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Abstract. A fundamental goal of genetics is to identify which and how genetic variants are associated
with a trait, often using the regression results from genome-wide association (GWA) studies. Important
methodological challenges are accounting for inflation in GWA effect estimates as well as investigating
more than one trait simultaneously. We leverage machine learning approaches for these two challenges,
developing a computationally efficient method called ML-MAGES. First, we shrink the inflation in
GWA effect sizes caused by non-independence among variants using neural networks. We then cluster
variant associations among multiple traits via variational inference. We compare the performance of
shrinkage via neural networks to regularized regression and fine-mapping, two approaches used for
addressing inflated effects but dealing with variants in focal regions of different sizes. Our neural network
shrinkage outperforms both methods in approximating the true effect sizes in simulated data. Our
infinite mixture clustering approach offers a flexible, data-driven way to distinguish different types
of associations—trait-specific, shared across traits, or spurious—among multiple traits based on their
regularized effects. Clustering applied to our neural network shrinkage results also produces consistently
higher precision and recall for distinguishing gene-level associations in simulations. We demonstrate the
application of ML-MAGES on association analyses of two quantitative traits and two binary traits in the
UK Biobank (genetic and phenotypic data from 500,000 residents of the UK). Our identified associated
genes from single-trait enrichment tests overlap with those having known relevant biological processes
to the traits. Besides trait-specific associations, ML-MAGES identifies several variants with shared
multi-trait associations, suggesting putative shared genetic architecture.
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ML-MAGES: a ML framework for analyzing multi-trait GWAS effects 1

1 Introduction

Genome-wide association (GWA) studies analyze genome-wide genotype data from a large group of unre-
lated individuals to identify genetic mutations, usually single nucleotide polymorphisms (SNPs), that are
associated with some trait such as height, molecular biomarkers, or diseases. With advancements in sequenc-
ing technologies and the emergence of biobank datasets that sample hundreds of thousands of individuals,
GWA studies have proven powerful in detecting potential causal variants for various traits and diseases.
Over 45,000 GWA studies investigating more than 5,000 human phenotypes have been published since 2005
[10,40].

The fundamental idea behind GWA studies is based on fitting a linear regression where each SNP genotype
is treated as an independent variable and the trait value of interest is the dependent variable. The regression
coefficients are “effect sizes” of variants on the trait, and their statistical significance is determined by p-values
testing whether the effect of any given variant is significantly different from zero. GWA studies generally
focus on a single trait of interest. Combining signals from multiple variants can increase statistical power;
therefore, it is common to perform gene-level association analysis based on SNP-level GWA results of variants
in each gene [16,27,46].

One major challenge lies in controlling the inflation of effect sizes, which complicates distinguishing truly
associated variants from non-associated ones. Most GWA models assume genetic variants to be indepen-
dent, but there are consistent non-random associations among genotypes in a sample known as linkage
disequilibrium (LD). Closer mutations exhibit higher LD (i.e., correlation), which is also affected by genetic
recombination rates and population history. A non-causal variant may show large statistical effect for a
trait because of its linkage to a causal variant; these spurious associations make localizing truly associated
variants challenging. In a region with extremely dense variants, multiple highly correlated variants may
show even stronger effects than the truly causal one. Additionally, many complex traits involve thousands
of contributing variants (“polygenic traits”), further complicating GWA studies [9,33,8,53].

There is a need to explore multiple traits simultaneously. Capturing complex interactions among genetic
variants and traits provides a deeper understanding of associated biological pathways and mechanisms. As
reviewed by Solovieff [41], current multi-trait approaches include developing models to test the association
between a genetic variant and multiple traits simultaneously—often combining existing univariate GWA
results to improve the power of detecting genetic associations for each trait. Methods based on univariate
results focus on testing whether the variant is significantly associated with some traits [18,7] and estimating
trait-specific effects [49,51]. Researchers are particularly interested in investigating variants that are trait-
specific versus pleiotropic, where a single genetic variant influences multiple traits [43,54], to generate targeted
hypotheses for precision medicine and drug discovery [41].

In this study, we develop a new scalable method, ML-MAGES (Machine Learning for Multivariate As-
sociation analyses with Genes and Effect size Shrinkage), to analyze multi-trait GWA effects using neural
networks and variational inference.

1.1 Related methods

Estimating effects so that associated variants have non-zero effects and non-associated ones have (close-
to-)zero effects is a goal for many polygenic modeling applications. Regularized regressions and Bayesian
approaches have both been widely adopted to tackle this problem by introducing sparsity into the effects
[57,15,29,21,61,60]. Several existing Bayesian methods have used Gaussian mixture models to introduce
sparsity (i.e., zeros) into effect sizes [29,21,61,47,44,62,59,51,23] (see Appendix A.3). The underlying idea is
that associated variants will exhibit non-zero effects.

