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Purpose. To identify significant radiomics features based on MRI and establish effective models for predicting the response to
bortezomib-based regimens. Materials and Methods. In total, 95 MM patients treated with bortezomib-based therapy were
enrolled, including 77 with bortezomib, cyclophosphamide, and dexamethasone (BCD) and 18 with bortezomib, lenalidomide,
and dexamethasone (VRD). Based on T1-weighted imaging (T1WI) and T2-weighted imaging with fat suppression (T2WI-fs),
radiomics features were extracted and then selected. The random forest (RF), k-nearest neighbor, support vector machine,
logistic regression, decision tree, and Bayes models were built using the selected features. The predictive power of six models
for response to BCD and VRD regimens were evaluated. The correlation between the selected features and progression-free
survival (PFS) was also analyzed. Results. Four wavelet features were correlated with BCD treatment response. The six models
all showed predictive power for BCD regimen (AUC: 0.84-0.896 in the training set, 0.801-0.885 in the validation set), and RF
performed relatively better than others. Nevertheless, all the BCD-based models were incapable of predicting the VRD
treatment response. The wavelet-HLH_firstorder_kurtosis was also associated with PFS (log-rank P = 0:019). Conclusion. The
four wavelet features were valuable biomarkers for predicting the response to BCD regimen. The six models based on these
features showed predictive power, and RF was the best. One wavelet feature was also a survival-related biomarker. MRI-based
radiomics had the potential to guide clinicians in MM management.

1. Introduction

Multiple myeloma (MM) is a malignancy of plasma cells
originating from the bone marrow, and most commonly
present with hypercalcemia, renal failure, anemia, and bone
lesions, leading to significant impairment in quality of life
and placing an immense burden both on patients and society
[1, 2]. In the 1980s, high-dose chemotherapy and stem-cell
rescue (ASCT) was introduced as an effective treatment
modality of MM, and the treatment continues to evolve rap-
idly with the arrival of new classes of antimyeloma drugs
such as immunomodulatory drugs and proteasome inhibi-

tors [3, 4]. Since most patients with MM ultimately relapse
and become unresponsive to currently available treatment
options, thus resulting in shorter survival, durable and deep
remission is the key objective of MM therapy [5].

Bortezomib, a typical proteasome inhibitor, is widely
used in the induction, consolidation, and maintenance ther-
apy of MM [6, 7]. Combining bortezomib with other agents
such as IMIDs, alkylating agents/doxorubicin, and dexa-
methasone is the backbone for doublet/triplet regimens [7].
A systematic review assessed the prognosis effects of bortez-
omib and demonstrated its benefit in terms of survival and
response rate of MM [8]. However, part of MM patients
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achieved suboptimal or no response to bortezomib and may
even suffer notable side effects like peripheral neuropathy
and thrombocytopenia [9]. Therefore, identifying predictive
biomarkers prior to MM treatment would help to avoid inef-
fective therapy and further optimize clinical patient
management.

Some disease, host, and therapy-specific features such as
performance status, tumor burden, and cytogenetic abnor-
malities have been reported to provide prognostic informa-
tion [10, 11]. Nevertheless, all these factors and existing
risk stratification systems help with prognosis for survival,
and clinicians still lack reliable predictive biomarkers of
treatment response [11]. In addition to clinical assessment,
imaging evaluation is also an essential part of MM diagnosis
and treatment, and MRI has been widely accepted as the
optimum imaging modality. Since traditional imaging has
difficulty detecting the treatment-mediated changes, func-
tional imaging was recommended by many researchers
[12]. However, previous studies demonstrated the ability of
functional parameters for monitoring MM treatment
response, their predictive capacity was limited, and response
prediction remains a challenge [13, 14].

Radiomics-derived features quantify phenotypic charac-
teristics of medical imaging, which contribute to produce
accurate and robust predictions in survival, treatment
response, and other clinical outcomes [15]. Many published
prediction models confirmed the excellent predictive ability
of CT or MRI radiomics for treatment response in cancer
research, and these radiomics-based models either outper-
formed the existing predictive modalities or filled the gap
of response prediction that has not been achieved in the
clinic [16–19]. Considering previous promising results of
radiomics and the advantages of MRI for bone marrow
assessment in patients with MM, it is reasonable to speculate
that MRI-based radiomics may have potential predictive
powers for MM treatment.

