
taking place in the brain. Such biomarkers, if validated clinically, may
be useful as surrogate markers to test the effectiveness of therapeutic
strategies even when they may not have a robust relationship with
actual clinical end points.54

Owing to the design of our study, comparing various HD stages
with unaffected controls, we cannot exclude that the detected changes
might also (partly) track progression of other neurodegenerative
diseases. Thus, before putative diagnostic application, this needs to
be further assessed. However, this does not reduce the potential
differentiating significance of this biomarker panel for prognostic
application in a known (pre)symptomatic HD carrier setting.
In conclusion, we describe the development of a panel of candidate

HD biomarkers that can be easily measured by transcript analysis of

whole blood and that may have application in disease staging and the
monitoring of therapeutic effectiveness. Longitudinal and cross-
sectional studies in additional cohorts will be needed to further
validate this panel before its application in the clinic. Finally, the
assesment of the disease relevance of the genes involved may well
contribute to finding new HD therapeutic targets.
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