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This study aimed to investigate the immunomodulatory activation of

low-molecular-weight peptides from monkfish (Lophius litulon) roe (named

MRP) on cyclophosphamide (CTX)-induced immunosuppressed mice. Our

results indicated that MRP (100 mg/kg/d BW) could significantly increase

the body weight and immune organ index, and improve the morphological

changes in the spleen and thymus of mice. These e�ects subsequently

enhance the serum levels of interleukin (IL)-6, IL-1β, tumor necrosis factor

(TNF)-α, and immunoglobulin (Ig) A, IgM, and IgG. Furthermore, MRP could

also improve CTX-induced oxidative stress, and activate the NF-κB and MAPK

pathways in the spleen tissues. The findings reported herein indicate that MRP

has a good immunomodulatory activation toward immunosuppressed mice,

hence can potentially be developed as an immune adjuvant or functional food.

KEYWORDS

(Lophius litulon) roe, low molecular weight peptides, immunosuppression,
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Introduction

The immune capacity of the human body is affected and challenged by many factors

due to changing lifestyles (1, 2). Diseases, aging, obesity, improper diet, mental stress,

and unhealthy living habits can all lead to a decline in immunity and result in various

conditions (3, 4). The immune system regulates multiple physiological processes in the

human body and plays an important role in keeping human health (5, 6). Traditional

immunomodulators, such as glucocorticoid, cyclosporine, tacrolimus, and levamisole

(7–9), regulate the immune response. However, these drugs are expensive, have toxic side

effects on the body, and are often unsuitable for chronic or preventive use. Therefore,

searching for novel and non-cytotoxicity immunomodulators with high activity and few

side effects is highly important.
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Bioactive peptides containing 2–20 amino acids can

exert various physiological effects, such as immunoregulation,

antioxidant, antibacterial, antitumor, and hepato-protective

impact (10–12). These peptides have been gaining increasing

attention recently due to their bioactivity, high safety and

bioavailability, and diverse physiological functions. Many

immunomodulatory peptides have also been synthesized from

plant- and animal-derived proteins by enzymolysis. For

example, Wen et al. (13) isolated several peptides from soybean

protein and identified 46 immunomodulatory peptides, while Yu

et al. (14) purified an immunomodulatory peptide (Lys-Ser-Pro-

Leu-Tyr) from Hericium erinaceus. In our previous studies, we

purified an immunomodulatory peptide from Cyclina sinensis

and found that it has excellent immunomodulatory activities

both in vitro and in vivo (15, 16). These findings suggest that

immunomodulatory peptides derived from plants and animals

can potentially be used as nutritional supplements to improve

immune function in humans.

Monkfish (Lophius litulon) is mainly found in the Western

North Pacific and coastal waters of China (17). There are

several reports on the preparation of active peptides from

monkfish. For example, Hu et al. (11) prepared antioxidant

peptides from the protein hydrolysate of monkfish muscle,

while Tian et al. (17) optimized the extraction factors of

antioxidant peptides from monkfish muscle, and investigated

their role in H2O2-induced lesion. Ye et al. (12) investigated

the amelioration effect of monkfish peptides toward high fat

diet-induced hepatic steatosis in mice. However, there is no

report on the preparation of immunomodulatory peptides

from monkfish. Fish roe is a by-product of fish processing,

and is rich in proteins, unsaturated fatty acids, phospholipids,

essential amino acids and minerals (18, 19). However, monkfish

roe cannot be effectively processed and utilized because it

does not meet the processing requirements of caviar. Thus,

the roe is typically discarded, resulting in resource waste

and subsequent environmental pollution. For the efficient

utilization of this resource, low-molecular-weight (LMW)

peptides from monkfish roe (named MRP) were prepared

through enzymolysis, ultrafiltration, and lyophilization. This

study aimed to determine the immunomodulatory effect ofMRP

using immunosuppressed mice and elucidate the underlying

immunomodulation mechanism. Our findings serve as a

reference for the efficient utilization of fish roe, and suggest the

potential of MRP application as an adjuvant to functional food

in enhancing immunity.

Materials and methods

Materials and reagents

Monkfish roe was purchased from Zhoushan International

Aquatic Center (Zhejiang, China). Cyclophosphamide

(CTX) was purchased from Aladdin (Shanghai, China). The

hematoxylin-eosin (H&E) staining kit was purchased from

Beyotime (Shanghai, China). Tumor necrosis factor (TNF)-α,

interleukin (IL)-6, and IL-1β ELISA kits were purchased from

Boster (Wuhan, China). Immunoglobulin (Ig)A, IgM, and IgG

ELISA kits were purchased from Yilai Ruite Biotechnology

(Wuhan, China). Commercial kits for malondialdehyde (MDA),

total antioxidant capacity (T-AOC), glutathione peroxidase

(GSH-Px), superoxide dismutase (SOD), and catalase (CAT)

were purchased from Jiancheng (Nanjing, China). Antibodies

were purchased from Beyotime (Shanghai, China) or Cell

Signaling Technology (Boston, MA, USA).

