Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-Methyl-2H-1,3-oxazine-2,6(3H)-dione

Damon Parrish, Fredrick Leuschner, Gretchen M. Rehberg and Margaret E. Kastner*

Department of Chemistry, Bucknell University, Lewisburg, PA 17837, USA
Correspondence e-mail: kastner@bucknell.edu
Received 13 August 2009; accepted 28 August 2009
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.049 ; w R$ factor $=0.191$; data-to-parameter ratio $=15.6$.

In the title compound, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}_{3}$, the planar (maximum deviation $=0.075 \AA$ for the ring O atom) molecules form $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in a zigzag chain $(\mathrm{C}-\mathrm{O} \cdots \mathrm{N}$ bond angle $\simeq 140^{\circ}$) between glide-related molecules.

Related literature

For synthetic background, see: Warren et al. (1975); Rehberg \& Glass (1995). For related structures, see: Copley et al. (2005); Parrish, Leuschner et al. (2009); Parrish, Tivitmahaisoon et al. 2009).

Experimental

Crystal data
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}_{3}$
$M_{r}=127.1$
Monoclinic, $P 2_{1} / n$

$$
\begin{aligned}
& a=7.254(3) \AA \\
& b=6.683(2) \AA \\
& c=11.689(5) \AA
\end{aligned}
$$

$\beta=98.11(4)^{\circ}$
$V=561.0(4) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation

Data collection
Bruker R3/V diffractometer Absorption correction: none 1410 measured reflections 1294 independent reflections 910 reflections with $I>2 \sigma(I)$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.191$
$S=0.93$
1294 reflections
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.46 \times 0.30 \times 0.10 \mathrm{~mm}$
$R_{\text {int }}=0.012$
3 standard reflections every 97 reflections intensity decay: none

Table 1
Hydrogen-bond geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 \cdots 6^{\mathrm{i}}$	0.86	2.02	$2.877(3)$	173

Symmetry code: (i) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$.

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS (Bruker, 1996); data reduction: XSCANS (Bruker, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors thank the National Science Foundation for grant No. ILI8951058.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2197).

References

Bruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.
Copley, R. C. B., Deprez, L. S., Lewis, T. C. \& Price, S. L. (2005). CrystEngComm, 7, 421-428.
Parrish, D., Leuschner, F., Rehberg, G. M. \& Kastner, M. E. (2009). Acta Cryst. E65, o2356.
Parrish, D., Tivitmahaisoon, P., Rehberg, G. M. \& Kastner, M. E. (2009). Acta Cryst. E65 o2355.
Rehberg, G. M. \& Glass, B. M. (1995). Org. Prep. Proced. Int. 27, 651-652.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Warren, J. D., MacMillan, J. H. \& Washburne, S. S. (1975). J. Org. Chem. 40, 743-746.

supplementary materials

Acta Cryst. (2009). E65, o2354 [doi:10.1107/S1600536809034618]

4-Methyl-2H-1,3-oxazine-2,6(3H)-dione

D. Parrish, F. Leuschner, G. M. Rehberg and M. E. Kastner

Comment

The synthesis of derivatives of 3-oxauracil has previously been reported (Warren et al., 1975) and an improved synthesis of the unsubstituted 3-oxauracil was reported by Rehberg \& Glass (1995). The structure of the unsubstituted 3-oxauracil and its monohydrate have been reported (Copley et al., 2005). Three derivatives of 3-oxauracil (4-methyl, 4-bromo, and 4,5 -dichloro) have been prepared in our laboratory in route to the synthesis of 1-aza-1,3-butadienes. In this paper, we report the crystal structure of the title compound, (I).

In the title compound (Fig. 1) only one intermolecular H-bond is formed between N 3 and O 6 of glide-related molecules (details are given in Table 1). Although the molecules of (I) are planar, the H-bonding chains are staggered as shown in Figure 2. The hydrogen bonding networks in (I) differs significantly from the hydrogen bonding in 4,5-dichloro (Parrish, Leuschner et al., 2009) and 4-bromo (Parrish, Tivitmahaisoon et al., 2009) derivatives.

