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Molecular transitions in early progenitors during
human cord blood hematopoiesis
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Abstract

Hematopoietic stem cells (HSCs) give rise to diverse cell types in
the blood system, yet our molecular understanding of the early
trajectories that generate this enormous diversity in humans
remains incomplete. Here, we leverage Drop-seq, a massively
parallel single-cell RNA sequencing (scRNA-seq) approach, to indi-
vidually profile 20,000 progenitor cells from human cord blood,
without prior enrichment or depletion for individual lineages
based on surface markers. Our data reveal a transcriptional
compendium of progenitor states in human cord blood, represent-
ing four committed lineages downstream from HSC, alongside the
transcriptional dynamics underlying fate commitment. We identify
intermediate stages that simultaneously co-express “primed”
programs for multiple downstream lineages, and also observe
striking heterogeneity in the early molecular transitions between
myeloid subsets. Integrating our data with a recently published
scRNA-seq dataset from human bone marrow, we illustrate the
molecular similarity between these two commonly used systems
and further explore the chromatin dynamics of “primed” tran-
scriptional programs based on ATAC-seq. Finally, we demonstrate
that Drop-seq data can be utilized to identify new heterogeneous
surface markers of cell state that correlate with functional output.
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Introduction

Hematopoiesis is the dynamic process by which a single hematopoietic

stem cell (HSC) can give rise to the breathtaking cellular diversity

present in blood, potentially representing tens to hundreds of distinct

cell types which can be loosely grouped into erythroid, myeloid, and

lymphoid lineages (Becker et al, 1963; Orkin, 2000; Orkin & Zon, 2008;

Seita & Weissman, 2010). However, despite enormous biological and

clinical relevance, the molecular trajectories that cells traverse during

lineage commitment remain poorly understood. Seminal experimental

work in the mouse has suggested a model where individual HSCs

undergo a sequential loss of pluripotency and pass through distinct

intermediate progenitors represented by a series of binary branchings,

with the first lineage decision representing either myelo-erythroid

or lymphoid specification (Kondo et al, 1997; Akashi et al, 2000).

Recent studies, however, have proposed both minor and major

alterations to the structure of the traditional model, for example

positing a direct path from HSC to erythroid and megakaryocytic

lineages (Adolfsson et al, 2005) or demonstrating diverse lineage

origins for myeloid cells (Franco et al, 2010; Drissen et al, 2016),

all highlighting a lack of consensus regarding the molecular nature

of early fate transitions in hematopoiesis. The evidence for each of

these models is based primarily on the enrichment of putative

progenitor cell populations from fluorescence-activated cell sorting

(FACS). Even slight differences in the surface markers utilized,

gating strategy for enrichment, or downstream assay conditions can

skew the output and interpretation of these experiments (Etzrodt

et al, 2014; Paul et al, 2015). Moreover, the protocols used to iden-

tify intermediate progenitor types can vary widely between different

laboratories, necessitating unsupervised approaches to define tran-

sition states at the single cell level (Levine et al, 2015; Nestorowa

et al, 2016). This is particularly true in human hematopoiesis, as

well-characterized markers in mouse (i.e., Sca-1) do not directly

translate to human systems (Doulatov et al, 2012).

By contrast, single-cell RNA-seq (scRNA-seq) can provide a

detailed molecular characterization of single cells that is highly

complementary to traditional differentiation or FACS-based phenotyp-

ing approaches (Chattopadhyay et al, 2014). Massively parallel

approaches that barcode cells in early stages of library preparation

have enabled the routine profiling of thousands of single cells (Jaitin

et al, 2014; Klein et al, 2015; Macosko et al, 2015), and the computa-

tional reconstruction of complex developmental processes (Haghverdi

et al, 2016; Setty et al, 2016; Qiu et al, 2017). For example, a

massively parallel scRNA-seq study of thousands of myeloid-

restricted cells from the mouse bone marrow poignantly demon-

strated that individual cells in this pool (which was depleted for the

early progenitors expressing stem cell marker Sca-1) had largely

committed to individual lineages (Paul et al, 2015). Additionally, a

recent pioneering study of human bone marrow CD34+ cells combin-

ing single-cell transcriptional and functional analysis (Velten et al,

2017) highlighted the continuous nature of early hematopoietic
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differentiation and concluded that lineage commitment was not char-

acterized by distinct branching during early transitions. In particular,

the study focused on the presence of a “cloud-like” population of early

multipotent progenitors (“CLOUD”) forming an interconnected hierar-

chy, which then gave rise to distinct lineage-committed populations.

These complementary datasets and findings suggest that oligopo-

tent progenitors may play a reduced role compared to initially

proposed hierarchical models, but raise a pressing question for

human hematopoiesis: Can all progenitors be stratified into either

fully uncommitted or unipotent populations? Additionally, is there

molecular evidence for multilineage priming in early progenitors,

perhaps evidenced by co-expression of multiple genes in early cells

that later become restricted to a single lineage? A deeper explo-

ration of these questions could help bridge the insights derived

from scRNA-seq and complementary techniques, including in vivo

barcoding assays and both in vivo and in vitro differentiation exper-

iments, all of which reveal evidence for oligopotent states, albeit

with non-uniform lineage outputs (Doulatov et al, 2010; Kohn et al,

2012; Naik et al, 2013; Lee et al, 2017; Pei et al, 2017). In particu-

lar, recent work suggested that human umbilical cord blood could

be a particularly attractive model to study, as this system contains a

greater percentage of cells in oligopotent intermediate states

compared to adult bone marrow (Notta et al, 2016).

In this study, we applied Drop-seq to individually sequence 21,306

stem and progenitor cells from umbilical cord blood, representing five

healthy donors. Our data revealed the presence of single-cell clusters

whose expression profiles were in tight agreement with previously

defined progenitor populations, in addition to the presence of distinct

myeloid progenitor subtypes. Importantly, we also observed a contin-

uum of transitioning states that link these progenitor groups, enabling

us to computationally reconstruct molecular trajectories connecting

HSCs to four hematopoietic lineages. Our scRNA-seq data revealed

strong evidence for recently proposed models that human myeloid

cells can arise from distinct trajectories, with a subset of granulocytes

sharing early molecular transitions with erythroid progenitors. We

also observed that early progenitors co-expressed “primed” expres-

sion programs, associated with the commitment to multiple down-

stream lineages, indicating multilineage priming within intermediate

stages. By integrating scRNA-seq datasets from cord blood and bone

marrow, we further demonstrated strong molecular conservation in

both systems and identify epigenetic trends that correlate with tran-

scriptomic dynamics using a bone marrow bulk ATAC-seq dataset.

Finally, we show that by coupling scRNA-seq with immunophenotyp-

ing measurements, Drop-seq data can be used to suggest new hetero-

geneous markers of cell state and potential, which we validate

through in vitro differentiation assays. Our results shed new light on

the molecular nature of early fate transitions in human hematopoiesis

and highlight the exciting potential for high-throughput single-cell

analysis to deconvolve complex developmental systems.

Results

Unsupervised identification of cellular diversity in human CD34+

cord blood cells

In order to characterize cellular heterogeneity at early stages of

human hematopoiesis, we applied a recently developed massively

parallel single-cell library preparation technique, Drop-seq

(Macosko et al, 2015), to sequence progenitor cells from human

cord blood samples. The cord blood CD34+ pool has been widely

accepted as a rich source of hematopoietic stem and progenitor cells

(Broxmeyer et al, 1989; Gluckman et al, 1989; Nimgaonkar et al,

1995), and we therefore sought to minimize our sample preparation

steps prior to single-cell profiling, using enriched CD34+ cells from

five umbilical cord blood units with density centrifugation and

magnetic separation (Materials and Methods; Fig 1A). In Drop-seq,

single cells were co-encapsulated with barcoded beads in oil-based

droplets, followed by pooled library preparation, sequencing, read

alignment, and gene quantification based on unique molecular iden-

tifiers (UMIs), as previously described (Macosko et al, 2015). We

selected input concentration for cells and micro-particles, as well as

their corresponding flow rates during the microfluidic runs (Materi-

als and Methods), to aim for a doublet rate of 1–2% according to

human–mouse species-mixing experiments. Overall, our dataset

contains 21,306 single cells across five biological replicates after

initial filtering based on technical metrics (Materials and Methods),

with an average of 27,513 mapped reads/cell. In total, 30,730 genes

were detected across all cells, and 1,046 genes and 2,154 UMIs were

assigned to each cell on average. We applied a latent variable model

to control for cell cycle effects and technical covariates in our data

(Buettner et al, 2015).

We next sought to identify the transcriptional subtypes and states

comprising the CD34+ progenitor pool. We extended our previously

developed clustering strategy from Drop-seq data (Macosko et al,

2015; Satija et al, 2015) to reveal the presence of transcriptionally

defined cellular subpopulations, across a wide range of abundances

(15–0.4%). Briefly, we determined clusters by first reducing the data

to 24 independent components, and then identified distinct clusters

using a community detection strategy that has recently been applied

to CyTOF data (Levine et al, 2015; Materials and Methods). We

identified a few rare clusters that likely represented CD34low/� cells

that passed through our column, including CD3+ T, KLRB1+ NK

cells, MS4A1+ B cells, and C5AR1+ myeloid cells, and excluded

these cells from additional analyses (Fig EV1A and B). Figure 1B

shows a heat map of the remaining 19,394 cells, representing ten

clusters, alongside the strongest transcriptional markers for each

subpopulation (Materials and Methods; Table EV1). We further veri-

fied that our clustering results are consistent across a range of

parameter settings, by repeating single-cell clustering over paired

combinations of five resolution parameters and five nearest-

neighbor numbers, creating 25 clusterings in total (Materials and

Methods). As shown in Fig EV1C, pairs of cells that clustered

together in the original analyses consistently clustered together

across parameter settings. We therefore conclude that our original

clustering faithfully represents our single-cell data and is not tuned

to particular parameter values. The percentage of cells assigned to

each cluster was highly consistent across all five biological repli-

cates (Fig 1D and Table EV2; average R = 0.94), demonstrating that

our five independent cord blood units spanned the same range of

gene expression states, and at similar densities.

We next sought to understand if the clusters we identified from

the total CD34+ population contained subpopulations that were

consistent with well-described progenitor populations. We

compared our data to a recently published microarray reference

dataset, containing bulk expression profiles for sorted populations
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(Laurenti et al, 2013; Materials and Methods). Strikingly, we

observed near-perfect overlap for many of our clusters with these

profiles, enabling us to assign putative biological identities (Fig 1C).