Preparation of bioactive peptides from
monkfish roe

Bioactive peptides from monkfish roe were prepared using

stepwise enzymatic hydrolysis described previously (20, 21). The

roe was defatted using 95% ethanol and homogenized. The

reaction system (roe: water = 1:10, w/w) was adjusted to pH

2.0 and then hydrolyzed using 1,500 U/g pepsin for 4 h at 37◦C.

The reaction system was then adjusted to pH 8.0 and hydrolyzed

using 1,500 U/g trypsin for 4 h at 37◦C. The reaction system

was subsequently heated, cooled and centrifuged at 8,000 g

for 10min. Monkfish roe peptides (MRP) with a molecular

weight (MW) < 1 kDa were obtained from the supernatant by

ultrafiltration using a 1 kDamembrane and then freeze-dried for

further studies.

Determination of molecular weight and
amino acid composition

The MW of MRP was analyzed as described in our previous

studies (20, 21), using Agilent 1260 Infinity HPLC with a TSK

gel G2000 SWXL column (7.8 × 300mm, 5µm) at 220 nm. The

MW standards used were cytochrome C (12,355 Da), aprotinin

(6,511 Da), bacitracin (1,422 Da), and tetrapeptide GGYR (451

Da). A standard curve of the linear relationship between the

retention time and average log MW (lg MW) was used to

calculate the MW distribution of MRP. Amino acid analysis was

performed according to Tang et al. (22) using a Hitachi L-8900

amino acid analyzer (Tokyo, Japan).

Animals and design

Male ICR mice (20 ± 2 g, 6–8 weeks) were purchased from

the Zhejiang Academy of Medical Sciences. After 7 days of

adaptive feeding, the mice were randomly divided into three

groups (n = 10 per group): the control (saline solution), model

(80 mg/kg/d BW CTX), and MRP (100 mg/kg/d BW MRP).
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FIGURE 1

The experimental protocol was performed in the present study.

The control mice received gavages with a saline solution daily

for 20 days, and the remaining two groups were firstly injected

with CTX (80 mg/kg/d BW) daily for 5 days and then saline

solution or MRP (dissolved in saline solution) daily for 15 days

(Figure 1). After 24 h of the last drug administration, the mice

were anesthetized with chloral hydrate (10%) and sacrificed by

cervical dislocation.

Body weight and immune organ index
determination

The body weight of mice was recorded daily, and the spleen

and thymus indices were calculated as follows:

spleen or thymus index (mg/g) = spleen or thymus weight (mg)

/ body weight (g)

Histopathological evaluation

The spleen and thymus cross-sections were fixed using 4%

paraformaldehyde 4% and embedded in 10% paraffin 10%. The

H&E staining was performed as described previously (15, 23),

and micrographs were taken using a CX31 light microscope

(Olympus, Japan).

Biochemical determination

The blood was collected from eyeball extirpation and

centrifuged at 6,000 × g for 3min at 4◦C to obtain serum. The

levels of TNF-α, IL-6, and IL-1β in serumwere determined using

Boster’s ELISA kits. The levels of IgA, IgM, and IgG in serum

were determined using Yilai Ruite’s ELISA kits.

Oxidative stress index determination

The spleen tissues were ground in saline solution, and then

centrifuged at 12,000× g for 3min at 4◦C. The levels ofMDA, T-

AOC, CAT, SOD, and GSH-Px in spleen tissues were measured

using Jiancheng’s commercial kits.

Western blot analysis

The spleen tissues were ground, and the supernatant was

collected by centrifugation. The protein concentration was

determined using a BCA assay kit (Solarbio, Beijing, China). The

protein (30 µg) was then separated using a 12% SDS-PAGE gel,

and a western blot was performed as described in our previous

studies (20, 24). The primary antibodies used were as follows:

GAPDH (AF1186, 1:1000), TLR 4 (AF8187, 1:1000), NF-κB

p65 (AF0639, 1:1000), IKKα (AF0198, 1:1000), IKKβ (AF7200,

1:1000), IκBα (AF5204, 1:1000), and p-IκB (AF1870 1:1000)

were purchased from Beyotime. JNK (#9252, 1:1000), p-JNK

(#4668, 1:1000), ERK (#4695, 1:1000), p-ERK (#4370, 1:1000),

P38 (#8690, 1:1000) and p-P38 (#4511, 1:1000) were purchased

from Cell Signaling Technology.