Experimental

Citraconic anhydride (3-methylfuran-2,5-dione, $2.0 \mathrm{ml}, 22 \mathrm{mmol}$) and trimethylsilyl azide ($3.0 \mathrm{ml}, 23 \mathrm{mmol}$) were added to 10 ml dichloromethane at 273 K and stirred under nitrogen for 4 h . Upon warming to room temperature over night, a white precipitate formed. Ethanol $(2.5 \mathrm{ml})$ was added, the mixture stirred 2 additional hours, and then the solvent was removed under reduced pressure to obtain the title compound; yield: $1.7 \mathrm{~g}(13 \mathrm{mmol}, 59 \%)$. Crystals of the title compound were grown from a solution of acetone at room temperature by slow evaporation.

Refinement

Hydrogen positions were calculated and refined using a riding model using the following $\mathrm{C}-\mathrm{H}$ distances: methyl $0.96 \AA$, methylene $0.93 \AA$, and $\mathrm{N}-\mathrm{H} 0.88 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C} 5 / \mathrm{N} 3)$ and $1.5 U_{\text {eq }}(\mathrm{C} 7)$.

Figures

Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.

supplementary materials

Fig. 2. The packing of the title compound viewed down the a axis; intermolecular hydrogen bonds have been represented by dashed lines.

4-Methyl-2H-1,3-oxazine-2,6(3H)-dione

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}_{3}$
$M_{r}=127.1$

Monoclinic, $P 2{ }_{1} / n$
Hall symbol: -P 2yn
$a=7.254$ (3) \AA
$b=6.683(2) \AA$
$c=11.689(5) \AA$
$\beta=98.11$ (4) ${ }^{\circ}$
$V=561.0(4) \AA^{3}$
$Z=4$
$F_{000}=264$
$D_{\mathrm{x}}=1.505 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{\mathrm{m}}=1.46 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by floatation in bromoform/hexane solution
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 20 reflections
$\theta=10-12.5^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Plates, colorless
$0.46 \times 0.30 \times 0.10 \mathrm{~mm}$

Data collection

Bruker R3/V
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=293 \mathrm{~K}$
$\theta-2 \theta$ scans
Absorption correction: none
1410 measured reflections
1294 independent reflections
910 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.191$
$S=0.93$
$R_{\text {int }}=0.012$
$\theta_{\text {max }}=27.6^{\circ}$
$\theta_{\text {min }}=3.1^{\circ}$
$h=0 \rightarrow 9$
$k=0 \rightarrow 8$
$l=-15 \rightarrow 15$
3 standard reflections
every 97 reflections
intensity decay: none

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1301 P)^{2}+0.1905 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.005$

1294 reflections

83 parameters
Primary atom site location: structure-invariant direct methods
$\Delta \rho_{\max }=0.23 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.24$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
O1	$0.6042(2)$	$0.1383(2)$	$0.68042(13)$	$0.0466(5)$
C2	$0.4998(3)$	$0.2078(3)$	$0.58306(19)$	$0.0422(5)$
O2	$0.3337(2)$	$0.2161(3)$	$0.57888(19)$	$0.0694(6)$
N3	$0.5939(2)$	$0.2571(3)$	$0.49490(14)$	$0.0406(5)$
H3	0.5305	0.2967	0.4312	0.049^{*}
C4	$0.7833(3)$	$0.2477(3)$	$0.50089(18)$	$0.0392(5)$
C5	$0.8847(3)$	$0.1896(3)$	$0.59971(19)$	$0.0430(5)$
H5	1.0137	0.1846	0.6048	0.052^{*}
C6	$0.7988(3)$	$0.1357(3)$	$0.69668(18)$	$0.0435(5)$
O6	$0.8682(3)$	$0.0868(3)$	$0.79242(15)$	$0.0695(7)$
C7	$0.8619(4)$	$0.3002(5)$	$0.3938(2)$	$0.0630(8)$
H7A	0.9955	0.2979	0.4093	0.095^{*}
H7B	0.8210	0.4317	0.3687	0.095^{*}
H7C	0.8201	0.2050	0.3343	0.095^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0448(9)$	$0.0555(10)$	$0.0417(8)$	$-0.0028(7)$	$0.0137(6)$	$0.0020(7)$
C2	$0.0329(10)$	$0.0455(12)$	$0.0490(11)$	$0.0003(8)$	$0.0086(8)$	$-0.0068(9)$
O2	$0.0324(9)$	$0.0847(14)$	$0.0936(15)$	$-0.0020(9)$	$0.0174(9)$	$-0.0026(11)$
N3	$0.0342(9)$	$0.0511(10)$	$0.0350(9)$	$0.0041(7)$	$0.0003(7)$	$0.0010(7)$
C4	$0.0374(10)$	$0.0384(10)$	$0.0445(11)$	$0.0029(8)$	$0.0152(8)$	$-0.0025(9)$
C5	$0.0294(9)$	$0.0458(12)$	$0.0534(12)$	$0.0012(9)$	$0.0049(8)$	$-0.0021(10)$
C6	$0.0447(11)$	$0.0395(11)$	$0.0435(11)$	$-0.0024(9)$	$-0.0038(9)$	$-0.0025(9)$
O6	$0.0831(14)$	$0.0687(13)$	$0.0494(10)$	$-0.0096(10)$	$-0.0167(9)$	$0.0110(9)$
C7	$0.0651(16)$	$0.0733(18)$	$0.0573(14)$	$0.0053(13)$	$0.0313(12)$	$0.0133(13)$

