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Purpose of review

In this review article, we describe the development and application of machine-learning models in the field
of rheumatology to improve the detection and diagnosis rates of underdiagnosed rheumatologic conditions,
such as ankylosing spondylitis and axial spondyloarthritis (axSpA).

Recent findings

In an attempt to aid in the earlier diagnosis of axSpA, we developed machine-learning models to predict a
diagnosis of ankylosing spondylitis and axSpA using administrative claims and electronic medical record
data. Machine-learning algorithms based on medical claims data predicted the diagnosis of ankylosing
spondylitis better than a model developed based on clinical characteristics of ankylosing spondylitis. With
additional clinical data, machine-learning algorithms developed using electronic medical records identified
patients with axSpA with 82.6–91.8% accuracy. These two algorithms have helped us understand
potential opportunities and challenges associated with each data set and with different analytic
approaches. Efforts to refine and validate these machine-learning models are ongoing.

Summary

We discuss the challenges and benefits of machine-learning models in healthcare, along with potential
opportunities for its application in the field of rheumatology, particularly in the early diagnosis of axSpA
and ankylosing spondylitis.
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Machine learning, a specialization arising from sta-
tistics and computer science, operates on the basis of
learning relationships from data sets collected from
computing algorithms; in short, this scientific dis-
cipline focuses on how computers learn from data
[1

&

,2]. Driven by the digitalization and storage of
data in healthcare and the availability of open-
source tools and codes, machine learning can be
used to effectively analyze large amounts of data on
patient history, laboratory results, treatments, diag-
noses, and outcomes [3–6]. Machine-learning mod-
els are not new in rheumatology, as numerous
algorithms have been developed to detect disease
and outcomes, particularly in rheumatoid arthritis
(RA). A prediction model successfully prognosti-
cated a 1-year response to certolizumab pegol
among patients with RA using clinical and labora-
tory data collected at baseline and at 12 weeks [7].
Three models identified RA phenotypes [8], synovial
subtypes [9], and disease activity [10]. Mortality due
to RA was predicted based on demographic and
clinical data collected in the first 2 years after
beads were used to screen for serum protein bio-
markers from patients with various autoimmune
disease, including RA and systemic lupus erythema-
tosus (SLE); a machine-learning model successfully
predicted a diagnosis of SLE based on four putative
biomarkers [12]. Differential gene expression pro-
files for rheumatoid factor were used to train pre-
dictive models for the diagnosis of polyarticular
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KEY POINTS

� The use of machine-learning models to predict early
diagnosis of axSpA may not only result in cost savings
from the payer, provider, and patient perspectives – as
exemplified by the reduction of unnecessary diagnostic
workup, medical consultations with various specialties,
work productivity loss, and disability among patients
with axSpA – but also provide opportunities for novel
research in axSpA.

� As the application of machine-learning models to
healthcare is still in its early phases, it is critical to
provide transparency about its performance, clinical
relevance, and limitations to relevant stakeholders and
to continuously evaluate its regulatory, legal, ethical,
and social consequences.

� A timely diagnosis of axSpA may be possible with this
analytic approach, but further refinements will be
needed to optimize its operability and ability to
correctly distinguish patients with ankylosing
spondylitis/axSpA from the general population.
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juvenile idiopathic arthritis [13]. Proteomic finger-
printing identified novel biomarkers for primary
Sjögren’s syndrome, which were used to predict
the diagnosis of the disease [14]. Despite these
advances, unmet needs remain that may be
addressed with machine learning to improve
patient-centered care and research [15,16].
AXIAL SPONDYLOARTHRITIS AND
BARRIERS TO EARLY DIAGNOSIS

The ability to identify meaningful patterns in large
data sets makes machine learning particularly attrac-
tive in screening for underdiagnosed diseases such
as axial spondyloarthritis (axSpA), a spectrum of
chronic conditions characterized by inflammation
in the axial skeleton that can cause pain, joint dam-
age, and disability [17,18]. Ankylosing spondylitis is a
subtype of axSpA characterized by radiographic sac-
roiliitis [19]. Here, we include ankylosing spondylitis
in our definition of axSpA and will use ‘ankylosing
spondylitis’ only for studies that specifically
addressed ankylosing spondylitis and not axSpA.

