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ABSTRACT
During both health and disease, a coordinated response between the epithelium, immune system, 
and enteric nervous system is required for proper intestinal function. While each system responds 
to a number of common stimuli, their coordinated responses support digestion as well as responses 
and recovery following injury or pathogenic infections. In this review, we discuss how individual 
responses to common signals work together to support these critical functions.
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Introduction

The primary role of the gastrointestinal (GI) tract is to 
digest and absorb nutrients and excrete waste pro-
ducts after digestion1. The small intestine is tasked 
with nutrient digestion and absorption2 and the large 
intestine with absorption of water, electrolytes, and 
water-soluble vitamins.3 Healthy function of the intes-
tine is supported by multiple systems, including the 
epithelium, nervous system, and immune system.4–6 

The epithelium forms a tight, flexible, and dynamic 
physical barrier that allows for nutrient absorption. 
The immune system promotes a hospitable environ-
ment for commensal microorganisms, defends 
against pathogens, and supports epithelial and neuro-
nal functions including survival and repair. The 
enteric nervous system coordinates absorption, mus-
cle control, and peristalsis and further supports 
immune and epithelial functions. In the steady state 
and after injury or infection, these systems sense 
common signals to promote digestion, support tissue 
growth, clear pathogens, and repair tissue damage.7–9 

This review will highlight both the individual 
responses against common signals by the epithelial, 
immune, and neuronal compartments of the gut as 
well as outline how these signals converge to ensure 
proper tissue function.

Intestinal Organization

Within the intestine, a single layer of tightly connected 
epithelial cells creates a physical barrier separating lumi-
nal contents from underlying tissues.10 Epithelial cells 
are connected through tight junctions, desmosomes, and 
adherens junctions.10 There are various types of intest-
inal epithelial cells (IECs) each with a specialized func-
tion. IEC are organized into two types of structures: villi 
and crypts.11 Villi, found only in the small intestine, 
protrude into the lumen thereby increasing surface 
area for absorption. Crypts, the home for intestinal 
stem cells, extend down toward the muscularis and are 
found in both small and large intestine.12

IECs have specialized functions. Enterocytes, the 
most common IECs, are responsible for nutrient and 
water absorption. Goblet cells secrete mucins, the glyco-
protein constituent of mucus. Mucus creates a barrier 
limiting direct microbial interactions with the 
epithelium.13 Enteroendocrine cells secrete hormones 
such as glucagon-like peptide 1 and cholecystokinin to 
support digestion and metabolism.14 Paneth cells are 
limited to the small intestine and release growth factors 
that promote proliferation and differentiation of stem 
cells and antimicrobial peptides that shape the composi-
tion of the microbiota and limit microbial growth near 
the epithelium.15 M cells overlay organized immune 
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structures including Peyer’s patches and isolated lym-
phoid follicles to transfer luminal antigens to underlying 
immune cells allowing for immune surveillance.16 

M cells can also allow entry of pathogenic and non-
pathogenic microorganisms into the tissue. Within the 
epithelium, intraepithelial lymphocytes (IELs) are also 
found. IELs are innate like T cells that can rapidly 
respond to pathogen infection and are critical to intest-
inal tolerance and epithelial barrier function.17

Below the epithelial layer is a loose connective tissue 
called the lamina propria (LP). The LP contains many cell 
types including various immune cells including dendritic 
cells (DCs), macrophages, and lymphocytes. These 
immune cells are essential for maintaining gut homeosta-
sis, compartmentalization of the microbiota, and defense 
against pathogens by secreting cytokines or releasing cyto-
toxic proteins.18–20 The epithelial layer, LP and basement 
membrane together make up the mucosa.

