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The RASSF proteins are a family of polypeptides, each containing a conserved Ras association domain, suggesting that these
scaffold proteins may be effectors of activated Ras or Ras-related small GTPases. RASSF proteins are characterized by their ability
to inhibit cell growth and proliferation while promoting cell death. RASSF1 isoform A is an established tumor suppressor and is
frequently silenced in a variety of tumors and human cancer cell lines. However, our understanding of its function in terminally
differentiated cell types, such as cardiac myocytes, is relatively nascent. Herein, we review the role of RASSF1A in cardiac physiology
and disease and highlight signaling pathways that mediate its function.

1. Introduction

The Ras association domain family (RASSF) consists of
10 members: RASSF1-10. Additionally, splice variants of
RASSF1, 5 and 6 have been identified [1]. Importantly, all
isoforms contain a Ras association (RA) domain either in
their C-terminal (RASSF1-6) or N-terminal (RASSF7-10)
regions [2]. To date, no known catalytic activity has been
described for this family, and the general consensus supposes
that RASSF proteins function as scaffolds to localize signaling
in the cell. Accordingly, protein-protein interactions are
critical in mediating their biological functions. RASSF1
isoform A (RASSF1A) is the most characterized member
of the RASSF family. This paper will focus primarily on
RASSF1A and its role in cardiovascular biology.

2. RASSF1A

RASSF1A was first identified and described by Dammann
et al. in 2000 [3]. The RASSF1 gene encodes multiple splice
variants, including the two predominant isoforms, RASSF1A
and C. The RASSF1A isoform is the longest variant of the

RASSF1 gene. Structurally, RASSF1A is a product of exons
1α, 2α/β, 3, 4, 5, and 6, while RASSF1C consists of exons
2γ, 3, 4, 5, and 6. Both isoforms contain a C-terminal RA
domain; however, RASSF1A has an additional C1 domain
that is not present in RASSF1C.

The RASSF1 gene is located on Chr3p21.3 [3]. This
short arm of chromosome 3 is known to exhibit loss of
heterozygosity in many tumor models and is thought to
harbor tumor suppressor genes. As the literature has shown,
RASSF1A fits this description. The RASSF1A promoter
contains a CpG island that shows a high frequency of
hypermethylation in tumors, thereby silencing RASSF1A
expression in many human cancers including lung, breast,
ovarian, renal, and bladder [4–7]. RASSF1A expression is
also lost in numerous cancer cell lines, while RASSF1C
expression is seemingly unaffected [4]. Interestingly, recent
work suggests that RASSF1C may actually promote tumor
progression [8, 9], further distinguishing these two splice
variants.

All RASSF proteins have an RA domain, which is thought
to necessitate their binding to activated, GTP-bound Ras
proteins. While RASSF5 (Nore1) is thought to bind Ras
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directly, whether RASSF1A is able to associate with Ras
is less clear. It has been shown that RASSF1A binds K-
Ras in vitro [10], and an interaction between ectopically
expressed RASSF1A and activated K-Ras has been observed
in HEK293 cells [11, 12]. However, other work has found
that this interaction only occurs in the presence of Nore1,
arguing for an indirect association [13]. Importantly, to
our knowledge, there are no reports demonstrating the
interaction of endogenous RASSF1A and Ras proteins.

RASSF1A has several key biological functions typical of
tumor suppressor proteins. It has been implicated in the neg-
ative regulation of cell cycle progression, cell proliferation,
and cell survival [2]. RASSF1A has been shown to localize
to microtubules of proliferating cells, increasing microtubule
stability and inhibiting cell division [14, 15]. This may
be mediated through direct binding or though interaction
with microtubule-associated proteins such as C19ORF5 [16].
RASSF1A has also been shown to inhibit proliferation by
inhibiting the accumulation of cyclin D1 and arresting cell
division [17, 18].

RASSF1A also promotes apoptosis, which can reportedly
occur through multiple mechanisms and is likely cell-type
dependent. One mechanism that mediates the apoptotic
function of RASSF1A involves protein interaction with
modulator of apoptosis-1 (MOAP-1 or MAP-1) [19]. MOAP-
1 is normally sequestered in an inactive form in healthy cells.
Upon death receptor stimulation, RASSF1A binds MOAP-
1, causing its activation and subsequent association with
Bax, which leads to apoptosis [19]. Previous work has also
demonstrated enhancement of RASSF1A/Mst-mediated cell
death by the scaffold CNK1 [20].