A popular task in genetic research that is similar to shrinkage—but on a local scale—is fine-mapping.
It aims to locate a few variants that very likely contain a causal one within some small trait-associated
region obtained from a GWA study, usually by assigning posterior probabilities of causality to each vari-
ant [42,33,37] (also see Appendix A.3). A state-of-the-art fine-mapping method is SuSiE (its extension
SuSiE-RSS uses only summary-level data) [56,64], which formulates the task as a variable selection problem.
Although fine-mapping techniques are computationally expensive and cannot scale genome-wide, by decom-
posing the genome-wide task into tasks on chromosomal segments, we are able apply SuSiE-RSS and assess
its performance against various effect size shrinkage methods.
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Cheng et al. [14] previously developed gene-ϵ to categorize association effects along the genome for a
single trait, distinguishing truly associated variants from spurious ones. It first accounts for inflation in the
effect sizes via SNP-level shrinkage using elastic net regularization [63], then assigns variants into groups
via clustering using a univariate K-mixture model. The variances of the zero-mean Gaussian components
are used to formulate a SNP-level null threshold. The null hypothesis is then used for identifying associated
genes for the trait.

2 Methods

Inspired by the single-trait gene-ϵ framework, we propose a new method, ML-MAGES, that uses machine
learning methods to 1) effectively account for inflation in univariate GWA effects and 2) advance multivariate
GWA analyses. ML-MAGES incorporates several advancements compared to related methods, with two key
innovations: 1) use of deep learning to shrink effect sizes efficiently, and 2) use of variational inference to
perform clustering for multivariate associations flexibly.

There are three main steps in ML-MAGES (Fig. 1): 1) effect size shrinkage, which takes in GWA summary
statistics and linkage disequilibrium (LD) and gives regularized effects; 2) association clustering, which groups
the variants according to how strongly they are associated to the trait(s) of interest using output from step
1; and 3) gene-level analysis, which aggregates the association clustering of variants in each gene from step 2
and differentiates whether and how genes are associated to the trait(s). We discuss each step in detail below.
ML-MAGES takes in observed effects β̂ ∈ Rm and standard errors s ∈ Rm for GWA results on m variants,
as well as LD between pairs of variant stored in a m ×m matrix R. The LD score of variant j, ℓj , which
quantifies the amount of genetic variation tagged by it, is the sum of its squared correlations with all other
SNPs. Calculation of these input can be found in Appendix A.2.

Fig. 1. Workflow of ML-MAGES for assessing the associations of variants to (multiple) traits.

2.1 Effect size shrinkage

The genotypes of many genetic variants, especially those that are physically close together, are not indepen-
dent due to linkage disequilibrium, introducing inflation into the observed effects β̂ compared to the true
ones β. The goal of effect size shrinkage is to obtain regularized effects β̃ ≈ β by accounting for inflation
caused by correlations. The number of truly causal variants—those with βj ̸= 0—is usually limited even for
highly-polygenic trait. Because of this, the goal of shrinkage is to encourage sparsity in β̂ by introducing
(near-)zeros so that β̃j ≈ 0 for non-associated SNPs. This makes effect size shrinkage similar to variable se-
lection in high-dimensional data. Regularized regression is a popular choice for implementation of shrinkage.
gene-ϵ [14] used elastic net [63] for shrinkage after testing multiple approaches (see Appendix A.3).

Shrinkage as supervised learning: ML-MAGES. Due to the inefficiency of regularized regression approaches
and their limitations in handling non-linearities, we approach effect size shrinkage as a supervised machine
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ML-MAGES: a ML framework for analyzing multi-trait GWAS effects 3

learning task using feed-forward neural networks (NNs). The supervised learning formulation uses summary
statistics and LD to construct feature input, denoted as Ω, and true effects β as the targeted output. The
objective of the training problem (using the mean squared error loss) is

min
ϕ

∥β − fϕ(Ω)∥22/m, (1)

where fϕ(·) is the function represented by NN, ϕ is the set of network parameters to optimize over, and m is
the data size. With trained model parameters ϕ∗, regularized effects are β̃ = fϕ∗(Ω). Since we need ground
truth training data for supervised learning, which is not available for genetic studies, we simulate synthetic
association data for training (details in Appendix A.4). Specifically, we draw true non-zero effects from a
normal distribution and simulate synthetic trait values based on an additive model as in [14], from which we
obtain GWA effects and apply transformations to match the observed effect size distributions.