In the present study, we aimed to explore the value of
MRI-based radiomics for response prediction in MM
patients treated with bortezomib-based therapy.

2. Material and Methods

2.1. Patients. The Institutional Ethics Committee of our hos-
pital approved this retrospective study, and the requirement
for informed consent was waived. The 357 MM patients who
underwent lumbar MRI at the initial diagnosis in our hospi-
tal between January 2015 and January 2021 were preliminar-
ily included. Inclusion criteria are as follows: (1) Patients
were newly diagnosed with MM and had no previous sys-
tematic chemotherapy or radiotherapy. (2) MRI examina-
tion included sagittal T1-weighted imaging (T1WI) and
T2-weighted imaging with fat suppression (T2WI-fs). (3)
All patients were treated with bortezomib-based induction
therapy with 3-4 cycles, and efficacy was evaluated every 2
or 3 cycles. Patients who were combined with other malig-
nant diseases (n = 3), were treated with other chemotherapy
regimens (n = 82), had previous systematic chemotherapy or
radiotherapy (n = 56), were without complete T1WI and
T2WI-fs examination (n = 31), had less than three cycles of

induction chemotherapy (n = 57), and were without regular
treatment response assessment at every 2 or 3 cycles
(n = 17) were excluded. Finally, 111 patients met the criteria.
Of these, 77 patients were treated with bortezomib, cyclo-
phosphamide, and dexamethasone (BCD); 18 with bortezo-
mib, lenalidomide, and dexamethasone (VRD); 9 with
bortezomib, thalidomide, and dexamethasone (BTD); and
7 with bortezomib, doxorubicin, and dexamethasone
(PAD). Considering that the number of patients treated with
BTD and PAD were small, and these two regimens were less
widely used in clinical practice, we included only the patients
treated with BCD and VRD for further study.

Patients were followed until May 2021. PFS was defined
as the time from diagnosis to the date of disease progression,
death from any cause, or the latest follow-up.

2.2. Treatment and Response Assessment. For the BCD regi-
men, patients received bortezomib 1.3mg/m2 on days 1, 4, 7,
and 10; cyclophosphamide 300mg/day on days 1-5; and
dexamethasone 20-40mg/day on days 1–4, 7, and 10. Each
cycle of induction therapy was 21 days. For the VRD regi-
men, patients received lenalidomide 25mg every other day;
bortezomib 1.3mg/m2 on days 1, 4, 7, and 10; and dexa-
methasone 20-40mg/day on days 1–4, 7, and 10. Each cycle
of induction therapy was 28 days.

In accordance with International Myeloma Working
Group (IMWG) guidelines that was based on monoclonal
protein level in serum and urine, the treatment responses
of MM were categorized as complete remission (CR), very
good partial remission (VGPR), partial remission (PR), sta-
ble disease (SD), or progressive disease (PD) [20]. Our study
defined the CR and VGPR as good response and PR, SD, and
PD as poor response.

2.3. MRI Protocol. Baseline MR images were performed on a
1.5T scanner (Signa Excite, GEMedical Systems), 3.0T scanner
(Discovery 750, GE Medical Systems), and 3.0T scanner (Dis-
covery 750w, GE Medical Systems). The scan parameters were
described as follows: sagittal T1WI: repetition time ðTRÞ =
405 − 843msec, echo time ðTEÞ = 7:1 − 8:1msec, slice
thickness = 4 − 5mm, matrix = 300 × 256, and field of view
ðFOVÞ = 32 × 32 cm; sagittal T2WI-FS: TR = 2500 − 3000
msec, TE = 85:3 − 125:3msec, slice thickness = 4 − 5mm,
matrix = 300 × 256, and FOV = 32 × 32 cm.

2.4. Evaluation of Conventional MRI Patterns for MM. The
bone marrow infiltration patterns of each patient were inter-
preted in consensus by two radiologists with 5 years and 13
years of experience, respectively. When there was discor-
dance between the readers, a senior radiologist with 25 years’
experience made the final decision.