2.1. RASSF1A and Hippo Signaling. RASSF1A can also
elicit inhibitory effects on growth and survival through
engagement of the Hippo pathway. The Hippo signaling
pathway is a highly conserved kinase cascade that was
originally discovered in Drosophila and has been shown
to be a critical regulator of cell proliferation, survival, and
organ growth [21]. Three members of this pathway, dRASSF,
Salvador and Hippo, contain the SARAH (Salvador-RASSF-
Hippo) domain, which is conserved in its mammalian
counterparts RASSF1-6, WW45, and Mst1/2, respectively
[22]. The SARAH domain is critical for homo- and het-
erodimerization between components [23–27]. While the
Drosophila ortholog dRASSF is known to antagonize Hippo
activation in the fly [28], it has been demonstrated that
RASSF1A promotes phosphorylation and activation of Mst
1/2 by inhibiting the phosphatase PP2A in mammalian
systems [29, 30].

The biological relevance of RASSF1A-mediated activa-
tion of Hippo signaling has also been investigated. Matal-
lanas et al. reported a RASSF1A-Mst2-Yap-p73-PUMA sig-
naling axis that promotes apoptosis in mammalian cells [31].
Hippo signaling is also important for maintaining intestinal
homeostasis and tissue regeneration in response to injury.
Mouse models with conditional disruption of either Mst1/2
or Sav1 in the intestinal epithelium displayed hyperactivation
of Yes-associated protein (Yap), increased intestinal stem cell

(ISC) proliferation, and increased polyp formation following
dextran sodium sulfate (DSS) treatment [32, 33]. Similarly,
loss-of-function mutations of Hippo components in the
fly midgut caused increased ISC proliferation [34]. These
findings suggest that perhaps Hippo signaling serves a more
global role in regulating organ integrity, structure, and
response to injury, and that perturbation of this pathway can
lead to aberrant growth and dysfunction.

3. Cardiovascular Function of RASSF1A

In 2005, two independent groups generated and published
findings regarding the systemic deletion of the Rassf1a gene
variant in mice [35, 36]. Both described similar phenotypes
involving the spontaneous generation of tumors, particularly
in aged mice, thus further supporting the notion that
RASSF1A is a bona fide tumor suppressor [35, 36]. Not
surprisingly, nearly all studies involving RASSF1A to date
are related to cancer biology with few reports related to the
cardiovascular field.

RASSF1A is ubiquitously expressed and has been detect-
ed in heart tissue [3, 37, 38]. Initial investigation into the
role of Rassf1 gene products in a cardiac context came from
the Neyses laboratory [39]. Their findings demonstrated
that both RASSF1A and RASSF1C could associate with
the sarcolemmal calcium pump, PMCA4b, in neonatal rat
cardiac myocytes. This interaction was shown to mediate
the inhibition of ERK, and subsequent Elk transcription
and suggested the possibility that RASSF1A could modulate
cardiac myocyte growth [39].

3.1. Rass f 1a−/− Mice. Five years later, the same group
demonstrated that RASSF1A does in fact negatively reg-
ulate cardiac hypertrophy in vivo using Rass f 1a−/− mice
[37]. Although these mice have increased susceptibility to
spontaneous tumorigenesis [36], no apparent cardiovascular
phenotype was observed under basal conditions, that is, no
differences in heart size, morphology, or function compared
to WT. However, when Rass f 1a−/− mice were challenged
with pressure overload, they responded with an exaggerated
hypertrophic response, evidenced by significantly greater
increases in heart weight/body weight and hypertrophic
gene expression (ANP, BNP, β-MHC). Cardiac myocytes of
Rass f 1a−/− mice were significantly larger, which explains the
augmented heart growth. Chamber dilation of Rass f 1a−/−

mouse hearts was observed by echocardiography, consis-
tent with eccentric hypertrophic remodeling. Hemodynamic
analysis of WT and Rass f 1a−/− mice showed a right-
ward shift in PV loops following pressure overload in
Rass f 1a−/− hearts, yet dP/dtmax, dP/dtmin, and fractional
shortening were not altered in Rass f 1a−/− mice compared to
WT.

