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Abstract

Internet-based surveillance methods for vector-borne diseases (VBDs) using “big data”

sources such as Google, Twitter, and internet newswire scraping have recently been devel-

oped, yet reviews on such “digital disease detection” methods have focused on respiratory

pathogens, particularly in high-income regions. Here, we present a narrative review of the lit-

erature that has examined the performance of internet-based biosurveillance for diseases

caused by vector-borne viruses, parasites, and other pathogens, including Zika, dengue,

other arthropod-borne viruses, malaria, leishmaniasis, and Lyme disease across a range of

settings, including low- and middle-income countries. The fundamental features, advan-

tages, and drawbacks of each internet big data source are presented for those with varying

familiarity of “digital epidemiology.” We conclude with some of the challenges and future

directions in using internet-based biosurveillance for the surveillance and control of VBD.

Introduction

Internet-based communicable disease biosurveillance was conceived in the mid-1990s, when

the ProMed system was introduced to solicit, via email, reports of early outbreaks or epidemics

from media, government, clinicians, and other sources and to communicate them to public

health officials and other stakeholders [1]. In 2009, after exploratory efforts by those such as

Eysenbach and Polgreen et al. [2], the launch of Google Flu Trends spurred a rapidly evolving

field of “digital epidemiology” or “digital disease detection” [3–5]. In this review, we use these

terms interchangeably with “internet-based biosurveillance” and broadly define them as meth-

ods that are (i) based on internet-derived data, (ii) do not always require an infected person to

present to healthcare to obtain communicable surveillance data, and (iii) often use nonclinical

or nonlaboratory proxies for disease activity.
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Since the landmark Google Flu Trends paper by Ginsberg et al. [3], a variety of studies have

assessed a range of internet data sources to enhance communicable disease surveillance,

including (but not limited to) Google, other internet search engines, Wikipedia, Twitter, and

internet newswires [6–9]. The putative advantage of real-time internet-based surveillance sys-

tems like Google Flu Trends put forth by Ginsberg et al. (and by subsequent authors of many

other papers in this field) is that timely surveillance is a cornerstone of public health response

to influenza and other pathogens—yet even in well-resourced regions, conventional surveil-

lance is not real time, and there is generally a delay of at least one to two weeks before finalized

data are available. Such delays may be unacceptable in public health practice, particularly in

the context of an epidemic or pandemic, when early detection may improve response and con-

trol. Google Flu Trends was initially proposed to be useful for public health practice because it

was initially able to predict epidemic peaks by two weeks [3].

Real-time internet-based biosurveillance methods for vector-borne diseases (VBDs) such as

dengue virus (DENV), other arthropod-borne viruses (arboviruses), malaria, and Kinetoplas-

tida have now been studied in several tropical and temperate countries [10–14]. These VBDs

affect many low- and middle-income regions of the world with rapidly rising internet access

but relatively limited conventional surveillance infrastructure and often delayed dissemination

of VBD surveillance data to key stakeholders [15,16]. In such regions, internet-based biosur-

veillance methods (which are often real time and free) may thus be useful as a supplementary,

timely surveillance signal to aid in public health preparedness, situational awareness, and

response to VBDs, although there may be considerable limitations to their accuracy in low-

and middle-income countries because of limited and/or heterogeneous internet access [15].

Despite now numerous published studies on internet-based biosurveillance for VBD, most

reviews of this topic are now relatively old and do not focus on communicable diseases,

let alone VBD [4,17–20].

In this narrative review, we succinctly describe the various internet data streams and their

applications in biosurveillance for vector-borne viruses, parasites, and other pathogens,

including Zika virus (ZIKV), DENV, other arboviruses, malaria, Leishmania spp., and Borrelia
spp. (Lyme disease) in a range of settings, including low- and middle-income countries.

Through these case examples, we cover the rationale for developing these methods, the types

of internet data they employ, their accuracy, and their possible uses in public health practice.

We comment on the strengths and limitations of existing studies in this field and conclude

with some perspectives regarding the challenges and future directions in using internet-based

biosurveillance for the surveillance and control of VBD.

Methods

This narrative review leveraged a broader search review strategy developed for an ongoing sys-

tematic review and meta-analysis for internet-based biosurveillance of any pathogen. This origi-

nal literature search used the MEDLINE (PubMed) database (as of February 2, 2016), in

addition to EMBASE (as of February 4, 2016) and Web of Science (as of February 4, 2016). An

example of the search ontology for MEDLINE is presented in the supplementary material.