For example, cluster 3 (C3) was characterized by erythroid fate

regulators and markers GATA1, CD36, and KLF1 (Pevny et al, 1991;

van Schravendijk et al, 1992) and the entire set of markers we
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Figure 1. Identification of progenitor states in human cord blood hematopoiesis.

A Schematic of experimental workflow, consisting of column-based CD34 enrichment from human cord blood mononuclear cells, followed by Drop-seq.
B Single-cell heatmap of 19,394 cord blood progenitors. Shown are ten progenitor states identified from graph-based clustering, and their strongest transcriptional

markers. For visualization, expression for each gene is scaled (z-scored) across single cells.
C Marker enrichment tests (Materials and Methods) comparing Drop-seq clusters and reference cell types from Laurenti et al (2013). Our unbiased clustering recovered

well-characterized progenitor states, but we did not observe a cluster consistent with a traditional common myeloid progenitor (CMP).
D Compositional makeup of five independent cord blood units (CBUs). The width and color of each slice correspond to the percentage of cells in each CBU represented

in each cluster.
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identified in C3 were highly enriched for expression in the MEP

reference microarray profiles (Fig 1C). Similarly, we assigned C6 to

an HSC/multipotent progenitor (MPP) identity, C9 to the granulo-

cyte/macrophage progenitor (GMP), and C10 to the multilymphoid

progenitor (MLP). We also identified a second cluster similar to

HSC (C5), expressing similar markers as well as ZFP36 and a set of

small RNAs, potentially representing HSC in a different metabolic

state (Cheung & Rando, 2013). We did not, however, discover a

cluster whose gene expression patterns were consistent with a

common myeloid progenitor (CMP) state. This observation is

consistent with the possibility that the currently defined human

CMP represents a heterogeneous mixture of erythroid and myeloid-

primed progenitors, as has recently been demonstrated in single-cell

analyses of murine bone marrow (Paul et al, 2015; Perié et al,

2015).

We also identified distinct groups of cells that were not identified

in previous reference datasets. For example, gene expression of C2

was similar to our MEP subgroup, but contained unique upregula-

tion of genes whose expression has been previously associated with

the development of mast cells (TPSAB1, a mast cell specific

protease), basophils (LMO4; Paul et al, 2015), and eosinophils

(MS4A2, FCER1A; Eon Kuek et al, 2016). Notably, in contrast to our

GMP-like cluster (C9), C2 cells did not express neutrophil or mono-

cytic genes, such as MPO, ELANE, LYZ, or CSF3R (Lau et al, 2005;

Rotival et al, 2011). We therefore suspected these cells represented

Basophil/Eosinophil/Mast cell progenitors (Ba/Eo/Ma), potentially

similar to a FCeRIa+ population that was recently identified and

validated in human bone marrow as an early precursor of mast cells

(Dahlin et al, 2016). Cluster 1 was uniquely marked by high expres-

sion of clear megakaryocytic (Mk) markers including PF4, ITGA2B,

and CLEC1A, suggesting a putative Mk progenitor identity for C1

cells.

Additionally, our CD34+ subsets also consisted of transitioning

populations that are abundant in human hematopoiesis, but lack

well-characterized surface markers. For example, C4 cells lacked the

expression of mature erythroblast markers, but expressed high

levels of GATA2 and KIT, likely representing a transitioning popula-

tion along the early stages of erythroid commitment. Similarly, clus-

ters 7 and 8 were marked by elevated expression of FLT3 and CSF3R

with gradually reduced levels of stem cell markers, likely represent-

ing populations similar to the lymphoid-primed multipotent progeni-

tor (LMPP) that have previously been described in mouse

(Adolfsson et al, 2005). These populations also exhibited high

expression of L-selectin (SELL; CD62L), consistent with a recent

study which identified CD62L as an early marker of lympho-myeloid

fate commitment in human bone marrow (Kohn et al, 2012). Taken

together, we conclude that our broad sampling strategy enabled us

to capture the continuous spectrum of blood differentiation, includ-

ing both metastable progenitor states, as well as a spectrum of tran-

sitioning cells in between.

Computational reconstruction of the early hematopoietic
fate transitions

While clustering analyses are useful for categorizing cellular hetero-

geneity, they impose a discrete framework. We reasoned that the

continuity of hematopoietic differentiation (Bendall et al, 2011,

2014; Macaulay et al, 2016) could enable us to resolve the global

topology of the clusters we had identified. We therefore designed a

computational strategy for global and unbiased reconstruction of

differentiation trajectories from single-cell data (Fig 2A). Our strat-

egy was tailored toward the reconstruction of cell-state hierarchies

in scRNA-seq data, but shared an approach with pioneering meth-

ods that have been developed for recovering branched trajectories

in CyTOF data (Qiu et al, 2011). Briefly, we began by “micro-

clustering” our dataset, subdividing our clusters into bins of 20 cells

based on their relative developmental progression. Our choice of

n = 20 was motivated by the desire to reduce technical noise while

maintaining the high resolution of our continuum, and we observed

a saturation in micro-cluster similarity with increasing values of n.

(Materials and Methods; Fig EV2A). These micro-clusters therefore

evenly spanned the hematopoietic continuum, yet gene expression

variability within an individual micro-cluster was consistent with

stochastic Poisson noise generated from a homogeneous population

(Fig EV2B–D). Genes that were excluded from clustering analysis

also exhibited Poisson noise within a micro-cluster (Fig EV2C). We

therefore represent each micro-cluster by the average expression of

all its cells, dramatically reducing the noise in scRNA-seq data

driven by sparse sampling, with an average of 6,858 genes per

micro-cluster.

We then identified the hierarchy of the micro-clusters using

minimum spanning trees (MSTs), a commonly used approach for

reconstructing topological relationships by learning the most

parsimonious set of paths connecting all data points (Qiu et al,

2011; Trapnell et al, 2014). Notably, we used a bootstrapped

approach to assess the reproducibility, by repeatedly running the

spanning tree estimation on subsamples of our dataset, and

ensuring that our results represent a single robust and highly

branched hierarchy. Though the spanning tree is unrooted, we

oriented the tree so that the HSC sits atop the hierarchy, while

Erythroid (Er), Basophil/Eosinophil/Mast (Ba/Eo/Ma), Neutro-

phil/Monocyte (Neu/Mo) and Lymphoid (Lym) progenitors are

the terminal leaves (Figs 2B and EV2E). For the hierarchical rela-

tionships relating HSC to four downstream fates, we obtained

identical results in 100% of the 500 bootstraps. We also obtained

similar results using Monocle, which performs dimensionality

reduction using independent components analysis, demonstrating

that our results were robust across low-dimensional representa-

tions of the data (Fig EV2F). However, our bootstrapping revealed

inconsistencies in the placement of Mk-committed progenitors

(Fig EV2G and H), likely related to their rarity (0.4%), and we

therefore focused on the remaining lineages for which we could

draw robust conclusions, shown in Fig 2C, along with the

dynamic expression levels of illustrative key developmental regu-

lators and markers (Fig 2D).

Our computationally reconstructed hierarchy correctly predicts

that the initial transition out of multipotency is marked by a reduc-

tion in HSC markers, and concomitant upregulation of CDK6,

which has been shown to control the exit from quiescence in cord

blood hematopoiesis (Laurenti et al, 2015). We next observed two

intermediate states connecting HSC/MPP to the committed progeni-

tors. As shown in Fig 2B, the intermediate states did not separate

into clear binary fate choices, echoing recent findings that early

progenitors exist in a low-primed and continuous state (the

“CLOUD”; Velten et al, 2017). However, as cells progressed and

continued to downregulate HSC markers, we observed segregation
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of intermediate progenitors into more distinct fate choices (Fig 2B),

even prior to the commitment to a single lineage. One path was

characterized by the upregulation of transcription factors and cell

surface proteins that are commonly associated with the LMPP in

both mouse and human, namely, FLT3, CSF3R, and SELL. This

early fate transition is reflected in the differential expression of

hundreds of downstream genes (Fig 3A) and is in tight agreement

with revised hematopoietic models in both human and mouse that

feature a lympho-myeloid-competent progenitor cell lacking

erythroid potential (Adolfsson et al, 2005; Kohn et al, 2012). LMPP

cells subsequently subdivided into MPO-expressing neutrophil/

monocyte progenitors, or MME (CD10)-expressing lymphoid

progenitors (Galy et al, 1995), recapitulating well-established

human hematopoietic models (Doulatov et al, 2012; Notta et al,

2016).

Distinct transcriptomic trajectories give rise to distinct
myeloid subsets

Alternately, a separate path was marked by the sharp upregulation

of GATA2, alongside a robust gene set whose expression was widely

shared between the Ba/Eo/Ma and Er lineages, but absent from

LMPP and Neu/Mo progenitors. These included both well-studied

(GATA1/2, IKZF2, STAT5A), and putative (AFF2, ZBTB16, BMP2K,

CTNNBL1) regulators (Figs 3E and EV3A). We therefore conclude

that the upregulation of GATA2 coincides with the entry into an

intermediate state resembling an “erythro-myeloid” progenitor

(EMP), a recently described oligopotent progenitor state in mouse

bone marrow that is largely driven by the activity of GATA factors

(Drissen et al, 2016). Notably, genes that were induced during the

transition from HSC to LMPP—FLT3, CSF3R, SELL, CD99—were
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absent from the GATA2-dependent trajectory, including the Ba/Eo/

Ma progenitors, but maintained high levels of expression in Neu/

Mo progenitors.

Taken together, our data strongly suggest that different myeloid

subpopulations are generated via strikingly distinct trajectories. In

particular, the early stages of Neu/Mo differentiation are character-

ized by molecular features that are shared with early transitions

accompanying lymphoid commitment, passing through an LMPP-

like state as previously described in well-established models (Adolf-

sson et al, 2005; Doulatov et al, 2010; Kohn et al, 2012). By

contrast, a smooth path from HSC to Ba/Eo/Ma begins with the

induction of GATA2, alongside a module of genes that are often

associated with the early stages of erythroid development, repre-

senting an EMP-like intermediate stage.

While our reconstructed models represent computational

hypotheses derived from “snapshot” data, they provide
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Figure 3. Transcriptional dynamics during lineage commitment.

A Heatmap exhibiting transcriptional dynamics of nine distinct gene modules during fate transitions. Data represent scaled gene expression for the 963 micro-clusters,
which are grouped by branch annotation, and ordered by increasing developmental progression (distance from the MST root—micro-cluster with the highest AVP
expression; Materials and Methods). The top 20 markers for each cluster are shown; the module labels for all 517 “branch-dependent” genes are listed in (Table EV3).

B Mean expression for each module, displayed across four trajectories as a function of normalized developmental progression (Materials and Methods), connecting
HSC/MPP to each of four downstream lineages.