Underneath the LP is the submucosa, a connective 
tissue layer containing blood vessels, nerves, and lympha-
tics. Specialized tissue-resident macrophages with anti- 
inflammatory properties associate with and promote sur-
vival of blood vessels and nerves by secreting growth 
factors such as bone morphogenetic protein-2 (BMP- 
2).21 In return, associated blood vessels and nerves secrete 
survival signals, such as colony-stimulating factor-1 (CSF- 
1) that support macrophage development.21,22 In the sub-
mucosa, a net of organized nerves form the submucosal 
plexus which regulates water and ion reabsorption. This 
plexus is one of the components of the intrinsic enteric 
nervous system (ENS).23

Below the submucosa is the muscularis externa which 
consists of two smooth muscle layers, a thin outer long-
itudinal layer that shortens and elongates the gut and 
a thicker inner circular layer of smooth muscle that causes 
constriction. The myenteric plexus, the second compo-
nent of the intrinsic ENS, lies below the submucosa in 
between these two muscle layers where it controls GI 
movement.23 The microbiota induces signaling in the 
myenteric plexus and promotes the proliferation of enteric 
neuronal precursor cells.24 Somatosensory neurons in the 
myenteric plexus, including nociceptor containing neu-
rons, coordinate responses between the submucosa and 
peripheral tissues. These somatosensory neurons are pseu-
dounipolar cells with a single bidirectional axon and 
peripheral axon terminals that innervate skin, joints, and 
other peripheral tissue.25 Sensory neurons interpret the 
physiological state of the gut by recognizing stretch, nutri-
ent absorption, and bacterial signals.26

The GI tract is constitutively exposed to exogenous 
substances including dietary components and intestinal 
microbes, and emerging data demonstrates that these 
signals are recognized by intestinal cells to help coordi-
nate overall tissue function. The gut is continuously 
colonized with a diverse collection of microbes, collec-
tively referred to as the microbiota. The microbiota 
consists of bacteria, viruses including bacteriophages, 
fungi, and parasites with the bacterial components 
being best characterized.27 Diet and evolution have 
shaped the bacterial communities found in the healthy 
gut which are dominated by Bacteroidetes and 
Firmicutes.27,28 While there is great variation between 
individual people, there is extensive functional overlap 
between microbes.27 There is also variation within the 
intestine with the colon having the highest bacterial load 
and microbial diversity.29,30

Healthy intestinal function relies on maintaining 
a balanced microbial community and the microbiota 
provides a number of critical functions. Intestinal bac-
teria extract energy from indigestible food components 
and synthesize essential nutrients such as vitamins K and 
.27,31,32 Additionally, intestinal microbes modulate host 
cells to support barrier function and defend against 
pathogens.18,20,33 In a mechanism referred to as coloni-
zation resistance, the microbiota prevents pathogen 
colonization of the intestine. The microbiota performs 
this function by limiting essential nutrients, producing 
microbial metabolites or anti-microbial products, and 
activation of immune mediated protection.34 As demon-
strated in germfree mice, the microbiota is further cri-
tical for proper development of the intestine and gut 
immune system.11,35–37

The structure of the gut allows for multiple 
opportunities for interaction between cellular 
components of the ENS, immune system and 
intestinal epithelium (Figure 1). This organized 
structure also allows for transduction of signals 
between the lumen and the different structural 
layers such as the submucosa or muscular layer.

Role of intestinal microbiota in promoting GI 
functions

The initiation of bacteria-derived signaling relies 
on the recognition of numerous classes of mole-
cules. The best-characterized signals consist of con-
served bacterial structural components such as 
pathogen-associated molecular patterns (PAMPs) 
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that include lipopolysaccharide (LPS) from the cell 
wall of gram-negative bacteria, lipoteichoic acid 
from gram-positive bacteria, peptidoglycan, and 
flagellin.38 Receptors responsible for recognizing 
PAMPs, known as pattern recognition receptors 
(PRRs), include membrane-bound Toll-like recep-
tors (TLRs) and cytosolic nucleotide-binding oligo-
merization domain (NOD)-like receptors 
(NLRs).38–40 PRRs are expressed by IECs, immune 
cells, and enteric neurons and play critical roles in 
maintaining intestinal homeostasis by detecting 
microbe-derived signals.40–43 Due to the presence 
of the microbiota, the intestine is constantly 
exposed to a large number of microbial products 
and so these signals cannot be solely used to detect 
pathogenic organisms. How the intestine distin-
guishes between pathogenic and nonpathogenic 
organisms remains an active area of investigation.