We benchmark our NN methods against elastic net [14] and the fine-mapping method SuSiE-RSS [56,64]
for shrinkage, both computationally expensive when applied on a large number of variants. We therefore
decompose the LD matrix of each chromosome into approximately independent LD blocks and perform
shrinkage on each block separately (see Appendix A.5).

Feature construction. We hypothesize that variants highly correlated with a focal variant contribute the
most to its inflation. We therefore obtain input features for a focal variant based on the summary data of
the top T variants in highest LD to it, with T ≪ m. The features for variant j are

Ωj = [β̂j , sj , ℓj , β̂r1 , β̂r2 , . . . , β̂rT , Rjr1 , Rjr2 , · · · , RjrT ], (2)

where β̂j is the observed effect, sj is the standard error, ℓj is the LD score of the variant j, and r1, . . . , rT
denote the indices of the top T variants that are most correlated to variant j. The number of features for
each variant under this construction is 2T + 3. This feature construction relieves the computational burden
of ML-MAGES by constraining the input space to be of size O(Tm), a great reduction from that of the
regularized regression approaches (O(m2), see Appendix A.3).

Neural network architectures and training. We propose two NN architectures, differing in their model com-
plexity. The first one contains two fully connected layers besides the output layer, and the second one contains
three. We also test the architectures that vary in input feature size through varying T . Detailed architectures
as well as other training settings are in Appendix A.6.

2.2 Clustering of associations based on effect size distributions

Next, we are interested in clustering the non-zero variants based on distributions of their regularized effects
β̃ that are assumed to be zero-centered. gene-ϵ [14] works with the effects of a single trait, fitting a zero-mean
K-mixture Gaussian model to classify variants as associated, non-associated with spurious signals, or non-
associated with zero-effects. ML-MAGES generalizes this method where an arbitrary number of variant effect
clusters and traits can be simultaneously considered. We use a zero-mean infinite-mixture of multivariate
Gaussians for clustering, which can flexibly infer the number of variant groups. gene-ϵ specifies a limited
range of K values and the optimal K reported sometimes equals the largest one [14], suggesting that a
higher K possibly fits the data better. ML-MAGES overcomes this issue using infinite mixture, which is
particularly beneficial for multi-trait analysis as the complexity of association relationships grows quickly
with the number of traits.

Zero-mean infinite mixture model. Variants with zero or close-to-zero effects after shrinkage are non-associated,
so to reduce the problem size of clustering, regularized effects are first thresholded to a subset of non-zero
ones. Let β̃ ∈ Rm×p be the regularized effects of m variants on p traits. The clustering input is a matrix
γ ∈ RJ×p, where rows γi ∈ {β̃j ∈ Rp|β̃j ̸≈ 0 for j = 1, . . . ,m} are the J variants with non-zero effects for
any of the p traits. We assume that each cluster follows a zero-mean multivariate Gaussian and each variant
belongs to a cluster. Let zik ∈ {0, 1} be the latent indicator variable with zik = 1 if variant i belongs to
cluster k and 0 otherwise.
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Let N (µ,A−1) be a multivariate normal distribution with mean µ and covariance matrix A−1, or equiva-
lently, with precision matrix A. Let Cat(π) be a categorical distribution parameterized by π. The zero-mean
infinite-mixture model is

γi ∼
∞∑
k=1

πkN (0, A−1
k ), zi ∼ Cat(π), πk = vk

k−1∏
ℓ=1

(1− vℓ), (3)

where πk denotes the probability that γi is drawn from cluster k, with 0 < πk ≤ 1 and
∑∞

k=1 πk = 1.
The sequence of mixture weights {πk} can be derived from the stick-breaking construction of a Dirichlet
process as πk = vk

∏k−1
ℓ=1 (1− vℓ) [38,6], where vk’s are drawn from a Beta distribution vk ∼ Beta(1, α). We

approximate the model posterior and estimate parameters using variational inference (VI) [25,55], with steps
detailed in Appendices A.7 and A.8.

Each inferred cluster is a zero-mean Gaussian with covariance term Σk = A−1
k . The inferred clusters

are first ordered by decreasing πk values, then an optimal number of clusters, K∗ (K∗ ≤ K), is determined
by truncating K at a reasonably large value such that

∑K∗

k=1 πk ≈ 1. The remaining K∗ clusters are then
ordered decreasingly in Tr(Σk). When p = 1, this is equivalent to the ordering σ2

1 > · · · > σ2
K∗ used by

gene-ϵ. The clustering label of variant i is argmaxk∈[K∗] p(γi|zik, Ak).