C Biological GO term enrichments for genes in each transcriptional module.
D We observe enrichments for PU.1 (ETS) or GATA2 motifs in the upstream regions of all nine gene modules. Enrichments correspond to enrichment scores from

i-cisTarget (Imrichová et al, 2015; Herrmann et al, 2012).
E Transcriptional dynamics of GATA and ETS motif binding transcription factors across all four trajectories, using the same color scheme as (B). A local polynomial

regression with span = 0.9 was used for smoothing, with the underlying gene expression data shown as individual points. Additional genes are shown in Fig EV3A.
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complementary evidence for a recently proposed revised

hematopoietic model in mouse, where distinct myeloid subsets

are generated through GATA-dependent and GATA-independent

pathways. Our results suggest that this model is also relevant for

human hematopoiesis (Drissen et al, 2016). Indeed, previous

functional data also supported a similar model in humans

(Görgens et al, 2013), but was dependent on surface marker

enrichment and is complemented by our unsupervised molecular

characterization. As the Ba/Eo/Ma progenitor is missing from

standard human hematopoietic models, we therefore intersected

markers of this population with the Laurenti reference dataset

(Laurenti et al, 2013) and observed that our Ba/Eo/Ma markers

(e.g., TPSAB1, HDC) were most highly expressed in the “MEP”

gate, indicating that these progenitors express an immunopheno-

type that mixes them into a traditional MEP gate (Fig EV3B). As

a phenotypic validation, we used flow cytometry to examine the

surface phenotype of CD34+ CD117+ FceRIa+ cells, representing

a recently identified mast cell progenitor (Fig EV3C), and found

that > 95% of cells in this gate expressed high levels for the

transferrin receptor (TFRC/CD71), a marker commonly used to

enrich for erythroid-committed cells (Fig EV3D, Dong et al, 2011).

Taken together, these data suggest that the Ba/Eo/Ma progenitor

is transcriptomically and immunophenotypically similar to

erythroid-committed cells, consistent with a model where the dif-

ferentiation trajectories of the two lineages share early upstream

molecular transitions.

Characterizing “primed” and “de novo” transcriptional dynamics

Our reconstructed hierarchy provides a rich scaffold to understand

the molecular transitions underlying fate commitment from HSC to

downstream lineages. To globally identify genes involved in fate

transitions, we designed an unsupervised strategy to select genes

with dynamic expression across the hierarchy. Briefly, we assigned

pseudo-temporal time points to each micro-cluster according to

their positions on the hierarchy, and individually examined the

transition from stem cells to each committed lineage to look for

genes differentially expressed during individual key fate transition

(Materials and Methods). We note that the strategy for gene calling

was based on the identification of “branch points” within the

topology. This represents a simplification of our data, which show

gradual commitment in early progenitors as opposed to distinct and

clear branching patterns, but enabled us to perform differential

expression. More importantly, when identifying dynamic genes, we

placed more weight on micro-clusters that were further from the

initial “branch point”, consistent with the increasing degree of

segregation that we observe in our data. Together, we identified a

total of 517 genes having mRNA levels correlated with temporal

progression of cell fates. We next performed k-means clustering to

group together genes with similar transcriptional dynamics across

the entire hematopoietic hierarchy, identifying nine gene modules

with distinct temporal and lineage patterns (Fig 3A and B;

Table EV3).

We first performed GO enrichment analysis (Kuleshov et al,

2016) for each module and found that functional enrichments

were in broad agreement with expression dynamics, including

“hemopoiesis” and “erythrocyte differentiation” for Er-related

programs, “defense response” for Neu/Mo modules, and

“lymphocyte proliferation” for lymphoid markers (Fig 3C). We

also searched the 20-kilobase regions around transcription start

sites (TSSs) of genes within each module for over-represented

motifs (Herrmann et al, 2012; Imrichová et al, 2015) and found a

strong separation between gene sets whose expression varied

between early progenitor states. All gene sets upregulated in the

LMPP and downstream cells were strongly enriched for ETS motifs

(Fig 3D), which can be bound by PU.1, ETS1, ELK4, and other

transcription factor families (Sharrocks, 2001). These motif enrich-

ments mirrored the expression patterns of the transcription factors

themselves (Figs 3E and EV3A), as regulators with ETS-binding

domains exhibited higher expression in LMPP compared to EMP.

In contrast, genes upregulated in the EMP exhibited strong enrich-

ments for GATA motifs, again mirroring the expression dynamics

of GATA factors.

Our gene modules also exhibit complex patterns that extend

beyond the concept of cluster markers. For example, the final four

gene clusters contain genes that are specific to either Neu/Mo or

lymphoid progenitors; however, these clusters differ significantly

in their expression patterns upstream (Fig 3B). MME (CD10) is a

canonical marker of lymphoid committed cells (Galy et al, 1995).

While it is not expressed in early progenitors, it is activated “de

novo” after the lymphoid restriction (“de novo” lymphoid genes).

In contrast, the lymphoid-malignancy marker CD52 (Rodig et al,

2006) was detected as early as the HSC and maintained its expres-

sion throughout lymphoid differentiation, but was downregulated

during fate commitment for all other lineages (“primed lymphoid”

genes).

We observed that markers for multiple lineages could also be

segregated into “primed” and “de novo” programs. In Neu/Mo

progenitors, we identified “de novo” activation of specific markers

and regulators (MPO, CEBPA), but also observed “primed” expres-

sion of canonical myeloid receptors (CSF3R, IL17RA) (Jovanovic

et al, 1998; Martinez, 2009), whose expression was selectively

downregulated during lymphoid commitment. We observed similar

patterns for EMP fate commitment as well (Fig 3A and B), allowing

us to name other modules as “primed”/“de novo” Neu/Mo,

“primed”/“de novo” EMP, “de novo” Er and “de novo” Ba/Eo/Ma

programs according to their dynamic pseudo-temporal patterns

(Table EV3).

Our computational hierarchy suggests that subsets of early

progenitors have molecular profiles consistent with transcriptomi-

cally intermediate states. Indeed, our LMPP populations co-express

the “primed” lineage programs for both lymphoid and Neu/Mo

lineages, but have yet to activate the “de novo” programs for either

lineage. Similarly, the HSC populations co-express primed programs

for all downstream lineages simultaneously. Our data are therefore

consistent with a model where the early fate transitions in cord

blood hematopoiesis pass through molecularly intermediate states,

with fate restriction occurring via the downregulation of “primed”

expression programs, alongside activation of “de novo” genes.

Notably, the expression of “primed” genes echoes the functional

output of these progenitors populations: HSC can give rise to all

downstream lineages, while LMPP lose erythroid potential,

concomitant with a downregulation in “primed” EMP genes, in

agreement with a model where the presence or absence of multilin-

eage transcriptional priming encodes cellular potential (Hu et al,

1997).
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Early lineage priming is conserved between human bone marrow
and cord blood

While our developmental hierarchy and transcriptional dynamics

were based on CD34+ cells collected from umbilical cord blood, we

asked whether our conclusions were unique to this system, or were

consistent with CD34+ cells in human bone marrow. Specifically,

we wished to ask (i) whether similar transcriptional states and

markers could be used to define progenitor populations in both

tissues; (ii) if so, whether Neu/Mo and Ba/Eo/Ma myeloid subsets

in bone marrow exhibited distinct expression of “primed” programs

as we observed in cord blood; and (iii) if present, do “LMPP” cells

in bone marrow co-express “primed lymphoid” and “primed Neu/

Mo” modules as we see in cord blood. To facilitate this comparison,

we applied our recently developed single-cell integration approach

to our Drop-seq micro-clusters, and a bone marrow CD34+ dataset

profiled with Quartz-Seq (Velten et al, 2017). This approach applies

canonical correlation analysis (CCA) and non-linear warping tech-

niques to “align” subpopulations that exist in both datasets, based

on shared sources of variation (preprint: Butler & Satija, 2017). We

have previously demonstrated that this method can successfully

align two murine datasets of bone marrow hematopoietic progeni-

tors produced with two different technologies, and therefore asked

whether we could detect shared subpopulations between two

human hematopoietic tissues.

Indeed, integrated analysis successfully aligned both datasets

(Fig 4A), with bone marrow CD34+ cells mapped to each of our

Drop-seq progenitor states: HSC/MPP, LMPP, EMP, Er, Ba/Eo/Ma,

Neu/Mo, and Lym progenitors (Fig 4B). Strikingly, markers defin-

ing these states were extremely well conserved in both datasets,

even though they were measured in different tissues, individuals,

and technologies (Figs 4C and EV4A), and tSNE visualization was

strongly consistent with the same developmental hierarchy as we

observed in umbilical cord blood. Cell type proportions were similar

between the two tissues, though we did observe a proportional shift

toward more committed progenitors in bone marrow, consistent

with the results from Notta et al (2016) (Fig EV4D). Importantly,

we observed that the annotations remained highly consistent when

we randomly sampled 500 cells from the bone marrow dataset, and

repeated the alignment procedure (Fig EV4E).

We next examined the expression of “primed” programs in the

early progenitor subsets. Here, we applied a scoring method devel-

oped by Tirosh et al (2016) to measure the expression level of a

gene module in each cell while controlling for sampling-induced

sparsity and dropout. Expression scores for “primed” modules

mirrored the patterns we observed in cord blood (Fig EV4B and C).

In particular, Ba/Eo/Ma downregulated “primed” genes associated

with LMPP, while upregulating primed “EMP” genes compared to

HSC/MPP, while Neu/Mo progenitors exhibited opposing patterns

(Figs 4D and EV4B). Cells mapping to bone marrow LMPPs also

revealed the same multilineage priming phenomenon as seen in

cord blood, exhibiting co-expression of “primed” lymphoid and

“primed” Neu/Mo modules, and HSC/MPPs were simultaneously

enriched for “primed” expression programs for all downstream

lineages (Figs 4D, and EV4B and C). Taken together, we conclude

that the transcriptional states and molecular transitions we observed

in cord blood replicate in an integrated analysis of human bone

marrow.

Epigenetic reinforcement of molecular transitions

While our Drop-seq experiments focus on RNA expression, epige-

netic changes, such as the remodeling in chromatin accessibility,

are primary determinants of cellular potential. Given the molecular

conservation we observed between bone marrow and cord blood,

we therefore leveraged a recently published ATAC-seq dataset of

human bone marrow hematopoiesis (Corces et al, 2016) to integrate

chromatin dynamics alongside our transcriptional models. We used

ATAC-seq data from HSC, MPP, LMPP, CLP, GMP, and MEP for our

analyses, as we have shown (Fig 1C) our Drop-seq clusters are tran-

scriptomically similar to traditional gating for these cell types.