Epidemiology data from 2009 to 2010 indicate
that axSpA affects 1.4% or less of the adult general
population in the United States [20]. With advances
in imaging technology and therapies, evidence is
mounting that axSpA is widely underrecognized,
undertreated, and understudied [21–23]. The esti-
mated delay between symptom onset and diagnosis
of ankylosing spondylitis in the United States is
approximately 13 years [24]. This delay in diagnosis
contributes to the significant burden on patients,
1040-8711 Copyright � 2019 The Author(s). Published by Wolters Kluwe
caregivers, and society [25–30]. Reasons for delayed
diagnosis are intrinsic to the disease and systemic to
the healthcare system. Intrinsic features of the dis-
ease such as the common presentation of low back
pain [29], lack of awareness of differential disease
presentations among men and women [31–34],
insidious onset, slow progression, lack of specific
biomarkers [21,35,36], absence of remarkable phys-
ical findings among patients with early stages of
axSpA and ankylosing spondylitis [37], and lack of
extra-articular manifestations [37] contribute to
misdiagnosis [25] and complicate early identifica-
tion and diagnosis. The lack of accessibility to rheu-
matologists and long waiting times are also barriers
to a timely diagnosis [38,39]. Consequently, as
patients continuously experience inaccurate diag-
noses and unsuccessful interventions, they may
believe that nothing can be done and restrain from
seeking appropriate medical care [24].
OPPORTUNITIES AND POTENTIAL
BENEFITS WITH MACHINE LEARNING IN
AXIAL SPONDYLOARTHRITIS DETECTION

Traditional approaches to improving early axSpA
identification have had limited success. Machine
learning approaches may create opportunities to
transfer some of the burden of disease detection away
from healthcare providers and patients and poten-
tially decrease the time to diagnosis. In an attempt to
aid in the earlier diagnosis of axSpA, we developed
machine-learning models to predict a diagnosis of
these diseases using administrative claims [40] and
electronic medical record (EMR) [41–43] data. In the
claims-based model, the positive predictive value in
predicted patients (6.24%) was 5� higher compared
with that of a clinical model developed based on
ankylosing spondylitis clinical features (1.29%)
[40]. The EMR-based machine-learning model iden-
tified patients with axSpA at accuracies ranging from
82.6 to 91.8% [41–43]. Using these models, we hope
to aid in the timely diagnosis of axSpA, thus improv-
ing the short-term and long-term outcomes for
patients with axSpA [21,22].

Cost savings

Patients often seek consultations with various types
of healthcare providers in their journey toward
diagnosis [25], undergoing expensive, unnecessary
diagnostic workup and inappropriate medical inter-
ventions that may not directly improve patient out-
comes [25,44,45

&

] For example, an increase in opioid
use was reported in patients with ankylosing spon-
dylitis, representing a suboptimal treatment with
economic ramifications to the health system [46].
Thus, a timely diagnosis of axSpA can yield
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substantial cost savings and increase resource effi-
ciency among payers, physicians, and patients [47].

Previous studies have demonstrated the consid-
erable impact of ankylosing spondylitis on patient-
reported work disability and increase in healthcare
expenditures [48–50]. In addition, indirect conse-
quences of diagnosis delays include absenteeism
and productivity loss due to disease-associated pain,
fatigue, and loss of mobility [51,52]. Unemploy-
ment or underemployment due to longer term func-
tional limitations can be particularly expensive,
since patients most often develop axSpA in adoles-
cence or early adulthood and may therefore fall
behind during these critical stages of educational
or career development [52]. Lost opportunities for
optimal treatment responses that may be achieved
early, but not late, in the disease course may lead to
higher direct costs due to a need for more aggressive
and/or expensive treatments, as well as to higher
indirect costs with greater productivity loss and
disability [52]. Therefore, the development of tools
to identify patients with a high likelihood of having
axSpA can lead to improved recognition and diag-
nosis of axSpA, resulting in substantial cost savings.

