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mTADA is a framework for identifying risk genes
from de novo mutations in multiple traits
Tan-Hoang Nguyen 1,2✉, Amanda Dobbyn1,3, Ruth C. Brown2, Brien P. Riley 2, Joseph D. Buxbaum4,

Dalila Pinto 4,5,6, Shaun M. Purcell7, Patrick F. Sullivan8, Xin He 9,10✉ & Eli A. Stahl 1,11✉

Joint analysis of multiple traits can result in the identification of associations not found

through the analysis of each trait in isolation. Studies of neuropsychiatric disorders and

congenital heart disease (CHD) which use de novo mutations (DNMs) from parent-offspring

trios have reported multiple putatively causal genes. However, a joint analysis method

designed to integrate DNMs from multiple studies has yet to be implemented. We here

introduce multiple-trait TADA (mTADA) which jointly analyzes two traits using DNMs from

non-overlapping family samples. We first demonstrate that mTADA is able to leverage

genetic overlaps to increase the statistical power of risk-gene identification. We then apply

mTADA to large datasets of >13,000 trios for five neuropsychiatric disorders and CHD. We

report additional risk genes for schizophrenia, epileptic encephalopathies and CHD. We

outline some shared and specific biological information of intellectual disability and CHD by

conducting systems biology analyses of genes prioritized by mTADA.
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The analysis of multiple traits can help characterize the
genetic architectures of complex disorders1. One approach
is to meta-analyze results derived from separate single-trait

studies2. However, joint analysis of multiple traits can better
accommodate heterogeneity of genetic effects of the same variants
or genes across traits3,4. Numerous studies have jointly analyzed
two or more traits and successfully identified shared common-
variant associations5–8. In addition, additional risk loci have been
identified using these approaches7,9. However, none of these
studies has examined rare variation from case-control data, or de
novo variants for which mutation rates should be taken into
account. For these rare variants, gene based tests have identified
several genes associated with different disorders10–13. Some
recent studies have shown that there are multiple risk genes that
are shared between neurodevelopmental disorders10,14,15, and
also with congenital heart disease (CHD)16,17. These results are
based on the intersection among the top prioritized genes from
each disorder; therefore, reported numbers of genes shared by
multiple disorders remain low10,17. Development of multi-trait
rare-variant methods for neuropsychiatric disorders (NPDs) and
related disorders will facilitate the understanding of this impor-
tant aspect of genetic architecture for these phenotypes.

Currently, there is still a limitation in the risk gene identifica-
tion for a single trait of NPDs and relevant disorders from parent-
offspring trio studies. One reason is that risk gene discovery is
underpowered when sample sizes are limited, as well as when
relative risks are not large10,11. Multiple risk genes have been
reported for undiagnosed developmental disorders (DD), intel-
lectual disability (ID) and autism spectrum disorder (ASD)12,18,19

thanks to large sample sizes and/or relative risks10. However, there
are a few risk genes identified for schizophrenia (SCZ), epileptic
encephalopathies (EE) and other disorders because of small gene-
level relative risks or small sample sizes10,20,21. Increasing sample
sizes will increase power to identify additional risk genes, but this
is an expensive solution and may not be feasible for some studies.
If there are genetic overlaps, methods that can leverage the
information from one trait to increase power for risk-gene iden-
tification of another trait could help in obtaining additional genes
for these disorders.

Here, we have developed a new statistical model, mTADA
(multi-trait transmission and de novo association test), that
jointly analyzes de novo mutations (DNMs) of two traits in order
to estimate the gene-level genetic overlap of the two traits, and to
identify additional risk genes for each analyzed trait as well as
shared and specific risk genes. First, we utilize simulation data
and demonstrate that, compared with a single-trait method,
mTADA substantially improves the power of risk-gene identifi-
cation when genetic overlaps increase, especially for traits with
smaller sample sizes or smaller relative risks. For example,
mTADA is able to statistically increase evidence for multiple

genes in a tested trait which shows 1) marginally statistical evi-
dence in that trait, and 2) strong evidence in the other trait if the
two traits have a high genetic overlap. To illustrate the advantage
of the new pipeline over its previous single-trait version, we apply
the method to large data sets of different NPDs and CHD
(>13,000 parent-offspring trios) and identify shared genes
between each pair of these disorders. mTADA identifies addi-
tional risk genes for each disorder by borrowing the information
of other traits. We validate these results in an independent cohort
of 1,241 trios with CHD, 197 trios with EE, and 4,877 SCZ cases
and 6,203 controls. In addition, we demonstrate that mTADA’s
results could be used to better understand the shared and specific
biological information for two tested disorders by using multiple
systems biology approaches to test the top prioritized risk genes
of the CHD-ID pair. CHD-specific genes are specific to certain
biological pathways.