Though we did not discover a “CMP” cluster, we included this

population in our ATAC-seq analyses as well, as we expect this gate

to comprise a heterogeneous mix of EMP and erythroid-committed

cells.

We first asked whether the hematopoietic hierarchy calculated

from our transcriptomic data was reflected in chromatin accessibil-

ity. Each open chromatin region was annotated and linked to the

closest TSS, and we identified the 2,000 most variable regions as

inputs for principal component analysis (PCA) across progenitor

types, which demonstrated that PCs 1 and 2 echoed the structure of

our predicted hematopoietic hierarchy (Figs 4E and EV4F). Consis-

tent with this, when we projected ATAC-seq peaks that were adja-

cent to genes from our transcriptomic clusters onto this PCA, we

found that EMP-dependent genes and LMPP-dependent genes

projected to opposing sides of the PC1 axis (Fig 4F). Notably, while

the ATAC-seq dataset did not contain specific sorting of Ba/Eo/Ma

progenitors, genes associated with this lineage showed similar PC1

scores to genes involved in erythroid differentiation, while Neu/Mo-

associated genes grouped with lymphoid regulators. Furthermore,

when we calculated global gene-level accessibility dynamics in

ATAC-Seq (Materials and Methods), we found that these mirrored

the transcriptional dynamics we observed for “primed” and “de

novo” gene modules (Figs 4G and EV4G). ATAC-seq peaks for

“primed” genes exhibited high levels of accessibility in early progen-

itors, with HSC and LMPP exhibiting multilineage epigenetic prim-

ing for these loci as well. Accessibility was maintained, however,

only during the transition toward a single lineage; for example, we

observed sharp decreases in accessibility for primed lymphoid genes

in the LMPP to GMP transition, though accessibility was maintained

in CLP progenitors. Genes in “de novo” modules exhibited low

accessibility in upstream progenitors and were specifically remod-

eled upon transcriptional activation (Fig EV4G). Therefore, interme-

diate stages exhibit evidence for multilineage priming at both the

transcriptomic and epigenetic levels.

While global dynamic patterns were consistent between epige-

netic and transcriptomic data, when we closely examined individual

gene promoters containing multiple distinct accessibility sites, we

observed surprising cases where adjacent peaks had strikingly

distinct epigenetic dynamics despite likely regulating the same gene.

For example, Fig 4H exhibits how an accessible region adjacent to

the CSF3R promoter is consistent with its “primed myeloid” tran-

scriptional dynamics, by being enriched in HSC, MPP, LMPP, and

GMP. However, another peak 5 kb upstream exhibits opposing

patterns and is most accessible in MEP, which is depleted of CSF3R

transcript according to RNA-seq data. While these “inconsistent”

peaks were in the minority (representing 17% of all ATAC-seq
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peaks), we observed these patterns for each transcriptomic gene

module (Fig EV4H).

To confirm that such inconsistency is global across transcrip-

tomic gene modules, and to explore their patterns of motif

enrichment, we classified all peaks both by the transcriptional

patterns of their adjacent gene, as well as by their maximally acces-

sible progenitor type. As an example, we focused on peaks located

near lymphoid genes, performing motif enrichment analyses (Heinz
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et al, 2010; Materials and Methods) on peaks that were maximally

accessible in the CLP (“consistent peaks”), and peaks that were

maximally accessible in MEP (“inconsistent” peaks). We found that

consistent peaks were strongly enriched for ETS and bHLH motifs,

though we also discovered specific enrichments for lymphoid regu-

lators (i.e., EBF1; Fig 4I). Inconsistent peaks, however, lacked ETS

motifs and exhibited striking enrichment for GATA motifs instead,

even though they were adjacent to the same set of genes. When

reversing the analysis and focusing on EMP genes we observed the

same phenomenon: “Inconsistent” peaks lacked GATA motif

enrichment, and instead contained motifs for lymphoid lineage

regulators. These analyses suggest that the accessibility of these

peaks is driven primarily by the motifs they contain, instead of the

transcriptional dynamics of the adjacent gene. The minority of

“inconsistent” peaks may not affect gene expression, or alternately,

they may suggest cross-antagonism in early fate transitions by

potentially acting as repressive elements. ETS and GATA-binding

factors have been previously demonstrated to act as both activators

and repressors for a subset of key promoters (Starck et al, 2003),

and future functional experiments will illuminate if a subset of

these “inconsistent” peaks represent similar phenomenon.

Coupling single-cell immunophenotyping with transcriptomics

We wondered how cells in our Drop-seq clusters might fall into

traditional gating strategies, and also whether our Drop-seq data

could be used to propose novel surface markers to enrich for early

progenitors primed to different fates. We therefore designed a strat-

egy to couple the unbiased nature of our Drop-seq data with tradi-

tional immunophenotyping assays, as shown in Fig 5A. Single cells

were isolated into individual wells of 96-well plates using index-

sorted FACS, enabling us to measure and store the immunopheno-

type of each cell. We next processed single cells using a modified

version of the SMART-Seq2 protocol (Materials and Methods). In

order to map the transcriptomes of these cells to our Drop-seq

progenitor populations, we used a random forest-based classifier

(Wright & Ziegler, 2015) to assign each cell onto one of our

hematopoietic stages from the Drop-seq data (Fig 2B). Effectively,

this strategy enabled us to project the index sorting data onto our

hematopoietic hierarchy.

We first sorted a plate of CD34+, CD117+, FceRIa+ cells

(Fig EV3C), representing a recently identified mast cell specific

progenitor, and indexed on the level of TFRC (CD71), a surface

protein commonly used as marker for Er-committed cells (Dong

et al, 2011). We saw that 83% of these cells projected to our Ba/

Eo/Ma progenitor (Fig 5B), and the group overall exhibited high

expression of “de novo” EMP and “de novo” Ba/Eo/Ma transcrip-

tional programs. Alongside our results showing CD71 expression on

mast cell progenitors (Fig EV3D), we therefore conclude that our

Ba/Eo/Ma population does represent a “bona fide” granulocyte

progenitors, and has traditionally fallen within “MEP” standard

gates.

We then focused our experiments on CD34+ CD38� CD45RA+

cells (expected to represent LMPP and early downstream progeni-

tors) and selected 865 profiled cells after filtration, together with the

indexed protein levels of the well-characterized lymphoid marker

CD10, as well as two putative markers from our Drop-seq data,

CSF3R and CD52. These putative markers derive from the “primed”

lymphoid and “primed” Neu/Mo programs, respectively, and have

not, to our knowledge, been previously used to subdivide early

CD38� hematopoietic progenitors.

After mapping our plate-based scRNA-seq data to the Drop-seq

hierarchy, as expected, we observed that CD34+ CD38� CD45RA+

cells strongly enriched for LMPP, Neu/Mo, lymphoid, and HSC/MPP

groups, with negligible mapping to EMP or downstream precursors.

We observed an even stronger enrichment of lymphoid progenitors

when examining the subset of cells that stained positive for CD10

(Fig 5B), validating its suitability as a marker for lymphoid commit-

ment, as well as our coupling and projection strategy. However, we

observed that CD10� cells remained transcriptionally heterogeneous,

and projected to uncommitted, myeloid (Neu/Mo), and lymphoid

fates at roughly equal proportions. Supporting these conclusions, an

independent principal component analysis (PCA) using the only

plate-based scRNA-seq data of LMPP separated correlated gene sets

associated with myeloid and lymphoid commitment (Fig EV5B).

To explore whether we could further subdivide the LMPP gate

based on novel markers, we examined the distribution of CD52 and

CSF3R protein expression for cells projecting to distinct transcrip-

tomics clusters (Fig 5C; additional markers in Fig EV5A). In agree-

ment with our predictions from the Drop-seq data, CD52 protein

◀ Figure 4. Investigating early fate transitions in human bone marrow CD34+ progenitors.

A tSNE representation of aligned CD34+ cells from bone marrow, and microclusters from cord blood.
B Joint annotation of the two integrated datasets (Materials and Methods).
C Heatmaps showing the expression of top enriched markers shared by annotated progenitors in bone marrow and cord blood. Expression values are scaled (z-scored)

for visualization.
D Ridge plots showing enrichment of expression programs in bone marrow CD34+ progenitors. Cells are colored and grouped by annotated progenitor types, and

relative enrichment is represented by a scoring method from Tirosh et al (2016). Left: enrichment for “primed” LMPP genes (“primed” Lym and “primed” Neu/Mo
genes); Right: “primed” EMP genes.

E PCA of ATAC-seq data from Corces et al (2016). Multiple points per cell type correspond to biological replicates. Variation along PC1 echoes the first fate bifurcation in
Fig 2B.

F Projections of nine transcriptomic gene modules onto ATAC-seq PCA in (E). Modules segregate into two groups, with either significantly positive or negative PC1
scores, that are consistent with transcriptional dynamics in Fig 3A. Asterisks indicate that gene scores are significantly different from zero (***P < 10�5, **P < 0.01;
Kolmogorov–Smirnov test). Vertical lines (left to right): first quartile, median, third quartile; whiskers: data points outside the first and the third quartiles.

G “River” plots, exhibiting quantitative remodeling of chromatin accessibility during differentiation from HSC into three downstream lineages. Width of the river
corresponds to the average accessibility for “primary” peaks in this module (Materials and Methods). Peaks adjacent to “primed” genes are accessible for all lineages
in early progenitors, but are maintained in only a single lineage during differentiation.

H Screenshot from UCSC genome browser showing data from Corces et al (2016). A peak near the TSS (blue shading) shows dynamics consistent with the “primed Neu/
Mo” transcription of CSF3R, while another peak upstream (red shading) shows the opposing (“inconsistent”) dynamics.

I HOMER motif enrichments for accessible regions, grouped by both transcriptional dynamics (Fig 3A) and maximally accessible cell type (CLP or MEP from Corces
et al, 2016). GATA motifs are heavily enriched in MEP-accessible peaks, even if located adjacent to lymphoid-specific genes.
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expression was significantly (P < 0.05; Kolmogorov–Smirnov test)

higher in lymphoid-primed cells compared to myeloid-primed cells,

while CSF3R protein levels exhibited the opposite pattern (P < 1e�3;

two-sided Kolmogorov–Smirnov test). While significant, no protein

marker was in perfect agreement with our clustering, and it is unli-

kely that CSF3R alone or CD52 could be used to sort transcriptomi-

cally pure populations, echoing recent studies in mouse (Paul et al,

2015; Nestorowa et al, 2016), demonstrating the challenge to define

FACS panels that can perfectly represent the complexity of a single-

cell transcriptomics readout.