IECs express low surface levels of TLRs and therefore 
have limited responsiveness to luminal microbial 
products.40,41,44 However, sensing of TLR ligands is 
crucial to support epithelial functions including tight 
junction protein expression, cell proliferation, and secre-
tion of mucus and anti-microbial peptides by goblet and 
Paneth cells.45,46 Epithelial sensing of microbial products 
induces chemokines and cytokines which helps shape 
subsequent immune responses and supports intestinal 
barrier repair.41,47 In parallel, microbial recognition by 
the immune system leads to the secretion of cytokines 
and other factors that further supports barrier function 
and repair.20

Interestingly, and in contrast to other body sites, 
PRR activation in intestinal LP macrophages does 
not lead to secretion of proinflammatory cytokines 
and this is likely due to tolerance gained by con-
stant exposure to bacterial signals.48–50 Intestinal 

Figure 1. Intestinal organization promotes functional interactions between enteric nervous system, immune system, and epithelium to 
support intestinal functions. Created with BioRender.com.

GUT MICROBES e1916376-3



macrophages and DCs in the gut secrete IL-10, 
TGF-β and other factors that limit inflammatory 
responses, including supporting the differentiation 
of Foxp3+ regulatory T (Treg) cells.50,51 In inflam-
matory conditions such as inflammatory bowel dis-
ease (IBD), intestinal macrophages become 
hyperresponsive to microbial signals and produce 
much of the inflammatory cytokines found in the 
tissue including TNFα49 and there is much ongoing 
work to understand this shift.

Microbial-derived signals are also important for 
normal ENS function. Mice deficient for TLR4, the 
main LPS receptor, or the TLR adapter protein 
myeloid differentiation primary response 88 
(MyD88) have significant delays in gastrointestinal 
motility with reduced numbers of nitrergic (NO2 
producing) neurons.52 This is likely a neuronal 
intrinsic defect as deletion of MyD88 in wnt-1 
derived neurons leads to a similar phenotype.52 

Further, in vitro incubation of enteric neuronal 
cells with LPS leads to NF-κB activation and 
increased cell survival.52 TLR2 is also expressed 
on enteric neurons and TLR2 deficient mice exhibit 
anomalies in ENS architecture with a reduced num-
ber of neurons in the myenteric ganglia resulting in 
intestinal dysmotility.53 TLR2 knockout mice are 
also deficient in smooth muscle glial cell line- 
derived neurotrophic factor (GDNF) that promotes 
neuronal survival and helps maintain ENS struc-
ture and function.53 Understanding how PAMPs 
regulate gastrointestinal motility will help to iden-
tify novel ways to utilize these signals to improve 
nutrient absorption.

Along with microbes themselves, microbe- 
produced metabolites play an essential role in mod-
ulating intestinal and systemic inflammation.54,55 

These metabolites include intermediate and end 
products metabolized from host dietary sources, 
host molecules, and microbial products.56 There is 
accumulating evidence suggesting that microbial 
metabolites can be recognized by host receptors 
such as PRRs and G-protein coupled receptors 
(GPCR), and induce pathways affecting a range of 
host responses including inflammatory responses.55

Short-chain fatty acids (SCFAs), such as butyrate, 
acetate and propionate, are microbial metabolites 
that regulate epithelium, immune system and ner-
vous system functions. SCFAs are recognized by 
common receptors including GPCR41 and 

GPCR43 as well as can also signal through unique 
receptors such as GPCR109a for butyrate and PSGR 
for acetate and propionate.57–59 SCFA are bypro-
ducts of fiber breakdown and are produced by obli-
gate anaerobes Firmicutes, Bacteroidetes, and 
Clostridium.59 Acetate, by protecting IECs from 
apoptosis can protect from lethal infection with 
enterohaemorrhagic Escherichia coli O157:H7.60 