Results
The mTADA framework. The mTADA method is gene-based
and requires input data of the number of DNMs and mutation
rate per gene. If the DNMs are stratified on the basis of predicted
effect (e.g., ‘missense’, ‘nonsense’, etc.), then each gene-
annotation category should have its own mutation rate that
reflects the predicted effects of the mutations within. In summary,
for each gene, we consider four models Mj (j= 0..3) reflecting
four alternative hypotheses: the gene is associated with neither
trait (H0), the first trait only (H1), the second trait only (H2), or
both traits (H3). We assume prior probabilities πj (j= 0..3) for the
four models and these πj are estimated from data and single-trait
studies. DNMs are modeled using Poisson distributions with
mean relative risks, mutation rates and sample sizes as main
parameters10 (Methods). For each gene, four posterior prob-
abilities (PP), which are abbreviated as PP0, PP1, PP2 and PP3
respectively, are used to infer the status of the gene for the four
models. To summarize the evidence for association with a given
trait, we use the sum of PPs of models including the risk gene
hypotheses for that trait, i.e., PP1+ PP3 for trait one and PP2+
PP3 for trait two (Fig. 1, Table 1, Methods).

Results of mTADA on simulated data. To validate the new
method, we conducted simulation studies by using genetic
parameters from real-data analyses of previous studies (Methods).

Power for single-trait risk gene discovery. We compared gene
numbers identified by mTADA and our previous single-trait
method, extTADA, using the same threshold PP > 0.8. For π3= 0
(no overlapping information), mTADA and extTADA reported
nearly the same positive gene numbers (Fig. 2). However,
mTADA identified more genes than extTADA when π3 increased.

All analyzed genes

Risk genes Non-risk genesFirst trait

Second trait

�1 �3 �2 �0

Fig. 1 The multiple trait transmission and de novo association test (mTADA). For each trait, mTADA divides the all tested genes into two sets: risk and
non-risk genes. Therefore, there are four sets when two traits are combined: risk genes for neither of traits (H0), for the first trait only (H1), for the second
trait only (H2), and for both traits (H3). Statistical details of four models for these four hypotheses are described in Table 1. πj (j= 0..3) are prior
probabilities for the four models. From mTADA’s analysis results, each gene has four posterior probabilities (PPs) of the four models (e.g., PP0, PP1, PP2
and PP3 for Model 0, Model 1, Model 2 and Model 3 respectively).
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In addition, mTADA’s gene counts were also higher than those of
extTADA when higher mean relative risks were used.

Comparison of risk-gene classification for single traits. We
designed a simulation experiment to assess the performance in
the classification of risk and non-risk genes. We applied
extTADA to single-trait data from our simulated data. We then
calculated areas under the Receiver Operating Characteristic
curves (AUCs) for mTADA and extTADA using classification
results from single-trait data. AUCs of both were equal when

π3= 0 (Fig. 2). However, AUCs of mTADA were higher than
those of extTADA when π3’s values were larger. In addition,
mTADA also performed better than extTADA with larger mean
relative risks.

The proportion of false positive shared risk genes for two traits
with non-genetic overlaps. We estimated this information for
identifying shared risk genes (i.e. associated with both traits). We
simulated data with π3= 0 and calculated the proportion of
shared risk genes (per 19,358 tested genes) using different PP

Table 1 Statistical models of mTADA.

Hypothesis Proportion First trait Second trait

H0 π0 xi1 � Poisson 2N1μi
� �

xi2 � Poissonð2N2μiÞ
H1 π1 xi1 � Poissonð2N1μiγi1Þ

γi1 � Gammað�γ1β1; β1Þ
xi2 � Poissonð2N2μiÞ

H2 π2 xi1 � Poissonð2N1μiÞ xi2 � Poissonð2N2μiγi2Þ
γi2 � Gammað�γ2β2; β2Þ

H3 π3 xi1 � Poissonð2N1μiγi1Þ
γi1 � Gammað�γ1β1; β1Þ

xi2 � Poissonð2N2μiγi2Þ
γi2 � Gamma �γ2β2; β2

� �

Statistical models for four hypotheses in mTADA for one category of variants in each trait at the ith gene. mTADA assumes that the gene can be in one of four models M0..M3. πj (j= 0..3) is the prior
probability of the jth model. xk and Nk (k= 1, 2) are the data and the sample size of the kth trait. μi is the mutation rate of the gene. For each trait, the relative risks of shared and specific genes (γk) are
from a Gamma distribution with two parameters: �γk (mean relative risk) and βk (to control the variance of relative risks).
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Fig. 2 Comparison results of simulated data for the current multi-trait approach (mTADA) and a previous single-trait approach (extTADA) in
single-trait analyses. For each bar, its height shows the average value of 100 simulations. mTADA performs better than extTADA when the proportions of
overlapping risk genes (pi3) are larger than zero. The top two lines describe gene counts (posterior probability >0.8, while the two bottom lines show area
under the Receiver Operating Characteristic (ROC) curves (AUCs). mRR describes mean relative risks and the trio number along the bottom describes the
sample sizes. These results are for two variant categories. For example, “mRR= 105/29, 12/2” describes the mRRs of the first trait as 105 and 29, and the
mRRs of the second trait as 12 and 2.
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thresholds of Model III (PP3). Overall, these proportions were
very small for different PP thresholds (<4.5 × 10−4, Fig. 3a).