Given that CD52 and CSF3R levels correlate with the transcrip-

tomic profile of LMPPs, we asked whether these could potentially

serve as new surface markers to distinguish the functional output of

these early progenitors. To test this, we sorted populations of

CD34+ CD38� CD45RA+ CD10� LMPPs, after gating on CD52 and

CSF3R, into individual wells and performed in vitro differentiation

using the MS5-MBN assay (three cord blood units from different

individuals, two to five biological replicates per unit). After

3 weeks, we compared the output of CD52+ CSF3R� and CD52�

CSF3R+ LMPPs using flow cytometry, analyzing CD19, CD56, and

CD11b (B/NK/myeloid cells) to assess lymphoid and myeloid

outputs (Fig EV6A and B, Materials and Methods, Laurenti et al,

2013). While we observed heterogeneity in the lymphoid/myeloid

ratios for individual units, in each case, CD52� CSF3R+ progenitors

gave rise to significantly fewer lymphoid cells, in agreement with

our transcriptomic predictions (Figs 5D and EV6). We did not

observe exclusive lymphoid or myeloid output from any replicates,

demonstrating that CSF3R or CD52 do not perfectly enrich for pure

subpopulations. However, these data validate that the expression of

primed programs correlates with the functional potential of early

progenitor populations.

Discussion

In this study, we applied massively parallel single-cell sequencing to

dissect cellular heterogeneity in CD34+ progenitors in human cord

blood. We leverage our dataset to reconstruct molecular trajectories

to four downstream lineages. We identify striking heterogeneity in

the early molecular transitions toward the commitment of distinct

myeloid cell subsets and observe distinct transcriptional dynamics

for “primed” gene modules that are conserved in human bone

marrow, echoed in chromatin accessibility, and correlate with func-

tional outputs as measured through in vitro differentiation assays.

Taken together, our results do show substantial agreement with

key tenets of the pioneering and canonical models of hematopoiesis,

albeit with a slightly refined structure. Indeed, our findings do imply

that cells undergo lineage selection in a gradual way, passing

through at least a small set of intermediate states whose transcrip-

tomic and open chromatin makeup promotes plasticity. We do not,

however, find evidence of a “CMP” state, and our results here more

closely match with murine scRNA-seq and functional studies (Paul

et al, 2015; Drissen et al, 2016). In fact, the agreement between

these datasets suggest that human and murine hematopoiesis may
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Figure 5. Projecting cellular immunophenotypes onto Drop-seq data.

A Schematic to generate scRNA-seq data using index-enabled FACS sorting into 96-well plates, and to project this data onto the Drop-seq hierarchy to evaluate surface
marker expression.

B Compositional makeup of SMART-Seq2 experiments, after projection onto Drop-seq data (Materials and Methods). Height of each bar segment indicates the
percentage of cells that map to each Drop-seq annotation. To facilitate visual comparison, the background distribution of all CD34+ cells is shown three times.

C Distribution of indexed protein levels for CD52 (top) and CSF3R (bottom) for cells mapping to three Drop-seq branches. Protein expression is shown in log-scale.
**P < 10�3, *P < 0.05 (Kolmogorov–Smirnov test).

D We observe a significant (P < 10�3; Welch two-sample t-test) relative depletion of lymphoid progeny (CD19+ B cells and CD56+ NK cells) from CD52� CSF3R+

progenitors, compared to CD52+ CSF3R� progenitors after in vitro differentiation with the MS5-MBN assay. Barplot shows results from three separate cord blood units
(error bars reflect SE based on all replicates within each unit, which range from two to five depending on total cell number).
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be more similar than once thought, though this conservation was

difficult to observe using traditional surface markers, which vary

widely between species (Wu et al, 2014).

Our results suggest that key portions of the transcriptional

networks driving fate commitment are conserved between cord

blood and bone marrow hematopoiesis, and we expect that key

regulators play similar roles in both tissues. For example, a recent

study identified a genetic variant in GATA2 that affected the baso-

phil and eosinophil, but not neutrophil and monocyte, cell counts in

an adult human GWAS (Guo et al, 2017). However, our data

support the idea that the density of cells (early progenitors vs. later

unipotent precursors) is likely altered between the tissues, explain-

ing the greater percent of oligopotent cells observed in cord blood

(Notta et al, 2016). Additionally, the reproducibility we observe in

the density across cord blood units suggests the attractive nature of

this system for reproducible analyses, as even bone marrow samples

within an individual will inevitably vary in composition based on

niche-dependent sampling.

Finally, our data reveal a transcriptomic map of fate decisions

taken by early progenitors. However, these sequencing data alone

cannot reveal the fundamental mechanism by which each single cell

initiates a decision. Recent work has convincingly demonstrated

that the early hematopoietic decisions cannot be completely

explained by PU.1/GATA1 ratios in early progenitors (Hoppe et al,

2016). More likely, broader groups of transcriptional regulators

work in concert to initiate and establish lineage selection, with addi-

tional key inputs coming from inherited chromatin state and envi-

ronmental signals. Single-cell technologies continue to develop,

with exciting advances that pair sequencing with genetic perturba-

tions (Dixit et al, 2016), lineage barcodes (Wu et al, 2014), and

spatial information (Chen et al, 2015). We therefore anticipate that

future studies will derive a deep and integrated understanding of the

role of gene expression, epigenetic state, lineage, and environment

on cell fate decisions.

Materials and Methods

Cord blood processing

Umbilical cord blood from anonymous healthy donors was obtained

through the National Cord Blood Program from New York Blood

Center. Within 48 h after cord blood collection, mononuclear cells

(MNCs) were isolated from each cord blood unit by density centrifu-

gation using Ficoll-Paque PREMIUM (GE Healthcare #17-5442-03),

and enriched for CD34+ cells using MACS separation (Miltenyi

Biotec #130-100-453). Briefly, umbilical cord blood was diluted

twofold using DPBS without calcium and magnesium (Corning #20-

031-CV), layered on top of 15 ml Ficoll-Paque PREMIUM in a 50-ml

Falcon tube, and spun down at 850 g for 30 min at room tempera-

ture with the brake off. The mononuclear cell layer was then

isolated and washed with MACS buffer (DPBS with 0.5% BSA,

Sigma-Aldrich #A8806-5G) after red blood cell lysing with ACK

lysing buffer (Life Technologies #A10492-01). MNCs were then

enriched for CD34+ cells by incubating them with magnetic beads

conjugated to mouse anti-human CD34 antibody for 30 min, and

passed through a magnetic MACS LS column (Miltenyi Biotec #130-

042-401). CD34+ cells were bound to the LS column and later

flushed off and collected in 5 ml MACS buffer. For Drop-seq experi-

ments, two consecutive enrichment steps were performed to

increase the purity of enriched CD34+ cells.

Cell preparation and scRNA-seq

For Drop-seq, enriched CD34+ cells after MACS separation were

diluted to 200 cells/ll in PBS-0.1% BSA solution in single-cell

suspensions, and loaded into the Drop-seq device (Macosko et al,

2015). We set the input concentration of cells and beads to be

200 cells/ll and 250 beads/ll, and optimized the flow rates for cells

(2,500 ll/h), beads (2,500 ll/h), and oil (6,800 ll/h) to obtain a

stabilized aqueous flow. We also ensured that these flow rates

returned a low cell doublet rate (1–2%) using human/mouse

species-mixing experiments as suggested, using human HEK293

cells and mouse 3T3 cells. Droplets were collected after each run,

and we recovered single-cell transcriptomes attached to micro-

particles (STAMPs) using 6× SSC and perfluorooctanol (PFO, Sigma

#370533). Reverse transcription was performed on the STAMPs in a

pooled fashion using Maxima H Minus Reverse Transcriptase

(Thermo Fisher Scientific #EP0752), followed by exonuclease I

cleavage to remove primers not bound to mRNAs. cDNAs were then

amplified through PCR using KAPA HiFi HotStart ReadyMix (Kapa

Biosystems #KK2602) by collecting 5,000 STAMPs per PCR reaction,

and later fragmented and prepared into paired-end sequencing

libraries with the Nextera XT DNA sample prep kit (Illumina) using

custom Read 1 primers (GCCTGTCCGCGGAAGCAGTGGTATCAA

CGCAGAGTAC, IDT). Libraries were quantified using Qubit and

BioAnalyzer High Sensitivity Chip (Agilent) and sequenced on the

Illumina HiSeq 2500 machine.

For index sorting experiments with LMPP, CD34+ cells were

enriched from umbilical cord blood using MACS separation and

stained with the following antibodies in single-cell suspensions: APC

mouse anti-human CD34 (BD #560940, clone 581), Alexa Fluor 700

mouse anti-human CD38 (BD #560676, clone HIT2), APC/Cy7 anti-

human CD45RA antibody (BioLegend #304127, clone HI100), CD52

monoclonal antibody FITC (Thermo Fisher Scientific #MA1-82037,

clone HI186), BV421 mouse anti-human CD10 (BD #562902, clone

HI10a), and PE mouse anti-human CD114 (CSF3R, BD #554538,

clone LMM741). The amount to use per antibody was determined

from titration experiments using cord blood MNCs or enriched

CD34+ cells. CD34+ CD38� CD45RA+ cells were gated on the SONY

SH800Z cell sorter with CD10, CD52, and CSF3R indices recorded,

and individual cells were sorted into single wells in 96-well plates.

For mast cell progenitors, MNCs in single-cell suspensions were

stained with the following antibodies: APC mouse anti-human CD34

(BD #560940, clone 581), APC/Cy7 anti-human CD45RA antibody

(BioLegend #304127, clone HI100), BV421 mouse anti-human

CD117 (BD #562435, clone YB5.B8), PE anti-human FceRIa antibody

(BioLegend #334609, clone AER-37), and FITC Mouse Anti-Human

CD71 (BD #561939, clone M-A712). We gated CD34+ CD117+

FceRIa+ CD45RA� and CD34+ CD117+ FceRIa+ CD45RA+ cells on

the SONY SH800Z sorter, with CD71 index recorded, and single cells

were isolated into individual wells on 96-well plates.

Cells were immediately lysed and mRNAs were released when

single cells were sorted into wells with 5× Maxima reverse tran-

scription buffer, dNTP mixture, RNase inhibitors (SUPERase In

RNase Inhibitor, Thermo Fisher Scientific #AM2696), RT primers

12 of 20 Molecular Systems Biology 14: e8041 | 2018 ª 2018 The Authors

Molecular Systems Biology Molecular transitions during early hematopoiesis Shiwei Zheng et al



and water. We reverse-transcribed the mRNAs using Superscript II

Reverse Transcriptase (Thermo Fisher Scientific #18064071), and

amplified cDNAs for each cell (KAPA) in individual wells using

the SMART-Seq2 protocol (Picelli et al, 2013), with the exception

that a 12-base cell barcode was included in the 30-end RT primer.