2.3 Gene-level analysis

Combining results from SNPs in each gene enables gene-level association analysis. Gene-level signals can
be compared with existing biological knowledge and offer mechanistic insights into the genetic pathways
underlying the traits. When p = 1, gene-ϵ formulates a SNP-level null hypothesis based on variance of
clusters and compute an enrichment test statistic for the gene association [14] (described in Appendix A.9).
When p > 1, despite the lack of a single test statistic, patterns can still be extracted from the effect size
distributions of variants in each cluster, both visually and quantitatively.

Multivariate gene-level association: visualization and summarization. When p = 2 or p = 3, clusters can be
visualized as ellipses and ellipsoids. For higher p, a Gaussian mixture component can be summarized by the
eigenvalues and eigenvectors of its variance-covariance matrix Σk, which provide a geometric interpretation
of the distribution. For example, if the major axis of a cluster falls close to an Cartesian axis and is much
larger than all the minor axes, then the cluster can be interpreted as being “trait-specific”, with variants
strongly associated to one trait but not the other. If Tr(Σk) is large and angle of the major axis to any of
the Cartesian axes is large, the cluster likely contains shared associations. If Tr(Σk) is small, the cluster has
spurious associations. We compute fractions of variants in each gene that fall into different types of clusters
(see Appendix A.10). Genes with large shared-association fractions are of interest for studying putative
pleiotropy.

We also calculate the normalized sum of products of SNP effects across traits in each gene as Sg =

(1/|g|)
∑

i∈g β̃
T
i β̃i, where g is the set of variants in a gene and β̃i of size |g|× p are their effects. Having large

(or small) values in different entries of matrix Sg indicate different association relationships and strengths.
For example, if a gene is associated to trait j but not the others, then Sg(j, j) would be large while Sg(j

′, j′)
for j′ ̸= j are small. For Sg(j, j

′) large, the gene is likely associated to both traits j and j′, with associations
positively correlated.

2.4 Performance comparisons

We compare the performance of neural-network-based shrinkage against the regularized regression (elastic
net [14], denoted as enet) and the fine-mapping method (SuSiE-RSS [64], denoted as susie). We implement
and compare six neural network models: the combinations of three different feature sets—with T =5, 10, and
15 in Eq. 2—and two architectures—the two-layer and three-layer networks. We evaluate their performance
on simulation data (Appendix A.4). To demonstrate the robustness of the method, we adopt the idea of
ensemble learning in additional experiments, where we train ten models of the same architecture each using
a randomly sampled subset of training and validation data, and average the regularized effects from ten
models to be the final outcome (see Appendix A.13).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2025. ; https://doi.org/10.1101/2025.02.11.637655doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.11.637655
http://creativecommons.org/licenses/by-nc-nd/4.0/


ML-MAGES: a ML framework for analyzing multi-trait GWAS effects 5

To quantify the performance of all methods on shrinkage and gene-level analysis, we use the following
measures. On SNP-level comparison, we assess how good the regularized effects β̃ approximate the true effects
β. We compute root mean squared error (RMSE) and Pearson correlation between them. We also assess
how successfully each shrinkage method can rank truly associated effects over non-associated ones via the
precision-recall curves (PRCs), with a curve closer to the upper-right corner indicating better performance.
For gene-level performance comparison, we conduct single-trait gene enrichment tests, assessing the power for
identifying associated genes at a significance level of p = 0.05, corrected for multiple testing by controlling
the false discovery rates (FDR) at level α = 0.05 [4]. We compare the precision, recall, and F-score of
identifying truly associated genes for each method. For bivariate analysis of two traits, we first obtain the
fraction of variants in each gene that belong to trait-specific clusters, and rank it against the ground truth of
whether each gene is simulated to have trait-specific association. Similarly, we rank the fraction of variants in
clusters of shared associations against their ground truth. The rest of the clusters are categorized as spurious
associations (see Appendix A.10). F-scores are reported for these comparisons, with a higher score indicating
better ability to distinguish associations that are trait-specific versus shared.

3 Results

3.1 Performance comparison on simulation data

The six neural-network models show very similar performances across all the comparisons. We focus on the
result for the 2-layer and 3-layer models using T = 15 variants for features (denoted as ML-MAGES 2L and
3L, respectively). We compare them to elastic net (enet) [14]) and SuSie-RSS (susie) [64]). We leave an
exhaustive list of comparisons of all 8 shrinkage methods to Tables 1-4 in the Appendix. The 6 NN models
have also been trained (and validated) on simulation based on a different set of chromosomes, and their
performances are consistent (results not shown).