Correlations between posterior probabilities and observed false
discovery rates (FDRs). Since mTADA makes inference on risk
genes using PPs, instead of commonly used FDR, we compared
these two metrics. We calculated the correlation between PPs and
observed false discovery rates (oFDRs) for all situations. For PP3,
we found that PP= 0.8 and 0.5 approximately correspond to
oFDR= 0.1 and 0.25, respectively. Small mean relative risks could
lead to higher FDRs, but this inflation was modest (Fig. 3b).
These results were similar for other situations: when genes were
associated with only the first trait, only the second trait, single
traits (e.g., Trait 1 or Trait 2 genes) (Supplementary Figs. 1, 2).

The correlation between simulated and estimated values of π3
was also assessed. For large mean relative risks, high correlations

were observed for all sample sizes. For smaller mean relative risks
(≤24), π3’s values were over- or underestimated (Supplementary
Fig. 3). However, these small differences did not affect the results
of risk-gene identification (Fig. 2, Supplementary Figs. 1, 2).

The effects of misdiagnosis and ascertainment bias on the
results. When sample phenotypes are misdiagnosed (a patient of
one trait is mis-assigned to another), the estimated parameters of
mTADA may be biased and this may affect the results. In another
scenario, samples from one trait may contain a larger number of
patients of the second trait than expected based on the
comorbidity in the population. This ascertainment bias may also
have an effect on mTADA’s estimates. We tested the impact of
these scenarios. Overall, π3 and downstream results were not
strongly affected when there was ascertainment bias. Similar
results were also observed for misdiagnosis rates of 5–10% if the
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mean relative risks of the tested traits were not highly imbalanced.
If the mean relative risks of one trait were substantially higher
than those of the other trait, overestimation of π3 might arise for
misdiagnosis rates of ≥5%. Detailed results are in the Supple-
mentary Note 1.

Application of mTADA to neuropsychiatric disorders and
CHD data. mTADA was applied to DNM datasets of 15 pairs of
six disorders: five neuropsychiatric disorders including DD, ID,
ASD, SCZ, EE; and CHD. These DNMs were classified into dif-
ferent categories using annotation tools. Based on previous
results10,22, we used loss of function (LoF), missense damaging
(MiD) DNMs for all disorders and also added synonymous
DNMs within DNase I hypersensitive sites for SCZ (Methods).
We defined the gene-level genetic overlap (gO) of two disorders
as: gO ¼ 100% ´ π3=ðπ1 þ π2 þ π3Þ. DD based results showed
strong convergence with smaller credible intervals (CIs) because
of its large sample size as well as high relative risks of DNMs
(Fig. 4a/b, Supplementary Table 1). As expected, high gOs were
observed for pairs of DD, ID, and ASD (gO> 32%; π3 > 0:018).
CHD and EE had the lowest gO (gO= 2%, π3= 0.001) followed

by SCZ-EE (gO= 4.6%, π3= 0.0023). Supplementary Fig. 4 shows
sampling results of the proportions of overlapping risk genes for
pairs of these traits, and Supplementary Fig. 5 shows the per-
centage of genetic overlaps for traits. The gO of ASD and SCZ
which was approximately 16% (CI= 5.6–31.4%) was similar to
previous studies (Supplementary Table 2).

We also compared mTADA and extTADA in the identification
of risk genes for single traits using a threshold of PP > 0.8. For DD
and ID, mTADA always performed better than extTADA
(Fig. 4c). Similar results were observed for ASD; except for the
pair ASD-SCZ in which mTADA was slightly better than
extTADA for SCZ but extTADA was better than mTADA for
ASD. For CHD, EE and SCZ, mTADA was better than extTADA
when CHD was combined with DD.

Insights into top genes prioritized by mTADA. To better
understand the top genes prioritized by mTADA, we extracted
genes with PP > 0.8 for further analyses.