Statistical analysis

The results were expressed as themean± standard deviation

(SD). Data analysis was performed using SPSS 24.0 (SPSS Inc.,

Chicago, IL, USA). One-way analysis of variance (ANOVA) and
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FIGURE 2

Molecular weight (MW) distribution of MRP.

LSD post hoc test were used to analyze the differences among

groups, and P < 0.05 was considered statistically significant.

Results and discussion

MW distribution of MRP

The yield of MRP was 33.55 ± 1.58% on the basis of

monkfish roe dry weight, and the MW profile of MRP was

determined using gel permeation chromatography (Figure 2).

The calibration equation was obtained as the retention time (Rt)

against the logarithm of the standards MW (LgMW): LgMW =

−0.2183Rt + 6.4137, R2 = 0.9994. Most peptides had MWs of

< 1 kDa and accounted for 88.27% of the total MRP. Peptides

with MW in the range of 1–3 kDa accounted for 9.37% of the

total MRP, whereas those with MWs higher than 3 kDa only

accounted for 2.36% of the total MRP. The results indicate the

effectiveness of the stepwise enzymatic hydrolysis in isolating

LMW peptides.

LMW peptides exhibit stronger immunomodulatory effects

(23, 25). Moreover, ingesting LMW peptides leads to enhanced

intestinal absorption, resulting in higher bioavailability (26,

27). Yu et al. (23) showed that LMW peptides (< 3 kDa)

from Nibea japonica skin induced the highest proliferation

of RAW264.7 cells compared with other fractions (3–5

kDa, 5–10 kDa, and > 10 kDa). Xu et al. (25) showed

that LMW peptides (< 1 kDa) from Stolephorus chinensis

induced the highest proliferation of RAW264.7 cells, and

subsequently isolated an immunoregulatory peptide, Tyr-Val-

Met-Arg-Phe, from the LMW peptides. In this study, 88.27%

of the total MRP had smaller peptides having MWs < 1

kDa, indicating their promising bioactivities. Therefore, the

immunomodulatory activities of these peptides were determined

in subsequent experiments.

Amino acid composition

The biological activity of peptides is mainly related to their

amino acid composition (28). The amino acid composition of

MRP is listed in Figure 3. Previous studies suggest that Arg,

Glu, or phosphoserine residues may be recognized by receptors

on the surface of immune cells that regulate the peripheral

immune system (28, 29). The contents of Arg, Glu, and Ser

in MRP were found to be 6.44, 13.51, and 7.05%, respectively.

Moreover, positively charged amino acids (Lys, Arg, and His)

may also interact with immune cells (29), and the content of

these positively charged amino acids in MRP was determined

to be 15.39%. Therefore, MRP may exert immunomodulatory

effects because of the high content of Glu, Ser, and positively

charged amino acids.

E�ect of MRP on body weight and
immune organ index

Our results showed that CTX significantly reduced

body weight as compared to the control (Figure 4, P <

0.01). This finding is consistent with previous reports

that the body weight can reflect the immunosuppression

mice’s growth status (15, 30). MRP treatment significantly

increased the final average body weight of mice relative

to the model (Figure 4A, P < 0.01), indicating that MRP

could attenuate CTX-induced body weight loss. In addition,

the thymus and spleen are important immune organs,

and the immunomodulatory activities are closely related

to changes in immune organ index (31, 32). As shown in

Figure 4B, CTX treatment considerably reduced the thymus

and spleen index of mice, as compared to the control (P <

0.05 or P < 0.01), indicating that the immunosuppressed

mice model was successfully established. Meanwhile, MRP

treatment significantly increased the thymus and spleen

index (P < 0.05), suggesting that MRP treatment attenuated

CTX-induced immune organ atrophy. Similar to previous

studies (23, 33), LMW peptides from Nibea japonica skin and

muscles could enhance the body weight and organ index in

immunosuppression mice.

Histopathological evaluation

H&E staining was used to observe morphological changes

in immune organs (34) in mice’s spleen and thymus (Figure 5).

When treated with CTX, the boundary between the white

and red-pulp of the spleen in the model was unclear, but

the mature lymphocytes decreased with a certain amount of

inflammatory cells. After treatment with MRP, the spleen’s

white and red-pulp boundaries became visible, and the number

of inflammatory cells decreased compared to the model
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FIGURE 3

Amino acid composition of MRP.