The five recognized infiltration patterns are listed as fol-
lows: (1) normal appearance of bone marrow despite minor
microscopic plasma cell infiltration, (2) focal involvement,
(3) homogeneous diffuse infiltration, (4) combined diffuse
and focal infiltration, and (5) “salt-and-pepper” pattern
[12, 21]. For the quick and complete assessment of all pat-
terns, a combination of a T1WI and T2WI with fat suppres-
sion should be employed [21].
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2.5. Radiomics Analysis

2.5.1. Image Preprocessing, ROI Segmentation, and Feature
Extraction. All the eligible images were imported to the Arti-
ficial Intelligence Kit software version 3.3.0 (AK, GE
Healthcare) for preprocessing, including resampling the image
into 1 × 1 × 1mm3, bias field correction, signal smoothing by
a Gaussian filter with the standard deviation of 0.5, and inten-
sity standardization by z-score normalization [22].

The regions of interest (ROIs) were segmented by using
the ITK-SNAP software v.3.6.0 (http://www.itksnap.org/)
[23]. In our study, the entire bone marrow of the second
lumbar vertebra was designated as the target region to avoid
the discrepancy of the anatomical structure and ensure the
stability of results [14]. The ROI was manually segmented
by a radiologist with five years’ experience; meanwhile, the
cortical bone and degenerative changes were carefully
avoided. Figure 1 shows the ROI segmentation. Then, all

the segmented ROIs were validated by a senior radiologist
with 13 years of experience.

Based on AK software, there were a total of 1316 radio-
mics features extracted from the second lumbar vertebral
body, including 18 first-order histogram features, 14 shape
features, 75 texture features, and 1209 second-order features
generated from the derived images via wavelet transforma-
tion, local binary pattern transformation, and Laplacian of
Gaussian transformation.

2.5.2. Feature Selection and Radiomics Model Construction.
In the present study, 77 patients treated with BCD were used
for the feature selection, model establishment, and internal
validation, and 18 patients with VRD regimen were inde-
pendently validated by the BCD-based model. The process
of MM response prediction is illustrated in Figure 2.

Seventy-seven patients treated with BCD were randomly
divided into a training set (n = 53) and a validation set

Figure 1: ROI segmentation.

Patients treated with BCD or VRD (n = 95)

VRD (n = 18)BCD (n = 77)

Training set (n = 53)

Feature selection

Model building

Internal
validation

Validation set (n = 24)

Independent 
validation

Response prediction

Figure 2: The process for MM response prediction of bortezomib, cyclophosphamide, and dexamethasone (BCD) and bortezomib,
lenalidomide, and dexamethasone (VRD).
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(n = 24) at a ratio of 7 : 3. All the extracted features were
firstly normalized before feature selection. The outliers were
replaced with the median of the particular variance vector.
Moreover, the data were standardized by z-score transfor-
mation. The standardized formula is as follows: ðfi − uÞ/std
, where fi represents a single characteristic data, u is the aver-
age value of the data column, and std pertains to the stan-
dard deviation of the data column. In order to simplify the
model and increase the interpretability and stability of the
model, we used a combination of three commonly used
methods to select features, including Pearson correlation
analysis (threshold, 0.7), variance threshold method (thresh-
old, 1) and the least absolute shrinkage and selection opera-
tor (LASSO).

Based on the selected features, the logistic regression
(LR), support vector machine (SVM), Bayes, k-nearest
neighbor (KNN), decision tree (DT), and random forest
(RF) models were built for MM response prediction. All
the models were trained by applying the repeated fivefold
cross-validation technique in the training set; then, the per-
formance of models was evaluated in the validation set. The
predictive ability was compared by using the DeLong test.
Finally, the VRD regimen group was independently vali-
dated by the models above.

2.5.3. The Potential Association between the Radiomics
Features and PFS. For each of the selected radiomics fea-
tures, the optimum cutoff value was determined by the You-
den index in ROC analysis. Then, the patients were assigned
into two groups by using the cutoff values. The PFS was
compared between the two groups in each of the selected
features.

2.6. Statistical Analysis. The clinical characteristics and MRI
patterns of MM were evaluated by the chi-square test. The
receiver operating characteristic (ROC) analysis was con-
ducted to assess the model’s predictive power, and the area
under the curve (AUC), sensitivity, specificity, and accu-
racy were all calculated. The DeLong test was applied for
model comparison. Kaplan-Meier curve analysis and log-
rank tests were used to analyze the correlation between
radiomics features and PFS. All statistical analyses were
performed using R software (version 3.5.1) and SPSS (ver-
sion 24.0). A two-sided P value < 0.05 was considered
significant.