Overlapping genes between two traits. The highest number of
overlapping genes was observed for DD and ID (89 genes)
followed by ASD-DD (65 genes) and ASD-ID (47 genes).
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Four pairs of traits (CHD-EE, SCZ-EE, CHD-SCZ, SCZ-ID) had
no overlapping genes. 152 genes were supported by the two-trait
model in at least one pair (PP3 > 0.8, Supplementary Data 1).
Eight genes (ARID1B, GABRB3, KCNQ2, STXBP1, CHD2, TLK2,
POGZ, SCN2A) were observed for at least six pairs of disorders
(Fig. 4d). POGZ and SCN2A were present in eight pairs of
disorders. POGZ was significant for pairs relating to ASD, DD,
ID, CHD and SZ while SCN2A was significant for pairs relating to
ASD, DD, EE, ID and SCZ. We checked DNMs of these two
genes. As expected, POGZ had no DNMs for EE, and SCN2A had
no DNMs for CHD. Interestingly, in the latest CHD study23,
POGZ was one of the top CHD genes while no DNMs were
observed for SCN2A. In addition, in a recent study of 6,753
parent–offspring trios with neurodevelopmental disorders and
epilepsy24, 16 DNMs were in POGZ, but only one DNM was from
a patient who has both ID and epilepsy.

Significant genes of single traits. To demonstrate the application
of mTADA in the identification of additional risk genes, we tested
three disorders (CHD, EE, and SCZ) whose DN-based genes have
not been reported as often as the three other disorders. We used
DD-based results because the number of risk genes for the three
disorders highly increased when their datasets were jointly
analyzed with the DD dataset in Fig. 4c.

CHD. 33 genes were prioritized. 20/31 were not in the list of
known CHD genes and in the meta-analysis results of a recent
CHD study of Jin et al.23 (Table 2). We validated these results by
using different approaches. First, we tested the protein-protein
interactions (PPIs) of these 33 genes by using the STRING
database25. The number of edges was higher than expected
between 33 protein nodes (PPI p= 6e-12, Fig. 5). Multiple
protein products of novel and known genes interacted with each
other. The number of interactions decreased when tested with
only PPIs from experiments but was still significant (PPI p=
0.0174). Second, we tested these CHD genes from an independent
data set which includes 1,241 trios and 226 cases23. From the
1,241 trios, three genes (CTNNB1, CUL3, LZTR1) of the 20 novel
genes had LoF or MiD DNMs (Poisson-test p < 2.0e-4, Table 2).
Each of these three genes had only one DNM in the primary
analysis. In addition, these genes were not called significant genes
by extTADA. Finally, we compared these 33 genes with the top 25
genes meta-analyzed by Jin et al.23. 8/33 were in the 25-gene list
(permutation p < 9.99e-05; Table 2).

EE. There were 16 genes. Similar to top CHD genes, their
protein products also had more interactions than expected by
using the STRING database (PPI p= 3e-11, Supplementary
Fig. 6). Three genes HECW2, MLL, WDR19 were not in the list
of EE genes on the Online Mendelian Inheritance in Man26.
These three genes only had PP < 0.3 in extTADA. Interestingly,
HECW2 had a DNM in a whole-genome-sequencing study
recently27.

SCZ. There were 12 genes including AUTS2, BRPF1, CHD8,
HIST1H1E, HIVEP3, MAP4K4, MKI67, POGZ, SCN2A, SETD1A,
SYNGAP1, TAF13. These genes’ protein products were signifi-
cantly connected by using the STRING database (PPI p= 1.6e-03,
Supplementary Fig. 6). In these genes, only TAF13 and SETD1A
were suggested as top genes in previous studies10,28. In addition,
AUTS2 was reported as a SCZ gene from a common variant based
study29. We tested these genes on an independent dataset of 4,877
cases and 6,203 controls, HIST1H1E showed nominally signifi-
cant (Supplementary Table 3).

Biological insights into shared and specific genes from mTADA’s
analysis. To demonstrate the application of mTADA in helping
to understand the shared and specific biological mechanism of
two analyzed disorders. We extracted three gene lists (shared and

specific genes) for each pair of disorders using a threshold of PP
> 0.5. To increase the sample size for CHD, we combined both
tested and independent datasets (Methods). We then focused on
ID and CHD in this analysis because this pair of disorders had
high numbers of risk genes for the three lists (30 shared genes, 40
ID-specific genes and 30 CHD-specific genes, Supplementary
Data 2). Different systems biology approaches were used to test
these three gene lists. First, we conducted gene-set enrichment
analyses30 using gene-ontology (GO) gene sets31. The majority of
top enriched GO gene sets were related to heart/cardiocyte-
development for CHD-specific genes, to chromatin modification
or DNA binding for shared or ID-specific genes (Fig. 6a). Next,
we used gene sets from a human single-cell RNA sequencing
(scRNAseq) dataset of ~4,000 cardiac cells from human
embryos32. No overlaps were observed between shared or ID-
specific genes with these gene sets, but interestingly the CHD-
specific genes were enriched in multiple gene sets (Fig. 5b). We
then tested the three gene lists by using mouse scRNAseq gene
expression datasets from different brain regions33. The three gene
lists were not significantly enriched in these cell types; however,
for pyramidal cells, ID-specific genes were nominally significant
while CHD-specific genes did not have the same direction
(Fig. 5c). Finally, we used BrainSpan RNAseq gene expression
data to cluster these three gene lists into spatiotemporal groups.
Using eight time points and four regions as in recent studies10,34,
shared and ID-specific genes were strongly expressed in the
prenatal stages of the human brain while CHD-specific genes
were expressed in both prenatal and postnatal stages for Region 3
including hippocampus, amygdala and striatum (Fig. 5d, Sup-
plementary Fig. 7). The three other brain regions did not show
strong differentiations between these three gene lists (Supple-
mentary Fig. 7).