Approximating true effects at the SNP-level. We first compare the performance of methods on effect size
shrinkage. We show the SNP-level comparison results on gene-level simulation in Fig. 2A and B. Similar
results on SNP-only simulation are included in the Appendix (Table 1). The precision-recall curve (PRC)
of susie shows comparable performance to ML-MAGES, all better than enet (Fig. 2A), suggesting that
methods are ranking truly associated variants highly. Additionally, our NN methods outperform enet and
susie in RMSE (Fig. 2B). We note that the PRC shows a sharp decrease in precision as recall becomes larger.
This pattern occurs when data evaluated is highly imbalanced, which is indeed the case in our scenario as
approximately only 1.5% of variants are simulated to be truly causal. Recall that as a fine-mapping method,
susie is designed for selecting a few variants that very likely contain the true causal ones from a small
region, which is exactly what the gene-level simulation is generating. However, susie aims to locate the
few causal variants, therefore tending to overestimate their effect sizes, giving a less desirable RMSE. A
good approximation of the true effects is important for accurate clustering in the next step. Our NN-based
method achieves the highest accuracy in this task, and therefore is a competitive approach for effect size
shrinkage. Also note that training is based on SNP-only simulations where associated variants are not densely
distributed within small segments, which does not quite assume the same generative process as the gene-level
simulation, but the NN models still perform well on the task.

Another strength of our NN shrinkage is its computational efficiency. We compare the time taken by
different methods to shrink the same set of simulated effects—based on genotyped data of 15,250 variants
on chromosome 15 from UK Biobank [45]. Our NN methods (ML-MAGES : 0.86s) are more than 10x faster
compared to enet (15.88s) and susie (33.62s) when averaged across 200 simulations (see Appendix Table 5).
Even considering the one-time training that takes 15 to 25 seconds per epoch for less than a hundred epochs
on our simulation data (Appendix Table 6), using NN models is more efficient. Moreover, the computational
burden of NN models will not scale with the number of variants exponentially as in enet or susie, which
poses challenges on analyzing larger sets of variants (e.g., the imputed whole-genome sequence data).

Distinguishing genes with different types of associations. Besides SNP-level performance, we also compare
the gene-enrichment analysis results based on each method’s shrinkage output and subsequent clustering. We
assess the power for identifying associated genes at a significance level of p = 0.05 (FDR-corrected). We show
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6 X. Liu et al.

Fig. 2. Our NN methods ML-MAGES 2L and 3L outperform enet and susie on shrinking inflated GWA
effect sizes in simulations. Left column: SNP-level performance, evaluated by comparing the regularized effects
and the true effects of each simulation. Middle column: gene-level single-trait analysis performance, evaluated
by comparing univariate enrichment test with the simulated ground truth. Right column: gene-level two-trait
analysis performance, evaluated by comparing bivariate clustering output with the simulated ground truth. Legends
shown in panel A apply to all panels; each violin plot ordered from left to right as enet, susie, and ML-MAGES
2L and 3L. Violin plots are labeled with the significance level of Welch’s t-test for difference between measures of
our methods and the other two, as shown in panel B legends. A: Precision-recall curve (PRC) averaged across all
200 simulations (by interpolation), where the positives are the true non-zero effects and the precision-recall pairs are
obtained by thresholding |β̃|. B: RMSE between β and β̃. C: PRC of each method averaged across all simulations
(by interpolation), where the true positives are the true associated genes and the precision-recall pairs are obtained
for different p-values of gene enrichment tests. D: F-score of identifying true associated genes, where genes with a
FDR-adjusted p < 0.05 from the enrichment analysis is identified as associated. E and F: Trait-specific F-scores
for identifying genes only associated to one simulated trait, when ranking the genes by their fraction of variants
in trait-specific clusters and compared against being truly trait-specific, for simulated trait 1 and 2. G: F-score for
identifying genes associated to both traits, when ranking the genes by their fraction of variants in shared association
and compared against being truly associated to both traits.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2025. ; https://doi.org/10.1101/2025.02.11.637655doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.11.637655
http://creativecommons.org/licenses/by-nc-nd/4.0/


ML-MAGES: a ML framework for analyzing multi-trait GWAS effects 7

the PRCs and F-scores of identifying truly associated genes correctly (Fig. 2C and D). enet and susie-based
results perform poorly on both measures, which is expected based on their SNP-level performance (Fig. 2B).
susie shows a high recall but a low precision with many false positives (Appendix Table 3), which is not
surprising since it is not designed to identify causal genes. We also evaluate the performance of these methods
on multi-trait analysis, using the simulated bivariate data as an illustrative example. We compute the F-
scores of gene ratings according to fraction of variants in each type of cluster against their true association
type (Fig. 2E-G). These scores indicate the ability of the methods to identify trait-specific genes versus those
with shared associations. enet has only one simulation that identifies a trait-1-specific cluster, resulting in a
single bar in Fig. 2E. ML-MAGES performs well for the gene-level analyses.