The majority of butyrate, the primary energy source 
for colonic epithelial cells,61 is found in the colon 
lumen.62,63 Colonic epithelial cells metabolize buty-
rate through β-oxidation and the tricarboxylic acid 
pathway, consuming oxygen to favor anaerobic 
commensal bacteria over facultative anaerobic 
pathogens such as Escherichia coli and Salmonella 
enterica therefore preventing pathogen infection.61,64 

This anaerobic environment stabilizes hypoxia indu-
cible factor-1 (HIF-1), a transcription factor that 
regulates epithelial barrier function.65,66 In vitro, 
SCFA induce expression of tight junction and other 
barrier proteins, thereby increasing barrier 
function.67 Overall, the recognition of SCFAs by 
IECs maintains mucosal barrier function and pro-
tects the host against pathogen infection.

SCFAs have a number of anti-inflammatory effects 
on immune cells. Butyrate is a histone deacetylase 
(HDAC) inhibitor.57–59 In macrophages, butyrate 
decreases inflammatory cytokine production57,68 while 
also increasing microbial killing through increased pha-
gocytosis and anti-microbial activity.69 SCFAs also 
increase differentiation and function of Treg cells, 
including IL-10 production70–72 which limits pathology 
in colitis models.70,73 HDAC inhibition can be counter-
balanced by intestinal microbe metabolism of phytate to 
inositol-1,4,5-trisphosphate (InsP3) which also promotes 
epithelial growth and intestinal repair.74

SCFAs can also stimulate serotonin release by 
the sympathetic nervous system and influence cen-
tral processes such as memory and learning.75 

Butyrate, which can be recognized by the butyrate 
monocarboxylate transporter 2 in ENS neurons,4 

significantly increases the proportion of choline 
acetyltransferase expressing enteric neurons and 
increases cholinergic-mediated colonic circular 
muscle contractions and intestinal motility.76 In 
isolated colon segments, butyrate can increase and 
propionate can decrease fecal propulsion velocity.77 

Therefore, a balance of SCFAs in the lumen is 
necessary to achieve healthy gut motility.
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Another group of bacterial metabolites able to mod-
ulate gut physiology are products of tryptophan meta-
bolization. Tryptophan-derived metabolites including 
kynurenine, tryptamine, and indole regulate multiple 
intestinal functions through regulation of the aryl hydro-
carbon receptor (AHR) which also recognizes 
xenobiotics.78 Mice deficient in AHR in IECs have 
impaired stem cell proliferation in colonic crypts,77 sug-
gesting an epithelial intrinsic effect. AHR is also crucial 
for expanding Th17 cells and the production of IL-22 by 
Th17 cells and group 3 innate lymphoid cells (ILC3).79,80 

IL-22 is essential for intestinal barrier function as it 
promotes epithelial cell proliferation and goblet cell 
secretion of mucus.81 Due to lost IL-22, AHR deficient 
mice are highly susceptible to pathogens such as 
Citrobacter rodentium, a model for enteropathogenic 
Escherichia coli (EPEC) and enterohaemorrhagic E. coli 
(EHEC).80 AHR activation induces cytochrome P450 
(CYP1) enzymes to breakdown and clear AHR ligands. 
Overexpression of Cyp1a1 in IECs leads to reduced 
Th17 cells and ILC3 indicating a key role for epithelial 
cells in producing AHR ligands to regulate immune 
responses.82 Ahr is also expressed in enteric neurons 
with the highest expression in the colon.83 This is rele-
vant for gut motility because neuronal excitability genes 
such as Kcnj12 are downstream of AHR activation and 
treatment with antibiotics reduces Ahr expression along-
side delayed intestinal motility.83 This defect can be 
partially rescued by restoring neuronal Ahr expression, 
suggesting an important role for AHR in normal ENS 
function.83 Altogether, AHR is an important link 
between microbiota, diet and regulation of intestinal 
homeostasis.