This allowed us to perform multiplexed pooling before library

preparation with the Nextera XT DNA sample prep kit (Illumina),

and returned 30 biased data similar to the Drop-seq protocol,

enabling direct comparison. We quantified the cDNA libraries on

Agilent BioAnalyzer and sequenced them on HighSeq 2500 with

paired-end sequencing.

Raw data processing and quality control

Raw reads from scRNA-seq were processed using Drop-seq tools

v1.0 (Macosko et al, 2015). Briefly, reads were mapped to the

human hg19 reference genome, and a digital expression matrix was

returned with counts of unique molecular identifiers (UMIs) for

every detected gene (row) per cell barcode (column). To determine

the number of cells (cell barcodes) represented in the expression

matrix, we used the elbow plot method recommended by the Drop-

seq core computational protocol, which utilize the cumulative distri-

bution of reads and identify an inflection point in the plot. Beyond

the inflection point should only be empty micro-particles exposed to

ambient RNA.

We further filtered cells by removing those with less than 1,000

UMIs detected, and those with transcriptomic alignment rates less

than 50%. We also calculated the percentage of reads aligned to

mitochondrial genes per cells and removed cells with greater than

10% of UMIs corresponding to mitochondrial genes (Ilicic et al,

2016). A higher proportion of mitochondrial genes indicates the loss

of cytoplasmic mRNAs and/or high cell stress experienced during

sample preparation (Ilicic et al, 2016). The filtered matrix was then

log-normalized to correct for the difference in sequencing depth

between single cells, by applying the formula below to each cell

barcode, where ci indicates the raw counts for gene i:

Normalized expression ¼ ln

 
ciP
i

ci
þ 1

!
� 10; 000

2
64

3
75

Variation in cell cycle stages can contribute to the heterogeneity

in single-cell data and will be confounded with developmental

heterogeneity. Furthermore, technical factors will also act as

confounding sources of noise when analyzing heterogeneous popula-

tions. We therefore sought to remove cell cycle effects together with

technical covariates through latent variable regression (Buettner

et al, 2015). Briefly, we assigned a cell cycle score for every cell from

a principal component analysis (PCA) done using only a published

list of genes whose expression level is strongly correlated with cell

cycle phase (Macosko et al, 2015), from which we found that both

PC1 and PC2 represented the separation between S and G2/M

phases. We then modeled the expression for each gene i using the

formula:

Gi ¼ b0 þ
X
j

bjXj þ ei

Where Gi is a vector showing the log-normalized expression for

gene i in all the cells, Xi represents a user-defined covariate to

regress out and ei is the random noise associated with gene i. In

addition to cell cycle scores, we have chosen to include total UMI

counts, alignment rates, percentage for mitochondrial reads, and

donor IDs as input variables for regression. The residuals were then

z-scored and used as corrected expression values for dimensionality

reduction, which is described below.

Dimensionality reduction

From the normalized expression matrix, we first identified a set

of variable genes with high dispersion rates across cells. Briefly,

we calculated the mean per gene in the non-log space, and

dispersion was calculated from dividing mean by variance. We

selected 5,000 genes with the highest dispersions as variable

genes for dimensionality reduction, a common step in single-cell

data analysis for reducing noise and capturing biological signals.

Here, we leveraged independent component analysis (ICA), which

was initially developed to separate a group of mixed signals into

additive sources that are independent of each other, and has more

recently been applied to dimensionality reduction for single-cell

data (Trapnell et al, 2014). We implemented ICA using the ica

package in R.

The returned ICs contain pooled information across multiple

correlated genes and thus represented “meta-genes” (Setty et al,

2016), which were robust to dropout events in scRNA-seq data. We

noticed that the variance accounted for by each component fell after

IC25. Furthermore, genes with strong IC8 loadings were dominated

by mitochondrial genes, and we therefore used ICs 1–25 (excluding

IC8) for downstream analysis.

Clustering of single cells

The CD34+ population contains hematopoietic stem and progenitor

cells which are expected to be transcriptionally heterogeneous

(Broxmeyer et al, 1989; Gluckman et al, 1989; Nimgaonkar et al,

1995), and therefore, we used clustering analysis to reveal the dif-

ferent transcriptomic states within the cord blood CD34+ pool. We

utilized biologically relevant ICs from dimensionality reduction as

input for clustering, which we achieved by leveraging a modularity-

based method on shared nearest-neighbor (SNN) graphs (Blondel

et al, 2008; Xu & Su, 2015). We defined the similarity of cells based

on the overlap of neighborhoods (proportion of shared neighbors),

which were built on Euclidean distances from the 24 input ICs/

meta-genes. An SNN graph was then constructed using Jaccard simi-

larity. In this SNN graph, groups of cells with largely overlapping

neighborhoods represent interconnected “communities” in a

network, and therefore exhibit similar transcriptional patterns

(Levine et al, 2015; Xu & Su, 2015). To partition the graph into a set

of clusters, we utilized modularity optimization to find the best

assignment for each cell through multiple iterations, where modu-

larity (Q, shown below) evaluates both inter-cluster- and intra-

cluster connectivity on a graph (Blondel et al, 2008).

Q ¼ 1

2m

X
i;j

Aij � kikj
2m

� �
dðci; cjÞ
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Specifically, Aij refers to the edge weight between nodes i

and j, ki is the sum of all edges to node iðki ¼
P

j AijÞ;
m ¼ 1

2

P
ij Aij; dðci; cjÞ ¼ 1 if ci ¼ cj (both cell i and j are assigned to

the same cluster) and 0 if otherwise. By setting k (the number of

nearestneighbor to define a neighborhood) = 25, resolution = 1.0

(which determines the number of clusters being returned) and 100

random starts, we obtained 21 single-cell clusters using the function

FindClusters() in Seurat package, implemented from a previously

published modularity optimizing software (Waltman & van Eck,

2013).

We note this clustering imposes a discrete framework on the

data. While a set of clusters can be useful for interpretation of

single-cell data, our using of clustering algorithms does not

preclude the potential for the underlying data to fall along a

continuous manifold. Indeed, in downstream analyses, we further

subdivide the clusters to better represent a more continuous land-

scape of cellular differentiation. However, we find this clustering

framework to be valuable for interpreting and evaluating our data,

specifically, to compare to previously generated microarray data-

sets, and to compare cellular densities across different cord blood

units (Fig 1C and D). Additionally, this clustering enables us to

remove rare contaminant populations of differentiated cells that

passed through the CD34 column. For example, cells in cluster 16

were highly expressing T cell genes such as CD6, CD3D, CD247,

and CD2. Cluster 11 was enriched in genes unique for B cells—

MS4A1, CD83, CD22, and CD79A, while lacking MME (CD10)

expression, indicating that cells in cluster 11 were committed to

B-cell differentiation (Fig EV1B). Overall, we kept 12 clusters that

represented early progenitors of megakaryocyte, erythrocyte,

lymphoid, and myeloid cells (19,394 from 21,306 cells) for down-

stream analysis. In two cases, we observed that two clusters

shared the same set of markers but differed primarily in the quan-

titative levels of these, and we therefore merged these two pairs of

clusters together to result in a final set of 10 clusters for down-

stream analysis.

To ensure that our clustering results represented the structure in

our data as opposed to exact parameter values, we performed a

robustness test to assess whether pairs of cells that clustered

together in the original analysis also clustered together if we modi-

fied parameter values. We therefore ran 25 clusterings on the

dataset, over the combinations of five resolution/granularity values

(0.8, 0.9, 1, 1.1, 1.2) and five values for the number of neighbors in

the initial graph (k = 15, 20, 25, 30, 35). Visualizing these results in

Fig EV1C, we observe that cell pairs that clustered together in the

original analysis consistently clustered together across analyses,

particularly for more committed populations where the boundaries

between cell states are more clear.

Evaluation of cluster identities

We next sought to compare the gene expression patterns of our

single-cell clusters with previously characterized progenitor popu-

lations in human cord blood. We used a previously published

microarray reference dataset (Laurenti et al, 2013), which

contains expression profiles of CMP, megakaryocyte-erythroid

progenitor (MEP), HSC, granulocyte–monocyte progenitor (GMP),

and MLP. We hypothesized that if of our single-cell clusters

matched any of these reference populations, the two groups

should share common markers of gene expression. We reasoned

that the most informative markers would represent genes that

were not only upregulated in expression for a given cell group,

but would in fact be most highly expressed in this group

compared to all other groups.

We therefore leveraged the published list of gene expression

signatures for the dataset, extracting the top 250 genes that were

most significantly upregulated in each population (as originally

computed from limma (Ritchie et al, 2015). To define markers for

each reference subpopulation, we required that the gene not only be

in this upregulated list, but also be expressed at the highest level

across the dataset.

After defining these markers of reference populations, we exam-

ined the expression of these genes in our single-cell clusters, identi-

fying which single-cell cluster had the highest expression for most

of these markers. For example, of the 143 “reference markers” for

GMP from the microarray dataset, 74 of these were most highly

expressed in cluster 9 cells (P < 10�45; one-sided test of equal

proportions). Figure 1C shows the results of this analysis for all

pairs of single-cell and reference clusters. With this method, we

could recover well-characterized progenitor states from our Drop-

seq clusters using the reference dataset.

Determining unbiased marker sets

In the previous analysis, we examined the expression of previously

identified markers in our single-cell clusters. Alternatively, we can

also identify markers that define our single-cell states unbiasedly.

We defined an unbiased set of markers using a likelihood ratio test

that is specifically designed for zero-inflated data (McDavid et al,

2013) and that we have previously applied to Drop-seq (Macosko

et al, 2015). This test was run on the “normalized” expression data,

and we present this list of markers in Table EV1. As a non-para-

metric alternative, we can also identify genes that are upregulated

in each cluster based on the “corrected” expression levels (after

latent variable regression). Here, we average the scaled residuals

after regression for all genes within each cluster and select the

genes with the highest average score as cluster markers, after

removing ribosomal and mitochondrial genes. Though this is not

based on a statistical test, we found that these marker sets were

more informative, as they were performed on the corrected data.

We report the top 100 markers for each cluster in a separate tab on

Table EV1.