To further showcase the strength of multi-trait analysis, we included a simulation of three traits which
captures more complex shared association scenarios in Appendix A.12 and Fig. 7. The simulation procedure
mirrors the bivariate one. The ML-MAGES framework consistently outperforms elastic net in identifying
truly associated SNPs and genes , as well as detecting the correct shared association patterns among simulated
traits, as shown by PRCs and F-scores in Fig. 7.

Comparing performance when models are trained on different simulation settings. In our previous simulation
analyses, the synthetic training data was generated using the same type of real data as the evaluation data.
To demonstrate the reliability of ML-MAGES when this does not necessarily hold, we perform additional
simulation analyses. We show the performance of models trained for a more challenging shrinkage task
when the simulated training data are based on different data and settings from the intended evaluation set.
Specifically, we simulate training data based on imputation data in UKB with genetic markers not directly
genotyped, which is more than eight times larger than the genotyped array data size. The much higher
density of the imputed variants causes significantly larger LD between them, which subsequently introduces
large inflation in the effects, making the shrinkage problem much more challenging than in the genotyped
data. Although the model’s training performance is less optimal when using simulations based on imputed
data, models trained on imputed data still consistently outperform the elastic net method in shrinkage
performance when applied to simulations based on genotyped data. This holds across various simulation
settings that differ in the proportion of true causal genes and causal variants. We detail the simulations and
comparison of SNP-level performance (Fig. 8) in Appendix A.13.

Comparing to a linear model. To highlight the advantage of ML-MAGES ’s ability to capture nonlinear
relationships among inflated effects, we compare its performance to a single-layer neural network within the
same framework—an architecture limited to modeling linearities. As illustrated in Fig. 8 (Appendix A.13),
the results demonstrate the benefit of accounting for nonlinearities in effect size shrinkage. The linear model
consistently underperforms nonlinear ones in estimating the true effect sizes of associated variants.

3.2 Real data analysis

Applying the method to the GWA of two continuous traits: HDL and LDL. To get a more comprehensive
understanding of how the regularized effects from different shrinkage methods affect gene-level enrichment
tests, we apply all methods on GWA effects of two quantitative traits from UK Biobank [45]: high-density
lipoprotein cholesterol (HDL) and low-density lipoprotein cholesterol (LDL). The data contains GWA results
on 489,953 variants from 334,851 European-ancestry individuals (see Appendix A.1 for a description of the
data). All results shown in Fig. 3 except for panel C and D are based on ML-MAGES (3L).

Genes related to biological processes of HDL and LDL have been widely-studied and the information is
available from the GO knowledge base [3]. We perform gene enrichment analysis on each of the two traits
separately using their regularized effects and clustering output. We can therefore verify the top associated
genes identified with their known biological processes. The enrichment test results based on all methods
are shown in Fig. 3C and D. enet and two NN methods rank a very similar set of genes the highest, with
majority of them showing related biological processes, while susie gives an almost entirely different set of
genes that mostly do not appear in the knowledge base. The poor performance of susie is consistent with our
observations on simulation (Fig. 2). We should point out that although not doing well on simulation, enet
shows comparable output to the NN methods in this application, likely because it manages to keep at least
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Fig. 3. Clustering and gene-level analysis results, using shrinkage output on GWA effects of traits high-
density lipoprotein cholesterol (HDL) and low-density lipoprotein cholesterol (LDL) in UK Biobank
European individuals. For panels C and D, the results using 4 shrinkage methods (enet, susie, and ML-MAGES
2L and 3L, see also Fig. 2) are all presented. For the other panels, only the results of 3L are included. A and B:
The univariate clustering on GWA effects of HDL and LDL. Clusters are represented by the corresponding Gaussian
N (0, σ2

k), labeled with their inferred mixing weights πk. C and D: The enrichment analysis of genes associated to
HDL and LDL. The set of genes shown are those included in panel G. The cells are colored by − log10(p) values of the
test, with darker color indicating higher statistical significance, and non-significant genes with adjusted p ≥ 0.05 are
colored white. Associated genes that have related biological processes terms in the GO Biological Processes network
[3] are highlighted in color. Unlike the other three methods, susie shrinkage fails to identify the most relevant genes.
E: The bivariate clustering results based on the regularized effects of HDL and LDL. Clusters are color-coded and
variants are styled differently by their cluster labels. Clusters are ordered in descending Tr(Σk). The proportion of
variants with non-zero effects in each cluster is labeled in the legend. Clusters beyond the first three are categorized
as spurious associations and grouped into the “rest”. F: Inferred mixtures from bivariate clustering, shown as a scaled
confidence ellipse for each corresponding Gaussian mixture N (0, Σk), with inferred mixing weights πk labeled in the
legend. G: The fraction of variants assigned to each of the listed genes that belong to each type of associated clusters.
The genes listed either have at least 10 variants and more than 40% of variants from one of the non-spurious clusters,
or are identified by enrichment test of either of the two traits (panels C and D). The number of variants assigned
to each gene is annotated on the top of the bars. H: Normalized sum of squared effects or sum of effect products
of variants in each gene, calculated as (