Data application and novel research

In recent years, there have been expanded efforts to
improve knowledge on axSpA using big data and
machine-learning techniques [53]. With the tech-
nological advances in imaging modalities and treat-
ment, researchers identified many individuals with
nontraditional axSpA phenotypes that were previ-
ously not recognized [53,54]. Despite extensive
acceptance of the broader, newly defined axSpA
concepts, prominently the recognition of ankylos-
ing spondylitis characteristics, big data axSpA
research remains inhibited by antiquated axSpA
definitions because international codes used for
disease classification and billing (e.g., International
Classification of Diseases, Ninth and Tenth Revisions)
currently exist only for the traditionally recognized
phenotype of ankylosing spondylitis [24,55,56]. As a
result, characteristics of the overall population of
patients with axSpA are not as well known as those
with ankylosing spondylitis [57–59].
CHALLENGES AND STRENGTHS WITH
MACHINE LEARNING

It must be noted that machine learning is still in a
discovery phase and that the ubiquity of electronic
healthbig data acrossmanyclinicaldomains may not
mean that machine-learning techniques will prove
equally valuable in each domain [60

&&

]. We must also
consider that machine-learning techniques are sub-
ject to biases, including but not limited to missing
364 www.co-rheumatology.com
data, misclassifications, and measurement errors,
that may perpetuate existing healthcare inequalities.
Therefore, physicians should continue to rely on
clinical judgment in conjunction with applications
of artificial intelligence.

Data quality, availability, and accuracy

Performance of machine-learning models is largely
dependent on data quality, including data availability
and accuracy. Incomplete and inaccurate data sets will
limit the usefulness of predictions made by machine-
learning models. Modeling of healthcare data in the
United States is challenging because the relationship
dynamics among stakeholders involved in patient
care are complicated; variability in physician and
patient behavior is somewhat expected across institu-
tions. Furthermore, these behaviors may be dictated
by reimbursement policies and coverage decisions
madebythegovernmentandpayers [61].For instance,
anonuniversalhealthcaresysteminvolvesamultitude
of commercial payers at the national level with differ-
ent coverage on services and treatments compared
with Medicare and Medicaid. The variability increases
within Medicaid at the state level.

Data availability differs according to the data
source. Most current machine-learning algorithms
use claims and EMR data. In the following section,
we use these data sources to illustrate our points;
however, we acknowledge that other data sources,
such as registries and survey data, can also be used to
build machine-learning models.

Claims-based models permit the use of US
healthcare data and therefore provide perspectives
specific to the United States. Claims data consist of
billing codes, which can be used to track the
patient’s healthcare resource utilization and expen-
diture even if they involve multiple physician
groups and practice settings [62], whereas EMR data
may be limited to specific healthcare or hospital
systems (e.g., the Veterans’ Health Administration)
and therefore cannot be used to capture the
patient’s activities outside those systems [62]. How-
ever, because claims data consist of billing codes, the
clinical processes leading to a specific diagnosis,
procedure, and treatment are unknown [62]. In
addition, claims data may show the billing records
of diagnostic tests, but not the results; if a patient
pays out of pocket (e.g., for over-the-counter drugs
and chiropractor visits), claims data will not be able
to capture this information [62]. On the other hand,
EMR data provide detailed information on physi-
cians’ assessments and the decision-making process
involved with patient care, along with information
on disease severity, diagnostic results, and treat-
ments received [62]. Although EMR data comprise
smaller patient populations compared with claims
Volume 31 � Number 4 � July 2019
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data, the increasing interoperability of different EMR
systems due to mergers of healthcare systems and the
creation of common data models confer the potential
of a larger patient cohort in the future [62]. Although
the volume of data analyzed may be higher, claims
data also offer less clinical information and do
not permit validation from physicians or patients.
External validation confers strength to the predictive
capability of machine-learning models [8,11

&&

].
The access to information is limited by data

made available based on state-level or institution-
level policy requirements or individual healthcare
provider preference. For instance, variability in how
healthcare providers evaluate their patients and
document their case notes may affect the availabil-
ity of EMR data that can be processed by machine-
learning algorithms. Claims data are limited to
information related to billing and reimbursement,
whereas survey and registry data are bound by the
research aims of investigators or study sponsors.
Therefore, limited or lack of data availability may
not necessarily indicate that the data set did not
contain pertinent information.