FIGURE 4

E�ect of MRP on body weight (A) and immune organ index (B) in CTX-treated mice (n = 10). ##P < 0.01 vs. Control; **P < 0.01 vs. Model.

(Figure 5A). In addition, when treated with CTX, the thymus

cortex was atrophied, themedulla was increased, and the thymus

corpuscle decreased compared to the control (Figure 5B). After

treatment with MRP, the thymus cutaneous pulp boundary

became visible with a thicker cortex, and increased thymus

corpuscle. Overall, the histopathological observation indicates

that MRP could attenuate spleen and thymus injury in

immunosuppression mice.
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FIGURE 5

Histomorphology of the spleen (A) and thymus (B) in mice (×100).

FIGURE 6

E�ect of MRP on serum levels of IL-6 (A), IL-1β (B), TNF-α (C), IgA (D), IgM (E), and IgG (F) (n = 10). #P < 0.05 and ##P < 0.01 vs. Control; *P <

0.05 and **P < 0.01 vs. Model.
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Serum cytokines and immunoglobulins
levels

Because cytokines and immunoglobulins are important

parts of the immune response and play vital roles in the

organism’s immune (30, 35). IL-6, IL-1β, and TNF-α are

common markers that indicate the immunoregulatory activities

of peptides (33). IgA is an antibody that plays an important

role in mucosal immunity, and IgG is the most abundant

antibody subtype in the body, while IgM could activate the

TABLE 1 E�ect of MRP on the oxidative stress indices of the spleen.

Group Control Model MRP

MDA (nmol/mg prot) 2.56± 0.22 4.59± 0.09 ## 3.17± 0.15 #*

T-AOC (µmol/mg prot) 14.60± 1.75 2.40± 0.38 ## 6.55± 0.54 ##*

CAT (U/mg prot) 22.15± 1.74 7.93± 0.60 ## 20.24± 1.35 **

SOD (U/mg prot) 13.78± 0.42 8.21± 0.83 ## 11.25± 1.21 #*

GSH-Px (U/mg prot) 20.40± 0.55 15.09± 1.29 ## 18.20± 0.51 *

#P < 0.05 and ##P < 0.01 vs. Control; *P < 0.05 and **P < 0.01 vs. Model.

complement system and strengthen phagocytosis in the presence

of complement and macrophages (23). Therefore, the effects

of MRP on the secretion of IL-6, IL-1β, TNF-α, IgA, IgM,

and IgG in serum were evaluated. The serum levels of IL-

6, IL-1β, TNF-α, IgA, IgM, and IgG significantly decreased

after treatment with CTX (Figure 6; P < 0.01), confirming

findings of previous research (34, 36). When treated with

MRP, the levels of the cytokines and immunoglobulins were

significantly enhanced compared with the model (P < 0.05 or

0.01), indicating that MRP could attenuate immunosuppression

in mice by increasing the production of these proteins. Other

studies have also shown immune enhancement by increasing

the secretion of cytokines and immunoglobulins against CTX-

induced mice immunosuppression (16, 37), corroborating our

current findings.

Antioxidant activity of MRP in spleen

The dynamic balance between the oxidative and antioxidant

states of the body plays a critical role in safeguarding an

organism’s health (38). MDA reflects the degree of lipid

FIGURE 7

E�ect of MRP on the protein levels in the NF-κB and MAPK pathways (n = 3). (A) Western blot of NF-κB pathway. (B) The protein levels of related

proteins in the NF-κB pathway. (C) Western blot of MAPK pathway. (D) Protein levels of related proteins in the MAPK pathway. ##P < 0.01 vs.

Control; *P < 0.05 and **P < 0.01 vs. Model.
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peroxidation after tissue damage and oxidative stress (24),

while T-AOC reflects the capacity of enzymatic and non-

enzymatic antioxidant defenses (20). In addition, GSH-Px, SOD,

and CAT play important roles in cellular defense against the

adverse effects caused by free oxygen radicals (20, 24). CTX can

increase the MDA contents, and decrease the T-AOC levels and

antioxidant enzymes activities, thus destroying the host’s redox

balance and normal metabolism (39). As shown in Table 1, MDA

content in the spleen was remarkably increased (P < 0.01), while

the T-AOC levels (P < 0.01) and antioxidant enzyme activities

in the spleen were significantly decreased in the model (P <

0.01). After treatment withMRP, theMDA contents significantly

reduced (P < 0.05), while the T-AOC levels (P < 0.05), CAT

(P < 0.01), SOD (P < 0.05) and GSH-Px (P < 0.05) activities

significantly increased compared to the model. These results

suggest that MRP could improve CTX-induced oxidative stress

in the spleen tissues and maintain the host’s redox balance for

normal metabolism.