Discussion
In this paper, we propose a method to jointly analyze two traits
(mTADA) using de novo exome sequencing data. The method is
an extension of our previous work for single traits10,11. mTADA
estimates the proportion of overlapping risk genes (π3) between
two traits, and then uses this information to infer how many
overlapping risk genes exist between two traits. The pipeline is
also able to infer the number of risk genes for each trait by
calculating posterior probabilities (PPs) of genes for each trait. On
simulated data, mTADA performs better than a single-trait
approach, extTADA, on the identification of risk genes (Fig. 2).
We applied mTADA to more than 13,000 trios of five neu-
ropsychiatric disorders and congenital heart disease, and reported
overlapping genes between these disorders. We also saw that
mTADA reported more risk genes for these disorders than
extTADA (Fig. 4). This suggests that mTADA can help in the
identification of additional risk genes, especially for disorders
whose large sample sizes are challenging to obtain or whose mean
relative risks are small. For such disorders, users can combine the
data of the disorders with large public data sets (e.g., trio data of
ASD, DD) to prioritize risk genes. Using one-trait information to
leverage the information for other traits has been successful in
fine-mapping35 and common-variant36 studies. Based on our best
knowledge, mTADA is the first tool using this approach for de
novo mutation data. We hope that mTADA (https://github.com/
hoangtn/mTADA) will be generally useful for analyzing de novo
mutation data across complex traits.

By using mTADA for prioritizing top genes, multiple over-
lapping genes were observed for CHD, DD, ID and ASD. This
replicates a recent study37 in which high overlapping genes were
observed for CHD and neurodevelopmental disorders. Interest-
ingly, CHD did not show any overlapping information with
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another neurodevelopmental disorder: EE. Two genes SCN2A and
POGZ which have been reported as risk genes for some of these
disorders23,38–40 are top overlapping genes from mTADA
(Fig. 4d), but they show different trends. No SCN2A DNMs are in
CHD data and no POGZ DNMs are in EE data. One possible
reason is that the sample size of EE is small in this study (356
trios). Another hypothesis might be that they do not have strong
overlapping biological pathways. We did not see any overlapping
information between SCZ and CHD, or SCZ and EE. We ana-
lyzed in depth the top prioritized genes of CHD, EE and SCZ
(Fig. 5, Supplementary Fig. 6). Some top risk CHD and EE genes
from mTADA are also reported in recent studies23,27. Multiple
top CHD genes have only one DNM, but have DNMs in inde-
pendent data sets (Table 2). This suggests that they might be real
risk-genes for this disorder. Interestingly, we identify 20 CHD
genes (posterior probabilities >0.8) which are not in the list of 253
curated known human/mouse CHD genes. 3 of these 20 genes
have DNMs in an independent data set. This shows the benefit of
using mTADA in the prediction of risk genes for CHD by bor-
rowing the information of DD (Fig. 5, Table 2). We used different
systems biology approaches to understand the shared and specific
risk gene lists of ID and CHD. Some specific information

emerged from these analyses. CHD-specific genes were enriched
for heart/cardiocyte pathways, cell types while shared and ID-
specific genes were strongly expressed in the prenatal stages of the
human brain and enriched in regulatory and binding pathways
(Fig. 6). This suggests that a model-based approach as mTADA
can help shed light on the shared and specific biological
mechanism between disorders with larger sample sizes.

Although mTADA performs better than the single-trait based
extTADA, it does have some limitations. mTADA uses the
parameters of single traits from extTADA to infer π3. Using
parameters from extTADA makes mTADA much faster in its
calculation, it means mTADA relies on the results of the single-
trait pipeline extTADA that uses a full Bayesian approach. Also,
mTADA as well as extTADA use de novo counts for each gene
and divide these counts into different categories similar to other
rare variant based studies12,41–43. In this current pipeline, we
estimated π3 directly from data. However, common-variant based
genetic co-heritabilities44 and transcriptomic correlations45 for
multiple pairs of NPDs are available now. Other studies which are
able to incorporate the annotation information of each mutation,
prior information for π3 from previous studies may increase the
power of mTADA or similar tools. In the current version, users