Micro-clustering

Our Drop-seq dataset should sample both cells in metastable

progenitor states, as well as cells which are transiently progress-

ing through a differentiation hierarchy. Indeed, this logic suggests

that we can reconstruct developmental histories from cellular

snapshots of many single cells. This has been the underlying

logic for many trajectory building algorithms, such as Monocle,

Wanderlust, and Wishbone (Bendall et al, 2011; Trapnell et al,

2014; Setty et al, 2016; Qiu et al, 2017). Importantly, the

assumptions underlying this strategy require that we sufficiently

sample the process to capture both abundant and rare transition

states and that our sampling procedure does not exclude particu-

lar states based on prior enrichment. The scale of our Drop-seq
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datasets, combined with the relatively unbiased strategy for

sample preparation, strongly supports these assumptions for our

analyses.

While our clustering analyses are valuable for interpreting the

major transcriptional states in a complex system, they impose a

discrete framework on a transitioning cellular population. More-

over, the precise number of clusters for any algorithm is dependent

on the granularity parameters used. We therefore reasoned that

even within the clusters we defined in Fig 1, we should observe

developmental heterogeneity, with each cluster consisting of both

“early” and “late” cells.

To address this, we developed a strategy to “micro-cluster” our

data, further subdividing our clusters into small groups of cells that

not only mapped to the same cluster identity, but also were in a

similar developmental state. Therefore, within each cluster, we ran

a diffusion map procedure (Coifman & Lafon, 2006) using the Eucli-

dean distance defined by all mRNA markers’ expression. For each

cluster, we found that the eigenvalues dropped off quickly after the

first two diffusion map components (DMCs) within a cluster, and

exhibited a unidirectional path, consistent with developmental

heterogeneity. We fit a principal curve on DMCs 1 and 2 using the

principal.curve() function in the R princurve package with default

parameters (Hastie & Stuetzle, 1989). The progression of each cell

was defined by projecting cells onto the principal curve, and we

separate a cluster into small groups of 20 cells ordered by principal

curve projection using the cut2() function in R. In this way, we

partitioned our original dataset into 963 “micro-clusters”. We took

the mean of the normalized expression for all detected genes, form-

ing a new expression matrix of 30,730 genes and 963 micro-clus-

ters, dramatically reducing the sampling noise associated with

single-cell data. We sought to select the number of cells per micro-

cluster (n) at a level which reduced the Poisson noise without blur-

ring distinctions in the dataset. To guide this selection, we

computed the maximal correlation and covariance between pairs of

micro-clusters as a function of different n values (Fig EV2A). As n

increases, we observe an increase in correlation (driven by the

reduction in sampling noise), with a saturation beginning at n = 20.

As saturating correlations may reflect the onset of blurred biological

signals, we chose n = 20 for this analysis. We note that this selec-

tion also limits our ability to detect extremely rare transitions

(< 0.1%) in the data.

In principle, averaging signals across single cells can potentially

blend together signals from heterogeneous sub-populations. While

we attempted to avoid this by only averaging cells in very similar

transcriptional states, we wanted to ensure that our micro-clusters

truly represented “homogeneous” populations. To do this, we tested

whether dropout rates for genes within a micro-cluster were consis-

tent with pure sampling noise. For each gene in each micro-cluster,

we calculated the expected Poisson dropout rate (percentage of cells

with zero detected molecules) based on its mean expression and

compared this to the observed dropout rate (Fig EV2B and C). Over-

all, we observed very high correlations (0.98–0.99) between

expected and observed dropouts, and this held across all micro-

clusters (Fig EV2D, example shown for 100 randomly selected

micro-clusters). This indicates that heterogeneity within a micro-

cluster is driven primarily by sparse sampling as opposed to exten-

sive biological heterogeneity, enabling us to pool information across

cells in the same micro-cluster.

Reconstructing developmental trajectories from micro-clusters

Upon the construction of a new dataset with micro-clusters, we

sought to construct a developmental hierarchy based on gene

expression. Given that a HSC can differentiate into cells of all possi-

ble lineages, we used the MST algorithm for hierarchical reconstruc-

tion. An MST seeks to find a subgraph that will span all the vertices,

in this case micro-clusters, of a connected graph with the minimum

sum of edge lengths. It has been previously applied to several trajec-

tory-finding methods such as Monocle and SPADE (Qiu et al, 2011;

Trapnell et al, 2014).

Prior to MST construction, we pre-processed our micro-cluster

dataset using the same variable gene selection, normalization, and

cell cycle regression strategy as with our original single-cell dataset.

We reduced the dimensionality of this 5,000 × 963 micro-cluster

profile using diffusion maps, implemented in the diffusionMap R

package. We then constructed a distance matrix between micro-

clusters, based on diffusion distance across 10 dimensions, although

in practice we obtained very similar results even with as few as five

dimensions. We chose an MST layout by computing t-Distributed

Stochastic Neighbor Embedding (tSNE), run on the same distance

matrix that was used for MST construction. Notably, the tSNE here

is used only for visualization of the hierarchy. In Fig EV2E, we

present an alternative visualization of the MST hierarchy, with a

modified layout based on multidimensional scaling (MDS), that

allows for easy visualization of the tree structure.

Annotating transcriptional states on the reconstructed topology

The MST computed on diffusion distances represents an unrooted

and multilineage developmental hierarchy. To parse this model, we

first assigned a root node to the MST, choosing the micro-cluster

with the highest expression of AVP, a gene most highly upregulated

in our stem cell cluster (C6, Table EV1). We note our downstream

results are highly robust to the exact choice of root, as long as we

choose a root node corresponding to an HSC cluster. After root

assignment, the “developmental progression” of each downstream

node can be represented as the length of the shortest path connect-

ing it to the root.

Next, we identified terminal leaves in the tree, representing

nodes with only parents and no children. We calculated the path

lengths from the root node to all terminal nodes and selected the

four terminal nodes with the longest path length to represent the

four “endpoints” for hematopoietic differentiation into distinct

hematopoietic lineages. Each of these terminal nodes represented

micro-clusters corresponding to distinct cell states as determined in

Fig 1, specifically erythroid, eosinophil/basophil/mast, neutrophil/

monocyte, and lymphoid progenitors. Therefore, we can treat the

four terminal nodes as “endpoints” of developmental progression

toward four distinct hematopoietic lineages.

We next identified the “branch points” in our proposed hierarchy,

which can be directly determined from the MST structure. As

described in the main text, the notation of an exact “branch point”

represents a simplification of our data, but enables us to identify genes

which are dynamic across the hematopoietic hierarchy. To identify

these, we identified the shortest path along the MST between all pairs

of terminal nodes. The point on each shortest path that is closest to

the root node represents a transcriptomic bifurcation in the model.
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Lastly, we assigned each “micro-cluster” a branch identity. To do

this, we divided the MST into a series of “segments”. These can be

easily visualized in Fig EV2E. This figure shows the same MST

structure as Fig 2B, but on a different layout, which is based on

MDS of the MST-based distance matrix, ensuring that the different

segments of the MST, and the “branch points” which connect them,

can be easily visualized.

Cells located prior to the first bifurcation (the branch point clos-

est to the HSC) are annotated as HSC/MPP, and segments leading to

terminal nodes were named based on their downstream lineage

(i.e., “Er”, “Ba/Eo/Ma”, “Lym”, “Neu/Mo”). For intermediate

segments, which were downstream of the first bifurcation but did

not lead to terminal nodes, we assigned names based on lineage

potential of cells downstream, including an EMP which gives rise to

the first two lineages, and a lymphoid-primed multipotent progeni-

tor (LMPP), based on previous knowledge of this cell state which

can give rise to both lymphoid and select myeloid populations

(Kohn et al, 2012).

Bootstrapping developmental reconstruction

The MST process finds the path that connects all points in the

dataset with minimum total length, representing a putative develop-

mental trajectory through cellular “snapshot” data. While this and

other graph-based strategies have been previously demonstrated to

accurately reconstruct unidirectional and branching developmental

processes (Bendall et al, 2011; Trapnell et al, 2014; Setty et al,

2016), the presence of “short-circuits”, incorrectly drawn edges

between cells in different developmental stages, can cause signifi-

cant errors in this procedure. This concern is particularly relevant

for MST construction, which shares similarities with single-linkage

clustering. To ensure that our developmental reconstructions were

not driven by these artifacts, we performed the MST-building

process on 1,000 subsamples of our data (which each subsample

containing 800 micro-clusters) and assessed the reproducibility

across bootstraps. We used the same reconstruction procedure,

consisting of MST construction based on diffusion map coordinates

followed by branch annotation, for each subsample.

When assessing our bootstraps, we found that in 1,000 subsam-

ples, we obtained identical hierarchical relationships as shown in

Fig 2C. Therefore, we conclude that the hierarchical relationships

we derive between HSC/MPP to the four downstream lineages are

robust to potential artifacts in the MST-building procedure.

However, our megakaryocyte (Mk) micro-clusters (Fig EV2G)

did not exhibit consistent relationships across bootstraps. We

observed that Mk micro-clusters branched from different locations

in the hierarchy in different subsamples, resulting in multiple poten-

tial models for Mk development (the relative proportion of subsam-

ples leading to each model is shown in Fig EV2H). We therefore

conclude that our dataset is insufficient to resolve the precise loca-

tion of Mk branching and excluded this lineage from further analy-

sis. Therefore, the hierarchy we propose in Fig 2C is consistent with

the presence of a common progenitor for Mk and other lineages, but

also with the potential for Mk to derive directly from HSC, as has

been recently proposed (Grover et al, 2016).

To assess the reproducibility of our hierarchy with complemen-

tary methods, we took our 960 micro-clusters dataset (excluding

early megakaryocyte progenitors) and applied theses as input to

Monocle (Trapnell et al, 2014; Qiu et al, 2017). ICA was used to

reduce dimensions, and we ordered individual micro-clusters using

the 596 branch-dependent genes, specifying num_paths = 4 in the

function orderCells(). These results are visualized in Fig EV2F and

suggest an identical developmental hierarchy to our observations.

Identifying dynamic gene modules

Once we had a reconstructed developmental hierarchy of early hema-

topoiesis, we next asked how gene expression patterns varied across

the lineages. For example, Fig 2D exhibits expression patterns for

canonical markers, revealing that many key hematopoietic regulators

significantly diverge in their expression at fate transitions.

We therefore designed a test to identify, in an unsupervised way,

branch-dependent genes whose expression levels were dynamic

across any of the bifurcations in our model. For each “branch

point”, we performed the following test. We considered all nodes

downstream of a “branch point”, partitioning them into two groups

based on the initial bifurcation. We then linearly scaled (normal-

ized) the “developmental progression” for nodes along the “left”

branch to fall between �1 and 0, and nodes along the right branch

to fall between 0 and 1. A normalized value of �1 or 1 indicates a

node which is farthest from the root, on either the left branch or

right branch. Effectively, this normalization step allows the diver-

gence on both branches to receive equal weight in the downstream

test. Therefore, for each branch point, we obtained a vector m, which

contained the normalized developmental progression for all down-

stream micro-clusters, ranging between �1 and 1.