supplementary materials

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 2$	$1.357(3)$
$\mathrm{O} 1-\mathrm{C} 6$	$1.398(3)$
$\mathrm{C} 2-\mathrm{O} 2$	$1.200(3)$
$\mathrm{C} 2-\mathrm{N} 3$	$1.354(3)$
$\mathrm{N} 3-\mathrm{C} 4$	$1.368(3)$
$\mathrm{N} 3-\mathrm{H} 3$	0.8600
$\mathrm{C} 4-\mathrm{C} 5$	$1.337(3)$
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 6$	$123.50(17)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{N} 3$	$124.6(2)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{O} 1$	$119.2(2)$
$\mathrm{N} 3-\mathrm{C} 2-\mathrm{O} 1$	$116.10(18)$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$	$124.08(18)$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{H} 3$	118.0
$\mathrm{C} 4-\mathrm{N} 3-\mathrm{H} 3$	118.0
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 3$	$118.95(18)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 7$	$124.5(2)$
$\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 7$	$116.6(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$121.03(19)$
$\mathrm{C} 6-\mathrm{O} 1-\mathrm{C} 2-\mathrm{O} 2$	$-175.5(2)$
$\mathrm{C} 6-\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 3$	$6.7(3)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$	$179.7(2)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$	$-2.6(3)$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5$	$-1.1(3)$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 7$	$177.7(2)$

$\mathrm{C} 4-\mathrm{C} 7$	$1.489(3)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.415(3)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 6-\mathrm{O} 6$	$1.206(3)$
C7-H7A	0.9600
C7-H7B	0.9600
C7-H7C	0.9600
C4-C5-H5	119.5
C6-C5-H5	119.5
O6-C6-O1	$114.3(2)$
O6-C6-C5	$129.7(2)$
O1-C6-C5	$115.99(18)$
C4-C7-H7A	109.5
C4-C7-H7B	109.5
H7A-C7-H7B	109.5
C4-C7-H7C	109.5
H7A-C7-H7C	109.5
H7B-C7-H7C	109.5
N3-C4-C5-C6	$0.9(3)$
C7-C4-C5-C6	$-177.8(2)$
C2-O1-C6-O6	$173.2(2)$
C2-O1-C6-C5	$-6.9(3)$
C4-C5-C6-O6	$-177.3(2)$
C4-C5-C6-O1	$2.8(3)$

Hydrogen-bond geometry ($\left.\AA,{ }^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 \cdots 6^{\mathrm{i}}$	0.86	2.02	$2.877(3)$	173

Symmetry codes: (i) $x-1 / 2,-y+1 / 2, z-1 / 2$.

Fig. 1

supplementary materials

Fig. 2