Fig. 5 Result of protein-protein interaction analysis for genes associated with congenital heart disease (CHD). These genes were prioritized by using
undiagnosed developmental disorders (DD) information. This is the top 33 genes, posterior probabilities > 0.8, identified by mTADA using the data set of
Homsy et al.16. Novel genes have red background and known genes have green background. Additional information for these genes is in Table 2.
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can set a prior or change a distribution for π3. Comorbid infor-
mation might be used as prior information for π3 in the analyses
of mTADA. For example, our estimated gene-level genetic
overlaps which are inferred from π3’s estimations are very high
for pairs of EE and ID (~31%, CI= 18.9–43.7%), ASD and ID
(~38.1, CI= 30–46.6%). These three disorders are also highly
comorbid46,47; therefore, this information may be used as priors.
However, genomic results and comorbid information might not
always have the same trends. For example, the genetic over-
lapping information between ASD and SCZ are high in our
study (~16%, CI= 5.1–31.4%), in previous common-variant
based (rg= 0.16, se= 0.06, p= 0.0071) and transcriptomic stu-
dies (rho ~ 0.5, p < 0.001, Supplementary Table 2), but the
comorbidity of the two disorders might not be strong or almost
zero in some recent studies48,49. In addition, ASD and SCZ can
have overlapping copy number variable regions50,51; however,
duplications can be significantly seen for one disorder and dele-
tions can highly present in the other disorder51. Finally, for all
analyzed disorders, even though we observed multiple over-
lapping genes for pairs of disorders, the origin of these overlaps
could be different. For example, for each pair, some overlapping
genes could have more loss-of-function DNMs for one disorder
and more missense damaging DNMs for the other disorder, and
vice versa. Future rare-variant studies which are able to obtain
comorbidity information from the overlapping samples and
compare this with the genetic information will shed light on the
genetic and clinical relationship of these disorders. Also, studies
which are designed to understand in depth the information of
variant categories for overlapping genes can elucidate the geno-
mic mechanism of disorders.

Our analysis of de novo mutation data of neuropsychiatric
disorders and CHD also has some limitations, in particular,
overlapping phenotypes may lead to violation of mTADA
assumptions. DD samples include people with different dis-
orders52 and some of CHD samples may have other neu-
ropsychiatric disorders23. In a recent study, the DD dataset was
combined with the ID dataset to create a larger ID dataset because
of the high proportion of people with ID inside the DD cohort53.
In this study, even though we analyzed DD and ID separately to
better understand the gene-level genetic overlaps between ID and
other disorders, overlapping phenotypes may still affect the cur-
rent results. We tested possible scenarios of overlapping pheno-
types (Supplementary Note 1). The proportion of overlapping
risk genes was modestly affected by ascertainment bias or by low
percentages of misdiagnosed cases (<20%). However, this metric
might be overestimated if misclassification rates were sub-
stantially high and the gene-level mean relative risks of one dis-
order were greatly different from those of the other disorder
(Supplementary Note 1). The inflation could have an impact on
analysis results, especially shared and specific risk genes. Never-
theless, mTADA always performed better than extTADA in the
identification of risk genes for single-trait analyses in tested sce-
narios. It is possible that mTADA would benefit by jointly
modeling these biases and this will be a future extension of the
method.

With further development, the mTADA approach can be
generalized further to consider more than two traits simulta-
neously, and the increased information could increase the num-
ber of identified risk genes but at a cost of increased
computational time. Currently, the number of hypotheses
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Fig. 6 The analysis results of shared and specific gene lists for ID and CHD (Only CHD: CHD-specific genes, Only ID: ID-specific genes, ID and CHD:
shared genes). a Top enrichment results of gene-ontology (G0) gene sets. These are the top 20 enriched gene sets of each gene list. All these results have
adjusted-p-value < 0.05. b Enrichment results of human single-cell RNA sequencing (scRNAseq) datasets. These cells are from cardiac cells of the human
fetal heart. They were clustered into 9 clusters (e.g., C1 to C9). The information of these clusters is in brackets (5W: 5-week hearts, ECs: endothelial cells,
CMs: cardiomyocytes, epicardial cells: Eps). Magma-red bars are for results with adjusted p-value < 0.05 c) Enrichment results of mouse scRNAseq
expression data. d BrainSpan expression results for the three gene lists. This is for Region 3 as defined by Huckins, et al.34 including hippocampus (HIP),
amygdala (AMY), striatum (STR) regions. The package cerebroViz67 was used to draw brain regions.
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increases exponentially to 2N with N being the number of traits.
To reduce computational time, another approach which uses a
small number of latent probability vectors54 might be used for
more than two-trait studies.

In conclusion, mTADA can be very useful for better under-
standing the genetic correlation across disorders (via the pro-
portion of overlapping risk genes), and to prioritize additional
risk genes for disorders. The approach of mTADA can be used to
identify shared/specific risk genes for different categories of one
trait (e.g., loss of function and missense de novo mutations).
Genetic information of de novo mutations and rare case/control
variants can be different55, mTADA might be adopted to pipe-
lines which are able to apply to DNMs and rare case/control
variants as two traits.