Another important group of immune regulating 
metabolites is secondary bile acids. While the majority 
of bile acids are returned to the liver, a small fraction 
(approximately 5%) travel to the colon where they are 
converted into secondary bile acids by bacteria.84,85 Bile 
acids and their derivatives can modulate intestinal 
epithelium proliferation. While a primary bile acid, taur-
ine-conjugated cholic acid, promotes the proliferation of 
IECs, its unconjugated secondary counterpart deoxy-
cholic acid (DCA) inhibits proliferation in a farnesoid 
X receptor (FXR) dependent mechanism.86 In the LP, 
Lithocholic acid (LCA) derivatives 3-oxoLCA and 
isoalloLCA regulate T cell effector functions.87,88 

3-oxoLCA binds to the transcription factor RORγt and 
suppresses Th17 cell differentiation. IsoalloLCA pro-
motes Treg cell differentiation by upregulating 

mitochondrial reactive oxygen species leading to 
increased Foxp3 expression.87 β- hydroxydeoxycholic 
acid (isoDCA) increases RORγt+ Tregs in an FXR 
dependent manner.87,88

Bile acids and secondary bile acids also modulate 
intestinal motility. Bile acids in the lumen of the small 
intestine slow transit to allow for efficient nutrient 
absorption while in the colon they stimulate 
motility.89,90 This is an example of the tight regulation 
the gut needs in order to function efficiently.

Human bile acid receptors, such as the secondary bile 
acid G-protein–coupled bile acid receptor 1 (GPBAR1, 
also known as TGR5), are highly expressed on enteric 
neurons.91 DCA, a TGR5 agonist, inhibits intestinal 
motility.92 There is evidence to suggest that bile acids 
can cause abdominal pain hypersensitivity by modulat-
ing FXR in mast cells to secrete nerve growth factors 
resulting in sensitization of TRPV1 channels in the 
dorsal root ganglia.93 Together, bile acid metabolites 
support proper physiological function of the gut through 
regulation of intestinal T cell differentiation, ENS activa-
tion, and gut motility.

Collectively, microbiota and byproducts of digestion 
signal through intestinal epithelium, immune cells, and 
enteric nervous system to support proper gut function. 
Sensing of microbes or microbial products fortifies bar-
rier integrity, limits inflammation, and supports proper 
GI motility. More work needs to be done to define the 
intercellular networks and signaling between cells of 
each system to more clearly define how these individual 
signals are integrated.

Pathogenic Infection

During infection or damage, the host needs to sense 
and understand pathogenic signals in order to 
orchestrate a proper response. Because of the large 
load of commensal microbes, the intestine must 
integrate numerous signals to distinguish between 
harmless and pathogenic microbes. Additional 
danger and damage signals, including pain, toxins, 
and microbial persistence, help amplify signals to 
support an effective immune response.

In contrast with commensals, pathogens have addi-
tional functional systems that help them colonize the 
host tissue. An example is the type III secretion system 
(T3SS) used by pathogenic Gram-negative bacteria, such 
as Salmonella, to deliver bacterial proteins directly into 
the cytoplasm of host cells.38,94 Salmonella has two T3SS 
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which allow for epithelial cell uptake and intracellular 
survival in macrophages.95 Detection of the T3SS is 
a way for host cells to discriminate between pathogenic 
and commensal bacteria. T3SS are sensed by NLR family 
apoptosis inhibitory proteins (NAIPs) to activate 
NLRC4 inflammasome and induce secretion of IL-1β, 
leading to programmed cell death of macrophages.95–98 

In parallel, intracellular flagellin detection via NLR neu-
ronal apoptosis inhibitory protein 5 (NAIP5) and 
NAIP6 in the cytosol serves as a secondary signal to 
further promote the assembly of NLRC4 inflammasome 
and IL-1β production.99,100