∑
i∈g β̃ip1 β̃ip2)/|g|, where g denotes the set of variants assigned to a gene

with variants indexed by i, and p1 and p2 index the two traits. Three sums are considered: two trait-specific sum
of squared effects, and the sum of effect products for shared associations. Genes having large trait-specific sums are
those identified by the enrichment test (marked by dashed lines). I: Enrichment analysis − log10(p) for each of the two
traits, corresponding to the color-coded values in bottom rows of panels C and D. Genes identified by the enrichment
test are marked by vertical dashed lines.
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some variants in the strongly associated genes with non-zero effects. This also explains why enet performs
well in the work of [14].

For multi-trait analysis, we are able to identify potentially associated genes that are trait-specific and those
that are putatively pleiotropic. We refer to Fig. 3E-I for a visualization of the results. It can be clearly observed
from the inferred Gaussians (Fig. 3F) that some variants have trait-specific associations (e.g., clusters 2 and
3) and some have shared associations (e.g., cluster 1). The Gaussians with the smallest Tr(Σk) (e.g., clusters
labeled “rest”) are those that contain likely spurious associations, similar to the univariate scenario in gene-ϵ.
In the bivariate analysis, we group clusters into three types based on their Σk’s (Appendix A.10): specific
to HDL, specific to LDL, and associated to both or having large effect in LDL. The fraction of variants in
each gene that belong to each type of clusters (Fig. 3G) suggests some genes being specifically associated to
one of the traits while some others having shared associations. We subset genes with strongest signals for
visualization. Genes identified by the univariate enrichment test (Fig. 3I) correspond to those with both large
trait-specific fractions and a large number of variants. The enrichment analysis only uses a SNP-level null
threshold obtained from the clustering results, potentially missing out some weakly-associated genes and not
fully utilizing SNP-level information. Instead, our multi-trait analysis is able to bring more information from
the SNP-level effects to the gene level (Fig. 3G and H) while capturing signals for shared associations and
help locate genes potentially of interest for the study of their trait-specific versus pleiotropic contributions.

Fig. 4. Gene-level analysis results, using shrinkage output on GWA effects of two binary traits in UK
Biobank European individuals. Two binary traits are C50 (malignant neoplasm of breast) and Z90.1 (acquired
absence of breast). The figure style follows that of Fig. 3 panels G-I. A: The fraction of variants in each gene that
belong to each type of clusters. The genes listed have at least 40 variants and more than 30% of variants from one
of the non-spurious clusters. B: Normalized sum of effect products of variants in each gene. C: Enrichment analysis
− log10(p) for each trait. Genes identified by the enrichment test are marked by vertical dashed lines. The two genes
in the red box, FGFR2 and TOX3, are those identified by Cortes et al. [17] as showing similar biological pathways.

Demonstrating the method in application to two binary traits. To demonstrate the generalizability of ML-
MAGES, we apply the models trained using imputation data—as described in the previous section—onto the
GWA results of two binary traits in the UKB data, restricted to European ancestry individuals. Both traits
are ICD10-coded diseases: C50 (malignant neoplasm of breast) and Z90.1 (acquired absence of breast). The
results are shown in Fig. 4. The log odds ratios of logistic regression from binary GWA are encoded as effects
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of the variants. ML-MAGES identifies two most significant genes that have shared associations with both
diseases, FGFR2 and TOX3, suggesting a likely similarity in their biological underpinnings. These two genes
show the largest normalized sum of effect products, and they exhibit very similar patterns in the fraction of
variants belonging to each cluster (Fig. 4). These two genes were previously reported by Cortes et al. [17]
to be associated with nearly identical nodes in the ICD-10 ontology. The identified variants pointed out by
Cortes et al. [17] that localize them are rs2981575 and rs4784227, respectively, and both variants are in the
cluster denoting shared associations in ML-MAGES ’s clustering. This further supports the validity of our
method in multi-trait association analysis.

4 Discussion

Genome-wide association (GWA) studies have been powerful for generating hypotheses regarding associated
genetic variants and the genetic architectures of numerous complex traits in humans [52,50]. We introduce
ML-MAGES, which uses machine learning approaches to perform multi-trait association analyses, addressing
two open challenges: inflation in GWA effects caused by LD, and shared associations across traits undetectable
by single-trait analyses. Our method is a computationally efficient and functionally effective tool to tackle
these challenges.