Data accuracy is limited by human biases and
misconceptions that are inevitably introduced into
provider notes and other data sources that are used
for machine-learning. For example, women and
nonwhite patients with axSpA have not been well
studied, recognized, or diagnosed relative to men
and white patients with axSpA [20,63–68]; these
limitations must be considered when designing
and interpreting machine-learning outputs [69].
Data curation and validation

Raw data from EMR and claims databases may not be
suitable for machine learning and may require
restructuring in a specific manner. The resource-
intensive, reiterative process of data cleaning,
extraction, linking, regrouping, analyzing, and
interpretation [41] is performed in the hopes of
finding the underlying motif or pattern that can
also be clinically relevant; this is critical to consider
as we continue to build, analyze, and apply these
models in the healthcare field.

To construct machine-learning models that are
practical for use in the field, continuous input from
healthcare providers will be necessary. Consider an
example involving computerized clinical decision
support (CDS) systems, which provide alerts and
notifications to providers with regard to medication
dosing. Clinicians typically individualize dosing
based on a myriad of factors, such as the age and
weight of the patient. CDS systems are programmed
to warn providers of overdosing or underdosing
based on strict clinical guidelines. However,
1040-8711 Copyright � 2019 The Author(s). Published by Wolters Kluwe
customization of these systems is required for prac-
tical use, for example, for an adult patient who may
need pediatric dosing support due to contraindica-
tions. Therefore, feedback from healthcare providers
is necessary and crucial to customize and improve
these systems for optimal use. In turn, their partici-
pation in the building or customization of these
machine-learning algorithms will compel them to
better understand and apply these models. Drawing
from our experience in building our claims-based
machine-learning model, we knew that hyperten-
sion was initially identified by the algorithm as a
predictor for ankylosing spondylitis diagnosis.
Although hypertension is frequently billed by pri-
mary care physicians, it is a common comorbidity
and may not necessarily qualify as a predictor of
ankylosing spondylitis. Thus, we excluded it from
further training. However, we later realized that this
predictor may indicate that the patients were repeat-
edly visiting primary care physicians and was coded
along with back pain during consultations with
general practitioners. Although it is not clinically
intuitive, hypertension may have been an indirect
marker for axSpA, and in combination with other
variables, could potentially be used as a predictor. As
machine-learning models are still in early phases of
development, the use of these models in combina-
tion with targeted clinical evaluations may be more
effective in obtaining an early axSpA diagnosis. Last,
validation of machine-learning models in various
data sets and preferably in a prospective manner will
be important to improve its predictability and dem-
onstrate its clinical relevance.
Ethical considerations

It is critical to provide transparency about the per-
formance, clinical relevance, and limitations of
machine-learning models to relevant stakeholders
and to continuously evaluate their regulatory, legal,
ethical, and social consequences. As an example,
regulations on reuse of patient data vary based on
jurisdiction [70

&&

], and considerations will need to
be made when choosing data sets. In the European
Union, the European General Data Protection Reg-
ulation enacted informed-consent conditions for
the use of data from European Union residents,
regardless of where the data are processed [71].
On the other hand, the Health Insurance Portability
and Accountability Act in the United States focuses
on primary data sources of patient data, such as
patient charts, but not on secondary data sources
where patient data originate from noncovered enti-
ties, such as life insurance companies [72

&&

]. Lastly,
developers and institutions deploying these
machine-learning models will also need to consider
r Health, Inc. www.co-rheumatology.com 365
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legal liabilities and potential adverse events associ-
ated with its integration into CDS system.
CONCLUSION

Machine-learning algorithms may have a substan-
tial role in medical diagnosis, especially in under-
recognized diseases, such as axSpA. Machine-learn-
ing models that account for clinical significance
appear to be the most promising [73]; however, it
will be important to explain its limitations in addi-
tion to the opportunities for healthcare providers
and patients. A timely diagnosis of axSpA may be
possible with this analytic approach, but further
refinements will be needed to optimize its operabil-
ity and ability to correctly distinguish patients
with ankylosing spondylitis/axSpA from the general
population. As more applications employ these
machine-learning techniques, we must not overlook
the need to consider potential ethical and regulatory
issues.
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