Toxins produced by enteric pathogens are secreted 
factors that aid in the successful invasion of host cells 
and are an important etiology of pathogen-induced 
diarrheal diseases.101 Once a pathogen is attached to 
IECs, secreted toxins regulate water and electrolyte 
flux, form pores on target cells, regulate host cell protein 
synthesis, or affect the actin cytoskeleton to disrupt the 
intestinal epithelial barrier.102 For example, bacterial tox-
ins from Clostridium spp. disrupt intestinal tight junc-
tions by altering Rho GTPases and by interfering with 
actin ATPase activity.103,104 There are two main toxins 
produced by Clostridium difficile: TcdA and TcdB. Both 
inactivate Rho proteins and lead to increased intestinal 
permeability, disruption of chemotaxis, and cytoskeletal 
depolymerization.105 They can also disorganize F-actin 
and dissociate tight junction proteins occludin, ZO-1 
and ZO-2.106 Similarly, C. botulinum C3 toxin 

disassembles actin filaments and disrupts tight 
junctions.103 By disrupting the host mucosal barrier, 
toxins facilitate pathogen colonization of the host intes-
tine. Toxins can also induce protection. TcdA and TcdB 
also activate IEC apoptosis which limits the spread of 
C. difficile infection in vivo.107

The host immune system plays a key role in toxin- 
mediated defenses. After disruption of the gut epithelial 
barrier and induction of innate immune responses, 
C. difficile TcdA and TcdB inactivation of Rho GTPase 
leads to inflammasome activation and IL-1β 
production.108 TcdA and TcdB interfere with neuronal 
responses through inactivation of RhoGTPases. TcdB 
inhibits neurotransmitter release while TcdA causes 
release of substance P and calcitonin gene-related pep-
tide (CGRP) which stimulate intestinal secretion as well 
as inflamamtion109. Substance P and CGRP promote 
intestinal macrophage release of pro-inflamamtory cyto-
kines like TNFα.109,110

There are many other bacterial toxins that damage 
host systems and modulate their responses. IECs can 
detect very low levels of bacterial pore-forming toxins 
(PFT), including pneumolysin, alpha-hemolysin, strep-
tolysin O, and aerolysin.111 Bacterial PFTs damage the 
intestinal epithelium and disrupt barrier integrity.112,113 

Subcytolytic concentrations of these toxins phosphory-
late p38 MAPK in IECs resulting in proinflammatory 
responses early during infection.111 PFTs also contribute 
to pathogen spread by suppressing immune responses 

Figure 2. Coordinated sensing by the enteric nervous system, immune system and epithelium supports intestinal functions.
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including inhibiting neutrophil migration or lysing 
immune cells.112,113 Activation of the nervous system 
by bacterial toxins has been shown in the skin, where 
Staphylococcus aureus directly activates sensory neurons 
in the mouse via the toxins N-formyl peptides and 
alpha-hemolysin. These toxins upregulate sensory neu-
ron release of CGRP, galanin, and somatostatin and 
suppress S. aureus-induced innate immune activation 
by phagocytes, which have the highest neuropeptide 
receptor expression.25,114 It will be important to identify 
if similar systems function during intestinal infections.

Mechanical signals

While toxins and other microbial products can be 
recognized directly, cellular and tissue damage also 
activate warning systems and inflammatory 
responses. Stimuli such as stretch, heat, mechanical 
stress, pain, and cold are recognized by nociceptive 
sensory neurons as early signs of injury or infection 
and activate defense mechanisms.115,116 In addition 
to sensory neurons, nociceptive neuron activation 
can also release neuropeptides like substance P and 
CGRP, which will result in sensation of pain or 
burning.117

Stretch, an indirect indicator of digestion, 
growth, and gut distension, is recognized by noci-
ceptors like the Piezo channel mechanoreceptor. In 
drosophila, Piezo channels regulate the differentia-
tion of stem cells to enterochromaffin cells in the 
gut.118 Stretching and bending result in Piezo2 sig-
naling in IEC cells leading to serotonin release 
which regulates gut functions such as 
motility.119,120 These data suggest that the develop-
ment of a healthy epithelium requires mechanical 
and sensory signals. It remains unclear if mechan-
isms involved in gut development are used to 
restore a healthy barrier after infection. If so, these 
represent intriguing therapeutic targets.