3. Results

3.1. Patients. Among the 95 selected patients, 36 patients
were IgG type, 33 were IgA type, 4 were IgD type, 20 were
light chain type, and 2 were nonsecretory type. For treat-
ment response, 53 patients were classified as good
responders and 42 as poor responders. All the clinical char-
acters and MRI patterns had no significant differences
between the good and poor response groups, as summarized
in Table 1.

3.2. The Selected Radiomics Feature and Models’ Predictive
Ability. Based on the training set of the BCD regimen, four
significant radiomics features were identified. Two of them

were extracted from T1WI and the other two from T2WI,
and all these features were wavelet transformed. The odds
ratio (OR) of each feature was calculated by multivariate
logistic regression. The details are presented in Table 2.

The LR, SVM, Bayes, KNN, DT, and RF models were
constructed. The ROC curves are drawn in Figure 3, and
the RF model showed the higher AUC value both in the
training (0.896) and validation set (0.885) when compared
with others, but the differences did not reach statistical sig-
nificance (P > 0:05). Meanwhile, the accuracy, sensitivity,
and specificity of each model were also calculated
(Table 3). The confusion matrices of different models were
shown in supplementary materials (available here).

3.3. Independent Validation of VRD Regimen. The response
to the VRD regimen was independently validated by the
six models constructed based on the BCD regimen. The
AUC range was 0.500-0.719, and the ACC range was
0.556-0.722 (Figure 4).

Table 1: Clinical characteristics and MRI patterns of patients.

Variable
Good responders

(n = 53)
Poor responders

(n = 42)
P

value

Age ≥ 65
(years)

14 15 0.328

Sex

Female 18 16 0.676

Male 35 26

BMPC ≥ 60% 11 9 0.566

Treatment

BCD 43 34 0.593

VRD 10 8

D-S staging

II 6 5 0.588

III 47 37

ISS staging

I 12 7 0.643

II 18 13

III 23 22

R-ISS staging

I 10 7 0.834

II 33 25

III 10 10

MRI pattern

Normal 9 7 0.191

Focal 4 6

Diffuse 31 18

Focal and
diffuse

4 9

Salt-and-
pepper

5 2

BMPC: bone marrow plasma cells; D-S: Durie-Salmon staging system; ISS:
International Staging System; R-ISS: Revised International Staging System.
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3.4. The Relationship between the Selected Features and PFS.
For patients treated with BCD regimen, median PFS was
29.72 months. According to the Youden index, the optimum

cutoff values of the four selected radiomics features (wavelet-
HLH_firstorder_kurtosis, wavelet-HLH_glcm_correlation,
wavelet-HHL_firstorder_kurtosis, and wavelet-LLH_firstor-
der_mean) were 0.320, 0.297, 0.105, and 0.288, respectively.
For wavelet-HLH_firstorder_kurtosis, the PFS was signifi-
cantly different between the two groups (Figure 5(a)), and
the other three features indicated no difference between the
two groups (Figures 5(b)–5(d)).

4. Discussion

In the present study, four wavelet-transformed features
extracted from the MRI were confirmed as predictive factors
for BCD treatment response in MM. Based on the selected
features, six predictive models were built, and the RF model
holds relatively more predictive power than the other
models in both training and validation groups, though not

Table 2: Selected radiomics features and their odds ratio.

Feature Sequences OR (95% CI)

Wavelet-HLH_firstorder_kurtosis T1WI 0.448 (0.229 -0.877)

Wavelet-HLH_glcm_correlation T1WI 3.784 (1.818 7.876)

Wavelet-HHL_firstorder_kurtosis T2WI 2.842 (1.328 6.081)

Wavelet-LLH_firstorder_mean T2WI 4.340 (1.538 12.244)

glcm: gray level cooccurrence matrix; OR: odds ratio; CI: confidence interval.
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Figure 3: Receiver operating characteristic (ROC) curves of random forest (RF), k-nearest neighbor (KNN), support vector machine (SVM),
the logistic regression (LR), decision tree (DT), and Bayes models for BCD response prediction. (a) The ROC curves in the training set. (b)
The ROC curves in the validation set.

Table 3: The comparison of different models.