Methods
mTADA: statistical models and parameter estimation. The mTADA is designed
to jointly analyze two traits using DNMs. We use statistical models of extTADA, a
single-trait method, to model DNM counts for each trait in mTADA as presented
in Table 1. The likelihood of the data across all N genes can be computed as
L ¼ QN

i¼1

P3
j¼0 πjP

1
ijP

2
ij with Pk

ij ¼ PðxkijϕkjÞ, where xki and ϕkj are the ith gene data
and the jth modelʼs parameters for trait k (k= 1, 2). In addition, if the data include

multiple categories of variants then Pk
ij ¼

QnC
l¼1 P

kl
ij with nC being the number of

categories. For gene i, the statistical support for the jth model is captured by its

posterior probability (PPij ¼
πjP

1
ijP

2
ijP3

m¼0
πmP

1
imP

2
im

, abbreviated as PP0, PP1, PP2 or PP3 for

a gene).
We use our single-trait pipeline, extTADA, to estimate the proportions of risk

genes (πS1 and πS2), mean relative risks (�γS1 and �γS2) and dispersion parameters (βS1
and βS2) for each single trait (described as the superscript). We use these values
inside mTADA: π1 ¼ πS1 � π3, π2 ¼ πS2 � π3, and π0= 1 − (πS1 þ πS2 � π3) because
of

P3
j¼0 πj ¼ 1. We assume that �γ1 ¼ �γS1; �γ2 ¼ �γS2; β1 ¼ βS1 and β2 ¼ βS2. Therefore,

we only estimate π3 inside mTADA. Bayesian models are built using the rstan
package56. We use Markov Chain Monte Carlo (MCMC) within rstan to estimate
π3. Convergence is diagnosed by the estimated potential scale reduction statistic (R̂)
and visualizing traces of results. The Locfit package57 is used to obtain the mode, CI
of π3. We use the mode as the estimated value of π3. We also tested a model with
different mean relative risks for shared and specific risk genes. The model was more
complex for the estimation process of parameters but did not improve the risk-
gene identification. Therefore, this complex model was not used in our analysis.

Generation and analyses of simulated data. We simulated DNMs for genes
under the mTADA model in Table 1. All 19,538 genes and their mutation rates
from our current real dataset were used. A gene was assigned to one of the four
groups (four models) by using the probability (π0, π1, π2, π3). We used πS1 ¼ 0:05
and πS2 ¼ 0:03 which are approximately equal to ASD, ID and DD results in our
single-trait study10. π3 was simulated with different values between 0 to min
(πS1; π

S
2); and π0, π1 and π2 were calculated as described in the section above. A

range of mean relative risks were simulated for each of the two traits. Two
mutation categories were simulated for each trait; therefore, there were four mean
relative risks for the two traits. We used results from our previous studies10,11 and
other studies58,59 for simulated values of mean relative risks. We simulated 100
values of each combination of π3 and mean relative risks. We then calculated the
mean of these 100 simulation results.

To calculate the proportion of false positive genes when there was not a genetic
overlap between two tested disorders, we simulated different combinations of
genetic parameters with π3= 0. For each PP threshold, we divided the number of
identified overlapping genes by the total tested genes (n= 19,358 genes in our
analysis).

We also used simulated data to assess the correlation between true and observed
π3 values and between PPs and oFDRs. An oFDR at a PP threshold was defined as
the number of false positive genes divided by the number of identified genes. To
use mTADA for single traits, for the ith gene, we calculated PPi1 + PPi3 and PPi2 +
PPi3 for the first and second trait respectively.

To compare risk gene classification performance between mTADA and
extTADA on single traits, we used AUCs. We calculated true and false positive
rates for extTADA and mTADA across PP thresholds, and calculated the areas
under these ROC curves.

Real datasets of de novo mutations and variants. For primary analyses, we used
the DNM data collected by Nguyen et al.10 and CHD data from Homsy et al.16.
These data included 356 EE trios; 5,122 ASD trios; 4,293 DD trios; 1,012 ID trios;
1,077 SCZ trios; and 1,213 CHD trios. DNMs were annotated and classified into
multiple categories as in our previous work10 as follows. For EE, ASD, DD, ID, and

CHD, we used two categories10: loss-of-function (LoF) and missense damaging
(MiD) DNMs. The LoF category included nonsense, essential splice site, and fra-
meshift DNMs defined by Plink/Seq60 while the MiD category included DNMs
annotated as missense by Plink/Seq and predicted damaging by each of seven
methods41: SIFT, Polyphen2_HDIV, Polyphen2_HVAR, LRT, PROVEAN, Muta-
tionTaster, and MutationAssessor. For SCZ, we used LoF, MiD and synonymous
mutations within DNase I hypersensitive sites because this category showed sig-
nificant DNM enrichment in SCZ probands22 and non-null mean relative risk in
extTADA10. Mutation rates were calculated as described by Fromer, et al.60 and
Nguyen, et al.10.