Our neural-network based shrinkage achieves higher accuracy in approximating the true SNP-level effect
sizes than do regularized regression [14] and fine-mapping [64] methods (Fig. 2A and B) while improving the
computational efficiency (Appendix Table 5), and in turn shows better performance in categorizing gene-
level signals in the simulated data (Fig. 2C-G). Our generalization of gene-ϵ’s univariate clustering [14] to
the multivariate scenario enables exploration of multi-trait association relationships beyond estimating the
single-trait SNP-level null thresholds. Moreover, our infinite mixture model for clustering allows an optimal
number of clusters to be inferred from data, overcoming the potential underestimation of the complexity
of effect size distributions in a fixed K-mixture model. Aggregating SNP-level results at the gene-level, our
new method presents rich information regarding how variants and genes show trait-specific versus shared
associations across-trait. It provides summary values (e.g., angles and ratios of axes for Gaussian ellipses,
fractions of variants in each clusters, Fig. 3F and G) that can be interpreted both quantitatively and visually
for an intuitive understanding of signals in multi-trait associations.

We acknowledge that a major drawback of using supervised learning for shrinkage is its reliance on
simulated data for model training. Generation of the simulation data requires individual-level genotypes
and synthetic GWA effects need to be similarly distributed as real ones. These impose limitations on the
quality of the models when simulated data are used for different organism, or even different populations—for
example, simulations based on human genome will likely not be applicable to plant genetics. In this study,
we focus our analysis on European-ancestry individuals. In the context of GWA in populations with different
or admixed ancestries, models trained on European-based data will show a decrease in their performances,
which is a common observation in genetic studies [34,39,30]. Moreover, the distribution of real effects may
not always be centered at zero, in which case the quality of the model may be further compromised. To
partially overcome this issue, besides the symmetric Laplace transformation we used in the preparation of
training data, we also include an asymmetric option to accommodate the case when effects are not symmetric
around zero. A downside compared of our approach to methods like elastic net shrinkage is that we require
generating synthetic data. However, additional simulation analyses show that supervised learning-based
shrinkage outperforms elastic net shrinkage even when the training and evaluation simulations are generated
using different real data, given that the effect size distributions are matched (Appendix Fig. 8). Nevertheless,
generating realistic synthetic data adaptively continues to be a challenge in genetic studies, and further
advancement in simulation strategies would benefit our method as well.

Another limitation of our method is the difficulty in interpreting results of multivariate clustering. As
observed from our demonstrative example, a locally-optimal cluster sometimes groups variants with different
types of effects together—for example, some being putatively pleiotropic and some having large trait-specific
effects (Cluster 1 in Fig. 2E). The inferred Gaussian would instead suggest shared associations strong for
one trait and weak for the other (Fig. 2F). We need to be careful when designating the association type
of the clusters—visualization (like Fig. 2E and F) can help detect these patterns, but not always feasible.
Visualizing clusters becomes particularly challenging when analyzing more than two or three traits. Methods
to intuitively summarize and present the clustering results, especially for high-dimensional data, would be
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beneficial. Formulating multivariate null hypotheses can also help. That is, to come up with “null thresholds”
for multi-trait association types and their corresponding “enrichment tests” to assess whether each gene shows
specific association. Other analyses to examine the variants fall under different clusters are possible. For
example, calculating a score similar to the polygenic score for each individual by adding up their genotypes
weighted by corresponding effects on sets of variants in each cluster and comparing the scores to the trait
values can implicate genetic liability of the traits to variants in different clusters. Estimating the heritability
contributed by SNPs in each cluster can also help quantify their informativeness.

Multi-trait association analyses can help uncover potential pleiotropic effects and contribute to the devel-
opment of novel therapeutic hypotheses regarding multiple diseases or medical conditions. Given the intricate
genetic architecture underlying complex traits, analyzing multiple traits simultaneously offers distinct over
examining each trait individually. It allows for the identification of shared genetic associations across some
or all traits within a set, providing a more comprehensive understanding of the genetic factors influencing
them—whether or not the traits have similar characteristics. Our multivariate approach performs compara-
bly to univariate ones for trait-specific associations yet reveals additional patterns when correlations between
traits exist. Beyond multi-trait analysis, ML-MAGES is also applicable to the study of group-specific ver-
sus shared associations across groups like different sexes and disease onsets. With the improved efficiency
and expanded functionality enabled by machine learning, our method is a complementary advance beyond
single-trait GWA analyses.
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