Model
Training set Validation set

AUC ACC SEN SPE AUC ACC SEN SPE

RF 0.896 0.868 0.867 0.870 0.885 0.833 0.923 0.727

KNN 0.840 0.755 0.800 0.696 0.832 0.792 0.923 0.636

SVM 0.856 0.792 0.800 0.783 0.818 0.708 0.769 0.636

LR 0.855 0.755 0.700 0.826 0.811 0.708 0.692 0.727

DT 0.853 0.830 0.733 0.957 0.808 0.792 0.769 0.818

Bayes 0.879 0.792 0.800 0.783 0.801 0.833 0.923 0.727

AUC: area under the curve; ACC: accuracy; SEN: sensitivity; SPE:
specificity; RF: random forest; KNN: k-nearest neighbor; SVM: support
vector machine; LR: logistic regression; DT: decision tree.
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statistically significant. Meanwhile, all the models lost their
predictive capacity when the VRD regimen set was indepen-
dently validated. Finally, the wavelet-HLH_firstorder_kurto-
sis was correlated with the PFS, which may be regarded as a
relevant biomarker for both the BCD response and survival
in patients with MM.

Although achieved PR or better represents therapeutic
effectivity, our study defined CR and VGPR as good
response and PR, SD, and PD as poor response for further
analysis [24]. With the application of new drugs such as bor-
tezomib and lenalidomide, MM patients usually achieved at
least PR [25]. Moreover, a previous study showed that at
least VGPR after induction could improve progression-free
survival [26]. Achieving only PR may not satisfy the clinical
expectations entirely. Some studies noted that the quality of
response was not a validated effective surrogate for overall
survival, but undertreatment could lead to failure of the
potential cure and further progression with loss of disease
control [25, 27]. Furthermore, a study demonstrated that
the lenalidomide maintenance improved the prognosis, par-
ticularly among the patients who did not achieve VGPR
[28]. Therefore, the achievement of VGPR has a significant
implication for clinical practice.

There is an urgent need to predict the efficacy of treat-
ment, but no promising biomarkers are universally accepted
at present. Although some studies confirmed the predictive
power of gene expression profiles, the results remain contro-
versial [11, 29, 30]. The Durie-Salmon staging system, Inter-
national Staging System (ISS), and Revised-ISS were
commonly used for risk stratification and treatment guid-
ance, but all these staging systems performed predictive abil-
ity for survival but were not predictive of response to
therapy [10, 31]. In our study, we also found no association
of staging systems between the good and poor response
groups, and bonemarrow plasma cell percentage ≥ 60% that

reflects high tumor burden also had no ability to distinguish
the quality of response. In addition, our study showed that
the MRI patterns had no relationship with response to ther-
apy. This result was reasonable, for the previous meta-
analysis demonstrated that the MRI patterns were associated
with survival [32], but no study indicated a correlation
between MRI patterns and treatment response.

In recent years, several studies have explored the role of
CT or MRI radiomics on MM treatment evaluation, the
results showed good performance of radiomics, but a limita-
tion was mentioned that patients who underwent different
treatment regimens were not comparable [33, 34]. In our
study, the commonly used BCD and VRD regimens were
selected and analyzed separately in order to provide more
reliable results. For MRI-based radiomics, Ekert et al. [33]
explored the logistic model in MM treatment response
assessment and reported AUC values of 0.60-0.84 based on
different sequences. Our study explored and compared six
predictive models both in the training and validation set;
the results confirmed their predictive power, which may
serve as a more comprehensive reference for future research.
In addition, previous studies confirmed the efficiency of
diffusion-weighted imaging (DWI) and dynamic contrasted
enhanced- (DCE-) MRI [13, 14]. Therefore, the functional
imaging-based radiomics could be explored in future
research. However, the resolution of DWI was limited, and
the DCE-MRI was rarely used due to the renal impairment
in MM. The routine T1WI and T2WI were still the most fre-
quently used for MM examination, and the radiomics based
on routine sequences in our study may have the potential for
better clinical practicability and higher clinical application
value.