To examine RASSF1A function in cardiac myocytes, Oce-
andy et al. utilized a neonatal rat cardiac myocyte (NRCM)
culture and the forced expression of RASSF1A through
adenoviral gene transfer [37]. Increased RASSF1A expres-
sion inhibited phenylephrine-(PE-) induced cardiac myocyte
growth and suppressed Raf-1 and ERK1/2 activation by PE
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treatment. Conversely, both Raf-1 and ERK1/2 phosphoryla-
tion were increased in Rass f 1a−/− hearts following pressure
overload, suggesting negative regulation of MAPK signaling
by RASSF1A. Deletion mutants of RASSF1A revealed an
important function of the N-terminus of RASSF1A that
disrupts the binding of active Ras and Raf-1, thus preventing
ERK activation and cardiac myocyte growth.

3.2. Cardiac Myocyte-Specific Rassf1a Deletion. To better
understand the function of RASSF1A in cardiac myocytes
in vivo, we crossed genetically altered mice harboring a
floxed Rassf1a allele [35] with mice harboring the Cre
recombinase transgene driven by the α-MHC promoter.
This strategy disrupted endogenous Rassf1a gene expression
and ensured cardiac myocyte specificity [38, 40]. Similar to
the Rass f 1a−/− mice, Rassf1aF/F-Cre mice had no obvious
baseline cardiac phenotype. Although we also found exag-
gerated heart growth in the Rass f 1a−/− mice in response to
pressure overload, the Rassf1aF/F-Cre mice unexpectedly had
attenuated hypertrophy, that is, smaller hearts and cardiac
myocytes, compared to Rassf1aF/F and α-MHC-Cre controls
[38]. Furthermore, Rassf1aF/F-Cre mice had significantly less
fibrosis and myocyte apoptosis, and better cardiac function
following pressure overload. This was in stark contrast to the
Rass f 1a−/− mice, which presented significantly more fibrosis
and a decline in cardiac function comparable to the levels
found in WT mice.

As an alternative approach we also generated two
different cardiac-specific transgenic mouse lines: the first
expressing wild-type RASSF1A and the second expressing
a RASSF1A SARAH domain point mutant (L308P) that
renders it unable to bind Mst1 [41]. Interestingly, we found
that increased RASSF1A expression in the heart caused
increases in Mst1 activation, cardiac myocyte apoptosis, and
fibrosis, and led to worsened function following pressure
overload. Conversely, RASSF1A L308P TG mice had signif-
icant reductions in Mst1 activation, apoptosis and fibrosis,
while cardiac function was preserved after stress [38]. These
opposing phenotypes strongly implicate Mst1 as a critical
effector of RASSF1A-mediated myocardial dysfunction.

In cultured NRCMs, increased RASSF1A expression
elicited activation of Mst1 and caused Mst1-mediated apop-
tosis. However, in primary rat cardiac fibroblasts, RASSF1A
had a more pronounced effect on inhibition of cell prolifera-
tion rather than survival. Indeed, we found that silencing of
RASSF1A in fibroblasts caused increased cell proliferation.
Additionally, RASSF1A depletion led to an upregulation
of NF-κB-dependent TNF-α expression and secretion in
cardiac fibroblasts, while no change in IL-1β, IL-6, or TGF-
β1 was observed. Through conditioned medium transfer
experiments, we demonstrated that TNF-α secretion from
fibroblasts promotes cardiac myocyte growth. Furthermore,
treatment of Rassf1a−/− mice with a neutralizing antibody
against TNF-α was able to rescue the augmented heart
growth and fibrosis observed following pressure overload
[38]. These data strongly implicated TNF-α as a critical
paracrine factor influencing the cardiac myocyte growth
response to stress in vivo. This work also demonstrated
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Figure 1: In cardiac myocytes, RASSF1A can prevent hypertrophy
through disruption of Ras/Raf-1/ERK MAPK signaling. RASSF1A
can also activate Mst1 to elicit apoptosis. In cardiac fibroblasts,
RASSF1A represses NF-κB transcriptional activity and inhibits
TNF-α production and secretion, thereby preventing paracrine-
mediated hypertrophic signaling between fibroblast and myocyte.

the cell-type specificity of RASSF1A signaling in the heart
and highlighted a novel signaling pathway downstream of
RASSF1A/Mst1 that mediates a paracrine effect in vivo (see
Figure 1). This mechanism involving multiple cell types,
and paracrine signaling among them is rather unique and
contrasts with more established signaling paradigms of car-
diac hypertrophy including calcineurin/NFAT, HDAC/MEF2
and MEK/ERK pathways, which have been elucidated in the
cardiac myocyte [42].