In other mucosal sites like the lungs, mechanical 
responses like coughing can result in increased 
bacterial spread.121,122 Mycobacterium tuberculosis 
(Mtb) glycolipid sulfolipid-1 (SL-1) activates noci-
ceptive neurons in vitro, and Mtb lacking SL-1 
cannot stimulate a cough response in vivo.114,123 

As above, it will be interesting to identify if similar 
signaling occurs in the intestine.

Nociceptive neurons’ role in the gut during bacterial 
infections has not been completely elucidated.124 LPS 

and other bacterial cell wall components can sensitize 
TRPV1 and TRPA1 nociceptors, resulting in pain 
hypersensitivity.125,126 In the skin, S. aureus causes pain 
by interacting with Nav1.8 nociceptor neurons in a TLR 
independent manner.114 Activation of GABA receptors 
and TLRs by bacterial components can alter pain 
sensitivity.127 Food antigens can also sensitize abdominal 
pain by inducing food antigen-specific IgE antibodies 
and mast cell-dependent histamine release.128 

Nociceptor signaling is protective in some bacterial 
infections, such as Salmonella, where nocioceptor release 
of CGRP leads to reduced M cell density resulting in 
fewer entry points for Salmonella.129 Nocioceptor CGRP 
also increases colonization by commensal microbes that 
can further limit Salmonella infection.129

After the acute phase of infection or inflammation, 
the immune system releases soluble factors, such as 
resolvins and neuroprotectins, that indirectly desensitize 
nociceptive sensory neurons and reduce pain.130,131 In 
chronic conditions such as IBD, patients have increased 
expression of TRPV1 nociceptors alongside increased 
abdominal pain.132–134 However, the role of nociceptors 
in IBD is still unknown.

Substance P and CGRP receptors are also expressed 
by other cell types. Substance P is expressed by epithelial 
cells, several types of immune cells, and glia,135 while 
CGRP receptors are expressed by many immune cells. 
CGRP is released in response to TRPV1 activation dur-
ing tissue damage and activates immune populations 
including T cells, B cells, macrophages, mast cells, and 
dendritic cells to enhance immunity by promoting 
inflammatory cytokine secretion.136–138 CGRP also pro-
motes hematopoiesis as well as release of hematopoietic 
stem cells to the blood stream.138

Altogether, pain can be sensed by nociceptors in 
response to mechanical stretch and infections. The 
immune system regulates pain through pro- and 
anti-inflammatory mediators during steady state 
and disease. Similarly, pain acts as a danger signal 
during tissue damage. The cross-regulation 
between nociceptive neurons and the epithelium 
and immune system is used to maintain intestinal 
function as well as in defense after infection.

Concluding Remarks

A healthy and functional gut relies on proper responses 
to common signals in the intestine, including bacterial 
components, microbe-derived metabolites, and 
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mechanical signals. Different systems within the gut 
work together to sustain barrier integrity and defend 
against pathogens, and these systems are essential to 
maintain balanced immunity and normal digestive and 
absorptive functions of the gut (Figure 2).

In this review, we provide examples of how the host 
intestinal epithelium, immune and neuronal systems 
recognize and respond to common signals to support 
healthy intestinal function (Table 1). We discuss how 
these different systems promote responses against nor-
mal microbiota and microbiota products, pathogens, 
and mechanical signals. The host intestinal systems 
induce regulatory and protective responses to commen-
sal microbiota and defensive reactions to pathogens. 
Mechanical signals contribute to healthy intestinal func-
tions or can enhance pathogen infection or clearance 
depending on the source and type of signal.

While many studies demonstrate how individual sig-
nals regulate one aspect of the intestinal system, the 
underlying signaling network and detailed mechanisms 
are less understood. Further, how these signals influence 
each other and converge into one functional outcome is 
only beginning to be addressed. The complexity of the 
signaling network as well as the plethora of activating 
and inhibitory signals make it challenging to study these 
interactions. Additionally, well-developed in vitro and 
in vivo systems are necessary to properly model the 
architecture of the gut required for the dissection of 
molecules and signaling pathways. Together, the coordi-
nated response needs to be considered when attempting 
to manipulate intestinal function. Understanding the 
balance between these systems will allow us to design 
better therapeutics to target pathological states.
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