Interestingly, the four radiomics features selected from
the T1WI and T2WI were all wavelet transformed high-
dimensional features, which indicated that the radiomics
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Figure 4: Scatterplots for the area under the curve (AUC) and accuracy (ACC) depiction of RF, KNN, SVM, LR, DT, and Bayes models to
predict VRD response.
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features for MM response prediction might be more com-
plex, and wavelet features may play a crucial role. In a previ-
ous study for rectal cancer chemotherapy response
prediction, the majority of the predictive features were wave-
let transformed, and authors also cited many studies with
other purposes such as prediction for lymph node metastasis
to stress the importance of wavelet features [16]. In a recent
study for predicting the response of osteosarcoma, the wave-
let transformed features also accounted for most of the pro-
portion, and researchers speculated that the wavelet features
might be more sensitive for treatment prediction [19]. To
our knowledge, apart from ours, there was only one previous
study that utilized the MRI radiomics for MM treatment
assessment [33], but the wavelet transformed features were
not included for analysis, and in-depth explorations were
needed in future studies.

As shown in some studies, different machine learning
models could influence the predictive performance of radio-

mics [35, 36]. Nevertheless, there was no consensus on
which would be better. Our study constructed six predictive
models, including RF, KNN, SVM, LR, DT, and Bayes, and
all of them were confirmed as effective methods in many
previous radiomics reports [17–19, 36]. As the results
showed, all these models had the predictive ability since
the AUC values in each of them were greater than 0.80 in
both training and validation groups. Additionally, the RF
model outperformed the other five models, although this
result was not statistically significant. The radiomics models
were recommended for BCD response prediction. Moreover,
other effective methods such as deep learning should be
explored with a large sample in the future.

Though the established models exhibited some predic-
tive capacity for response to the BCD regimen, all these
models were incapable of predicting the treatment response
of the VRD regimen. To some extent, it was interpretable
that some studies indicated that the effect of VRD was
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Figure 5: Kaplan-Meier progression-free survival (PFS) analysis of four selected wavelet features. (a) The PFS analysis of feature 1. The PFS
of groups A (<0.320) and B (≥0.320) showed a significant difference. (b–d) The PFS analysis of features 2, 3, and 4. The PFS showed no
significant difference between the A and B groups of each feature. Features 1, 2, 3, and 4 were wavelet-HLH_firstorder_kurtosis, wavelet-
HLH_glcm_correlation, wavelet-HHL_firstorder_kurtosis, and wavelet-LLH_firstorder_mean, respectively.
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superior to the BCD regimen [37, 38]. Clinically, there were
many patients who achieved poor response with BCD, but
the replacement with VRD improved the efficacy of treat-
ment. Therefore, our study analyzed the two regimens sepa-
rately, despite both of them commonly using bortezomib-
based therapy in clinical practice. In addition, the result
may also be affected by the smaller number size in the
VRD group. It is necessary to continue collecting data for
VRD-specific predictive model building in the future. Ulti-
mately, other regimens such as BTD and PAD were not
studied due to the small sample size and the limited practical
clinical application.

Aside from the prediction of response to bortezomib-
based therapy, our study also analyzed the correlation
between the four selected wavelet features and PFS in
patients with MM and confirmed that the wavelet-HLH_
firstorder_kurtosis was associated with PFS. Our research
was not the first to explore the connection between treat-
ment response-related radiomics and survival. As reported
in some other cancer studies, the radiomics score calculated
based on selected radiomics features for response prediction
was also survival-associated [18, 39]. In contrast to these
studies, we explored the relationship between each of the
selected features and PFS and then identified that one fea-
ture was associated with survival, while the other three were
only treatment response-related features with no survival
significance. The confirmed feature that correlated with both
treatment response and survival may allow clinicians to
develop more individualized treatment strategies for MM
patients.

There were several limitations in the present study. First,
the inevitable selection bias of retrospective design. Second,
the sample size was small, and multicenter studies with a
large sample size were required. Third, all the ROIs were
manually delineated. Further study should explore the
method for automatic segmentation to avoid this laborious
and time-consuming process. Lastly, the parameters of the
models were optimized according to experience or experi-
mental adjustment, which may not be the most effective.

In conclusion, our study provided six effective models
based on four significant wavelet features for predicting the
response to the BCD regimen, which was of great value as
none of the clinical characters or conventional MRI patterns
had the predictive ability. Meanwhile, one wavelet feature
was also found to correlate with MM survival. MRI-based
radiomics had the potential to guide clinicians in MM
management.
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