3.3. Hippo Signaling in the Heart. Our previous work has
demonstrated the functional importance of Hippo signaling
in the heart. Using genetically altered mouse models we
showed that increased expression of Mst1, and subsequent
activation of the Hippo pathway, caused increased apoptosis,
dilated cardiomyopathy, and premature death [43]. Interest-
ingly, expression of Mst1 also attenuated cardiac myocyte
hypertrophy thereby impairing the heart’s ability to appro-
priately respond to stress. In contrast, expression of a kinase-
inactive Mst1 mutant (DN-Mst1) prevented cell death and
protected the heart from insult [43]. Lats1/2 kinases (mam-
malian homologs of Warts) are targets of Mst1/2 that can
phosphorylate and inactivate Yap, thereby inhibiting Yap-
mediated gene transcription [44]. Similar to our findings
related to Mst1, we demonstrated that transgenic expression
of Lats2 in the heart led to inhibited growth and worsened
function [45]. Conversely, kinase-inactive Lats2 (DN-Lats2)
transgenic mice had larger hearts both at baseline and
following pressure overload and displayed attenuated cardiac
myocyte apoptosis in response to stress [45]. Taken together,
these results provide further evidence that activation of
Hippo signaling, via increased Mst1 or Lats2 expression,
inhibits cardiac myocyte growth and promotes apoptosis in
the adult heart. Furthermore, selective inhibition of Hippo
signaling in the cardiac myocyte (DN-Mst1 or DN-Lats2
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TG) confers protection against insult, similar to what we
observed in the cardiac myocyte-specific RASSF1A deleted
mice [38]. However, the hypertrophic response in these
two models was opposite, which may result from a Hippo-
independent pathway(s) downstream of RASSF1A. It should
be pointed out that studies of adult mouse models using
cardiac myocyte-restricted deletion of Mst1/2, Lats1/2 or Yap
have not been published. Findings from these models should
be helpful in further elucidating the role of Hippo signaling
components in the adult murine heart.

Recent work from the Martin laboratory demonstrated
the importance of mammalian Hippo signaling during
cardiac development and cardiac myocyte proliferation [46].
Conditional deletion of Salvador (Sav1) in the embryonic
heart, driven by Nkx2.5-Cre expression, caused increased
myocyte proliferation and cardiac enlargement and was
mediated by hyperactivation of Yap and subsequent Wnt/β-
catenin-regulated gene expression. In a similar vein, direct
targeting of Yap expression in the developing mouse heart
further demonstrated its role in governing both myocyte
proliferation and heart growth [47]. Interestingly, both
reports described an interaction between Yap and Wnt
signaling, highlighting additional Hippo signaling crosstalk
in the heart.

4. Conclusion

Fueled by the initial reports described herein, investigation
into the role of RASSF1A in cardiovascular biology has
begun to accelerate. Yet many questions remain outstanding.
Among them, what are the upstream inputs that regulate
RASSF1A function? What is the mechanism responsible
for RASSF1A cell-type-specific signaling? What are the
molecular constituents of the RASSF1A complex? Does
RASSF1A have additional Mst1-independent functions in
the heart, as has been demonstrated in tumor cell lines
[41]? Recent work identified activated K-Ras as a promoter
of RASSF1A signaling in colorectal cancer cells [48]. This
finding begs the question of whether K-Ras or additional
Ras isoforms regulate RASSF1A in other systems and cell
types. Based on our findings in Rassf1a-deleted mice [38], we
speculate that the difference in proliferative capacity between
cardiac myocytes and fibroblasts may explain the distinct
effects of RASSF1A signaling in the heart. There may also
be differences in the expression or localization of signaling
components, thereby modulating their ability to effectively
signal in certain cell types. Exposure to diverse signals and
cues in the extracellular milieu may also contribute to varied
outcomes downstream RASSF1A.

As we continue to elucidate the role of RASSF1A and
Hippo signaling in the heart, its importance in cardiac
development, physiology, and disease is becoming appar-
ent. Of course, translating these findings into meaning-
ful therapeutic strategies remains the greatest challenge.
Our work has shed light on the importance of cell type
specificity RASSF1A in determining pathological outcomes
[38]. We also defined a paracrine mechanism functioning
downstream of RASSF1A in response to cardiac stress [38].

It is likely that additional complexities remain to be uncov-
ered and will ultimately influence possible interventions to
manipulate RASSF1A and treat heart disease.

RASSF1A signaling is diverse and our knowledge regard-
ing RASSF1A function is rapidly expanding. Given that a
bridge from cancer to cardiovascular biology is in place, it
is likely that as additional RASSF1A mechanisms of action
are discovered, its impact on cardiac biology will continue to
grow.
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