For the validation of mTADA’s results and for better understanding the specific
and shared risk genes between tested disorders, other datasets were used in the
analysis. First, we used independent datasets to validate mTADA results. For CHD,
we extracted variant data of 2,871 probands from Jin et al.23. These samples include
2,445 trios (1,204 trios are inside the data set of extTADA and used in the primary
analysis of this study) and 226 singletons23. Only independent CHD samples were
used in the validation process. For EE, we used the whole-genome-sequencing trio
data of Hamdan et al.27. This dataset includes 197 trios not included in our
mTADA analyses. For SCZ, a case/control independent SCZ dataset from
Genovese et al.41 was used. Disruptive and damaging ultra-rare variants from 4,877
cases and 6,203 controls were extracted from Table S3 of the study41.

Known risk-gene datasets. We extracted lists of known risk genes from two
sources. 253 curated known human/mouse CHD genes were obtained from the
supplementary data set 2 of Jin et al.23. A list of EE genes from the Online
Mendelian Inheritance in Man26 was downloaded on September 02, 2019 using
keywords “epileptic encephalopathy” and “epileptic encephalopathies”.

Gene expression datasets. Human scRNAseq expression datasets of 4,000 cardiac
cells were from 18 human embryos which ranged from 5 weeks (5W) to 25W of
gestation. These were classified into four major cell types (cardiomyocytes (CMs),
cardiac fibroblasts, endothelial cells (ECs), and valvar interstitial cells (VICs)), and
also filtered and clustered into nice clusters. Gene lists of the nine clusters were
extracted from Table S2 of Cui et al.32. scRNAseq transcriptome datasets were
obtained from Skene et al.33 via the link: http://www.hjerling-leffler-lab.org/data/
scz_singlecell/ (Downloaded on August 01, 2018). These datasets included
9,970 single cells. These cells were clustered into 24 different cell types. Spatio-
temporal transcriptome data were obtained from BrainSpan61, divided into eight
developmental time points (four prenatal and four postnatal)62. The average
expression at each spatiotemporal point was calculated across samples. For each
gene, average expression values were standardized across spatiotemporal points to
obtain z-scores10,34. Z-scores were used for visualizing gene lists.

Analysis of de novo mutations using mTADA. extTADA was used to obtain the
proportions of risk genes and the mean relative risks of each category for each
disorder. These values were then used as input for mTADA to estimate π3 and then
to calculate PPij ði ¼ 1::N; j ¼ 0::3; N ¼ 19; 358 genesÞ for each pair of traits. The
default algorithm, No-U-Turn Sampler (NUTS), in the rstan package was used to
estimate π3. Two independent chains and 10,000 steps for each chain were used in
the sampling process. Only 1,000 samples from each chain were chosen for further
analyses.

For primary analysis, we applied mTADA to NPDs and 1,213 CHD trios. For
understanding the specific and shared risk genes between tested disorders, we
combined both tested and independent datasets of CHD (2,445 trios) in jointly
analyzing with other disorders to increase power. Finally, we also applied mTADA
to the two CHD datasets (tested and independent datasets) to test the performance
of the method as described in Supplementary Note 2.

Other statistical methods for real data analyses. We used the EWCE package63

to calculate the enrichment of our gene lists and the expression data from the 24
mouse cell types. To test the significance of the overlap of two gene sets, a per-
mutation approach was used. We chose two random gene sets whose lengths are
the same as the two tested gene sets from the background genes (19,358 genes from
mTADA). This was carried out N times (N= 10,000 in this study) and the
numbers of overlapping genes were recorded in a vector m. A p-value was cal-
culated as ðlength m m>m0½ �ð Þ þ 1Þ=ðlength mð Þ þ 1Þ) in which m0 is the observed
number of overlapping genes between the two tested gene sets. To conduct PPI
analyses, we used the STRING database and the package STRINGdb25 from the
Bioconductor project64, and p-values of protein-protein interactions were extracted
from these analyses. To examine expression information of identified genes, we
used the package mclust65 to cluster BrainSpan gene expression data (z-scores)
in heatmap analyses. To test the significance for individual genes from DNMs,
we used a Poisson test. The R function ppoisðy � 1; lambda ¼ 2 ´Ntrio ´ μ;
lower:tail ¼ FALSEÞ in which y and μ are the number of DNMs and the mutation
rate of the tested gene; Ntrio is the number of trios. All analyses were carried out
using the R software66.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Data availability
All analyzed results are in Supplementary Data 1 and 2. These supplementary datasets
are also available at: https://github.com/hoangtn/mTADA.

Code availability
mTADA package and examples for reproducible studies are available online (https://
github.com/hoangtn/mTADA).
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