Western blot analysis

The toll-like receptors (TLRs) family plays a key role

in innate immunity (40, 41). When TLRs recognize relevant

molecules, they activate downstream regulatory molecules such

as NF-κB or interferon regulatory factor (IRF) to conduct

immune signal transduction and induce and stimulate cells

to produce effector molecules to kill foreign pathogens (13).

TLR 4 is an important part of the TLRs family (42, 43).

Numerous studies found that TLR 4 recognizes peptides and

activates the downstream regulatory signal pathways, such as

NF-κB and MAPK, to exert immunomodulatory effects (44, 45).

Our study showed that the gray value of TLR 4 bands was

obviously in control, while the gray value of TLR 4 bands in

the model was decreased (Figure 7A). However, the use of MRP

significantly increased the expression levels of TLR 4 (P < 0.05)

as compared to the model (Figure 7B), indicating that MRP

contained peptides that could bind to the TLR 4.

MAPKs and NF-κB are two classic pathways regulating the

immune response (32, 46). Ma et al. indicated that collagen

peptide-jackfruit juice could regulate immune response via

the TLR 4/MAPKs/NF-κB pathways (32). He et al. showed

that LMW peptides from Mytilus coruscus exhibited in vitro

immunomodulatory effects via NF-κB/MAPK pathways (46).

In the present study, these two classic pathways were used

to investigate the immunomodulatory mechanism of MRP.

Compared to the control, the IKKα (P < 0.01), IKKβ (P

< 0.01), p-IκBα/IκBα (P < 0.01), NF-κB p65 (P < 0.01)

expression levels were significantly downregulated in the model

(Figures 7A,B). When treated with MRP, the IKKα (P < 0.05),

FIGURE 8

A potential signaling pathway involved in the immune-enhancement of CTX-induced immunosuppressed mice.
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IKKβ (P < 0.05), p-IκBα/IκBα (P < 0.01), and NF-κB p65 (P <

0.01) levels were significantly increased compared to the model

(Figures 7A,B). Additionally, the p-JNK/JNK, p-ERK/ERK, and

p-P38/P38 ratios were significantly decreased in the model

compared to the control (Figures 7C,D, P < 0.01). When

treated with MRP, these ratios were significantly upregulated

compared to the model (Figures 7C,D, P < 0.01). Overall, MRP

may regulate immune response via the TLR 4/MAPKs/NF-κB

pathways, thus stimulating the production of cytokines to exert

immunity effects.

The potential mechanism of MRP for
enhancing immunity

Based on the above results, the MRP has

immunomodulatory activation in CTX-induced

immunosuppressed mice. The immunomodulatory activation

of peptides mainly depends on their structure-activity

relationships, such as amino acid composition, sequence length,

charge properties, hydrophilicity and hydrophobicity, and

molecular structures (28, 46). The positively charged amino

acids, such as Arg, Glu, or phosphoserine residues, may be

recognized by receptors on the immune cell surface, promoting

their immunomodulatory activation (28, 29). The contents of

positively charged amino acids were enriched in MRP, which

may be one of the main reasons for the immunomodulatory

activation of MRP.

Previous studies have shown that active peptides can activate

cellular receptor-mediated signaling pathways by binding to the

immune cell receptors. For example, He et al. (44) showed

that peptide (TQIDKVVHFDKLPGF) purified from enzymatic

hydrolysates of duck egg ovalbumin could enhance phagocytosis

capacity, and promote NO, IL-6, and TNF-α secretion in

RAW 264.7 cells. Results of molecular docking indicated that

TQIDKVVHFDKLPGF had a good affinity toward TLR 2 and 4.

So, the short peptide contained in MRP may be bound directly

to the expression receptor of immune cells, thereby activating

the cell expression receptor-mediated related signaling pathway,

which may be another reason for the immunomodulatory

activation of MRP.

Conclusion

In conclusion, the LMW peptides (< 1 kDa, named

MRP) from monkfish roe were prepared using enzymolysis

and ultrafiltration. Our results indicate that MRP exhibits

immunomodulatory effects by increasing the mice’s body weight

and immune organ index and improvingmorphological changes

in the mice’s spleen and thymus. Subsequently, this enhances

the serum levels of cytokines (IL-6, IL-1β, and TNF-α) and

immunoglobulins (IgA, IgM, and IgG) and activates the NF-κB

and MAPK pathways (Figure 8). Our findings provide evidence

for the immunomodulatory activation of MRP in vivo and

will serve as a reference for the high-value-added utilization of

fish roe.
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