Branch-dependent genes whose expression bifurcates at the

branch point should therefore have expression levels that are

strongly correlated (or anti-correlated) with vector m. Therefore, for
each gene g, we computed a branch score Branch Score ðgÞ ¼ x � m,
where x represents the z-score for g in each micro-cluster.

We observed that branch scores across all genes roughly obeyed

a normal distribution, as the majority of genes across the transcrip-

tome were not branch-dependent. We therefore selected positive

and negative outlier genes whose branch score was greater than 2.5

times standard deviations from the mean of the distribution. Across

all three “branch points”, we detected a total of 596 branch-depen-

dent genes. Lastly, we grouped genes into modules with similar

developmental dynamics using k-means clustering with 100 random

starts, using the kmeans() function. After clustering, we identified

two groups of 40 and 39 genes that were primarily very lowly

expressed, exhibited poor within-cluster similarities, and no

hematopoietic ontology enrichments, and therefore removed these

genes from further analysis. Clustering results, including all

removed genes, are shown in Table EV3.

Aligning datasets from human bone marrow and cord blood

The raw scRNA-seq read counts for human bone marrow CD34+

Quartz-seq cells were downloaded from NCBI GEO (GSE75478). To

integrate this dataset with our Drop-seq micro-clusters, we ran the

scRNA-seq integration procedure as described in Seurat 2.0 (Satija

et al, 2015; preprint: Butler & Satija, 2017). Briefly, the procedure

aims to identify potentially shared subpopulations between two

datasets, based on shared sources of variation. We identified the

top variable genes in each dataset (quantifying dispersion as a
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variance/mean ratio) with the default parameters and used the

union of these two gene sets as input to the procedure.

We first learned the common sources of biological variations

between datasets by performing a canonical correlation analysis

(CCA). The canonical correlation vectors (CCs) 1–7 were then used

as the “scaffolds” for alignment with a non-linear “warping”

approach implemented in the AlignSubspace function. These

aligned CCs were used as input for co-clustering, again with modu-

larity optimization from a shared nearest-neighbor (SNN) graph to

identify shared subpopulations. The co-clustering returned subpopu-

lations that were consistent with our independent analysis of cord

blood micro-clusters, as well as the analysis in the original bone

marrow study (Velten et al, 2017). To annotate cells in both dataset,

we assigned all cells in a co-cluster to the micro-cluster branch ID

with maximal membership in the cluster. We also evaluated the

robustness for alignment by randomly sampling 500 cells from the

bone marrow dataset and repeated the alignment to the full cord

blood micro-clusters data. The results between the annotations in

the subsampled and full analysis were highly consistent, particularly

for the “endpoint” clusters, and are shown in Fig EV4E.

To compare the expression dynamics between the two systems,

we applied a scoring method from Tirosh et al (2016), assigning

each gene module an “expression score” within every cell. Briefly,

we grouped all genes into 25 bins according to aggregated expres-

sion levels and selected 100 “control genes” from the same bin as a

gene from the analyzed gene set. The score was then calculated by

subtracting the average expression of the gene set by the aggregated

values of the control gene set, to control for differences in the

complexity and dropout rates across single cells.

ATAC-seq analysis

The count matrix for ATAC-seq profiles of hematopoietic and

leukemic cell types (132 samples in total) was downloaded from NCBI

Gene Expression Omnibus (GSE74912) (Corces et al, 2016). Peaks

were quantile-normalized using the normalize.quantiles() function in

R package preprocessCore. We also scaled the peaks between 0 and 1

using the rescale() function in the R scales package, clipping at 5 and

95% quantiles for every peak across samples. Each peak was associ-

ated with a nearby TSS using annotatePeaks.pl from HOMER (Heinz

et al, 2010), with human hg19 as a reference. To filter out peaks with

low accessibility, we calculated the maximum normalized signals

across samples (we selected samples from the following cell type:

CLP, GMP, CMP, HSC, LMPP, MEP, MPP), and removed peaks with a

maximum value less than 80 from downstream analysis.

To define the variable loci, we calculated the mean and standard

deviation for every peak, and selected the top 2,000 peaks with the

highest coefficient of variation (CV, standard deviation divided by

the mean) and performed PCA to learn the primary structure in

early hematopoietic regulation. To retrieve the “primary peak” per

gene, we compared the range of normalized signals for peaks associ-

ated with the same gene across all cell types and used the one with

the maximal accessibility as the primary peak. The width of the

“river” plots used in Figs 4G and EV4G represents the mean width

of all primary peaks in each gene module.

To visualize modules of ATAC-seq peaks with similar dynamic

patterns, we used constrained k-means clustering on peaks assigned

to a dynamic gene module (e.g., “de novo lymphoid” genes), setting

k = 4 and a = 0.2. To systematically group loci into “consistent”

and “inconsistent” types, we leveraged the ranking of peaks associ-

ated with one gene module across different cell types. For each cell

type, we averaged the normalized signals per accessible region

across samples and ranked the averaged signals among MEP, CMP,

MPP, HSC, LMPP, GMP, and CLP. Peaks with highest ranks in the

consistent cell type (e.g., peaks assigned to “de novo lymphoid”

genes with the highest rank in CLP) were defined as being “consis-

tent”, whereas other peaks (“de novo lymphoid” genes with peaks

highest in MEP) were defined as being “inconsistent”.

For each gene module shown in Fig 3A, the genomic positions of

either consistent or inconsistent peaks were used for motif enrich-

ment, using the findMotifsGenome.pl command in HOMER, with

hg19 as the reference genome and the default settings for all other

options. To visualize the shared motifs from different peak classifi-

cations, we combined the top 30 motifs of each group to form a list

for potential transcriptional regulators. The negative log P values

corresponding to these motifs were retrieved from HOMER output,

and we took those with high enrichment (maximum �logP > 10 in

at least one peak classification) for visualization in heatmaps using

heatmap.2() in gplots.

Coupling transcriptomic data with cellular immunophenotypes

To evaluate the surface immunophenotypes for Drop-seq clusters,

we sequenced the transcriptomes for 96 mast cell progenitors

(CD34+ CD117+ FceRIa+) and 865 canonically defined LMPPs

(CD34+ CD38� CD45RA+) from indexed FACS sorting. The raw

data processing and quality control were the same as described for

Drop-seq data. To associate FACS-sorted cells with cells profiled

with Drop-seq, we leveraged information from the reconstructed

hierarchy with micro-clusters by building a random forest classifier.

Briefly, we assigned a branch identity to each single cell from Drop-

seq, based on its corresponding micro-cluster. A random forest clas-

sifier was then trained on these cells using the ranger() function in

R with default parameters. We used the 517 “branch-dependent”

genes for classifier construction. We then applied the classifier on

FACS-sorted cells to reveal the transcriptomic states and compared

protein signals for surface markers with indices recorded on the

sorter (CD10, CD52, CSF3R, CD38, CD45RA and CD62L for LMPP,

and CD71 for mast cell progenitors).

In vitro differentiation with MS5-MBN assay

For our in vitro differentiation experiments, we utilized the dif-

ferentiation protocol described in (Laurenti et al, 2013). Mouse

MS5 stromal cells were treated with 10 lg/ml mitomycin C (in

alpha MEM media) for 3 h to inhibit mitotic proliferation, and

seeded on 0.2% gelatin-coated 96-well cell culture plates 24 h

before human cell sorting. Approximately 4 × 104 MS5 cells were

plated per well in H5100 media (Stem Cell Technologies). Human

CD34+ cells were enriched from three separate healthy cord blood

units as described above, using Ficoll density centrifugation (GE

Healthcare) and MACS magnetic separation (Miltenyi). Each cord

blood unit was processed individually; 24 h after plating MS5

cells, we replaced the media with fresh H5100 supplemented

with the following cytokines (R&D systems): SCF (10 ng/ml),

Flt3L (10 ng/ml), TPO (50 ng/ml), IL-2 (10 ng/ml), IL-7 (20 ng/
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ml), IL-6 (20 ng/ml), G-CSF (20 ng/ml), and GM-CSF (20 ng/ml).

Enriched CD34+ cells were stained with the following antibodies:

APC mouse anti-human CD34 (BD #560940, clone 581), Alexa

Fluor 700 mouse anti-human CD38 (BD #560676, clone HIT2),

APC/Cy7 anti-human CD45RA antibody (BioLegend #304127,

clone HI100), CD52 monoclonal antibody FITC (Thermo Fisher

Scientific #MA1-82037, clone HI186), BV421 mouse anti-human

CD10 (BD #562902, clone HI10a), and PE mouse anti-human

CD114 (CSF3R, BD #554538, clone LMM741), with concentrations

determined from titrations, and 250–300 cells (CD34+ CD38�

CD45RA+ CD10� CD52+ CSF3R�, or CD34+ CD38� CD45RA+

CD10� CD52� CSF3R+) were sorted onto stromal cells. Cell

culture was maintained in CO2 incubator for 3 weeks, with

weekly change of half the cytokine-supplemented media. At the

end of the third week, cells were harvested by pipetting and

stained with the following antibodies: Alexa Fluor� 700 anti-

human CD45 antibody (BioLegend #304023, clone HI30), PE

Mouse Anti-Human CD56 (BD #556647, clone MY31), APC/Cy7

Mouse Anti-Human CD11b (BD #560914, clone ICRF44), and FITC

Mouse Anti-Human CD19 (BD #555412, clone HIB19) and resus-

pended in MACS buffer (PBS + 0.5% BSA + 2 mM EDTA) with

DAPI before flow cytometry. Live human cells were identified as

DAPI� hCD45+, and differentiation output was evaluated as

CD19+ CD11b� B cells, CD56+ CD11b� NK cells and CD56�

CD11b+ myeloid cells within the live human cell gate. Popula-

tions were gated on FlowJo and cell type proportions were

analyzed in R. We calculated the lymphoid (B and NK cells) to

myeloid ratio for each replicate per unit, and normalized by the

average lymphoid to myeloid ratio from CD52+ LMPPs per unit.

Data availability

Raw fastq files CD34+ Drop-seq and plate-based scRNA-seq data,

and digital expression matrix for Drop-seq are available in NCBI

Gene Expression Omnibus with the primary accession code

GSE97104. An online resource to visualize the expression levels of

any user-defined gene along our reconstructed trajectories is also

available at http://satijalab.org/cd34/.

Expanded View for this article is available online.
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