From these literature search results, we then restricted to those studies pertaining to the inter-

net-based biosurveillance of any bacterial, viral, or parasitic VBD, with no restriction by country

income status. To identify further digital disease literature relevant to the recent ZIKV pan-

demic, which emerged during and after the initial literature search, we also searched MEDLINE

using the term “Zika” (current to February 2017). We also searched specific websites describing

the characteristics of individual digital data sources, such as https://trends.google.com/trends/,

http://www.wikipediatrends.com/, https://twitter.com/ and http://www.internetlivestats.com/
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twitter-statistics/. While a structured evaluation of study quality was not undertaken for this

narrative review, we did adopt aspects from a review by Nuti et al. [19] and Althouse et al. [21]

to identify key items of quality and usability to consider in each article reviewed, including the

spatial and temporal scale of predictions, the public health relevance of the phenomenon pre-

dicted by the models, and whether or not the models were validated on a hold-out set of data

(that is, on data not used to fit the model).

Internet-based biosurveillance data sources and their applications

for VBD surveillance and control

Google-based surveillance for DENV

The morbidity and economic burden of DENV are profound and are predicted to grow

because of factors such as increasing urbanization in the tropics and expansion of the geo-

graphic range of the Aedes aegypti and A. albopictus vectors [22]. There is clearly a need for

timely surveillance for DENV response and control in order to, e.g., guide resource allocation

when epidemics may exceed hospital capacity, measure the impact of public health interven-

tions in real time, and predict when DENV activity exceeds epidemic thresholds and peaks.

Unsurprisingly, then, DENV has been the focus of several Google-based VBD detection stud-

ies in a range of socioeconomic backgrounds [10,13,14,23].

The estimated daily volume of Google searches exceeds 3.5 billion [24], and such searches

are logged with precise geolocation (by IP address; the IP addresses themselves are then purged

and not retained) and time. From an “unbiased sample” of these searches, Google provides de-

identified, normalized, region-specific trends in search activity via the Google Trends website

[25]. For more common terms, this allows a weekly estimate of, e.g., the proportion of Google

searches of the term “influenza” in a particular city in the United States relative to all Google

searches in that week and location. Pioneering work by Ginsberg and Polgreen noted that

trends in internet search terms about influenza were closely correlated with time series of

influenza cases reported to public health agencies [2,3]. This led to the development of Google

Flu Trends in 2009, a customized bivariate logit model containing search activity time series of

multiple distinct search terms related to influenza summed into a single predictive term, thus

capturing the sensitivity and specificity for a range of Google search terms [3].

This approach was soon extended to DENV with two independent, concurrent studies by

Althouse et al. and Chan et al. [10,14]. Both groups fitted and validated Google search query-

based DENV prediction models. Chan et al. presented a univariate prediction model (combin-

ing the search activity trends of multiple Google terms related to DENV), and Althouse et al.

presented multivariate prediction models employing multiple model validation techniques.

Model performance was good in both studies. Chan et al. noted their model performed well in

Brazil (r = 0.99), India (r = 0.94), Singapore (r = 0.94), and Indonesia (r = 0.94) when compar-

ing predicted DENV holdout time series data (that is, predicted trends of DENV on a prospec-

tive period of time not used for the fitting of the predictive model) to Ministry of Health

(MoH) time series data [10]. Althouse et al. found holdout correlations in Singapore (r = 0.93)

and Bangkok (r = 0.88) by using a support vector machine model used to predict DENV out-

breaks; Singapore and Bangkok showed areas under the receiver-operator curves ranging from

0.9 to 0.99. Notably, the model by Chan et al. performed most poorly in Bolivia (r = 0.83).

While Bolivia’s internet access is less than Singapore’s, which may partly explain the difference

in performance between these two countries, Bolivia has higher internet access than India and

Indonesia [15], and it is more likely that the moderate accuracy of Google-based DENV pre-

diction in Bolivia was a result of the holdout data set corresponding to a small DENV epidemic

compared with the external validation of the other countries [26]. After these studies, a public
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Google Dengue Trends (GDT) prediction tool was launched in the four countries studied by

Chan et al., along with Argentina, Bolivia, Mexico, the Philippines, Thailand, and Venezuela

[27], although published GDT predictions were discontinued as of mid-2015.

From the study by Chan et al., disease burden thus appeared to be a predictor of the accu-

racy of Google-based DENV surveillance. This was confirmed by Gluskin et al. in a study that

modeled determinants of the same model’s accuracy in several diverse areas of Mexico [23],

compared to MoH DENV surveillance data. An important finding of this study was that

GDT’s performance often deteriorated with finer spatial resolution, that is, it often performed

best when the model was applied on a national scale (all Mexico r = 0.91) versus the state level

(with R2 values as low as = 0.1, although performance in some states such as Chiapas was as

high as R2 = 0.88). It was noted that those regions with less DENV burden (e.g., the state of

Chihuahua) had worse GDT performance. Temperature and precipitation (which would sup-

port a strong seasonal trend of DENV cases) were also noted to be key predictors. Intriguingly,

this correlation between climate and the performance of internet-based biosurveillance has

been noted in tropical regions for influenza, with a suggestion that those tropical regions with

less temperate cyclical influenza activity may experience worse performance of internet-based

biosurveillance, partly because of less seasonal autocorrelation [28].

This dependence of Google-based DENV surveillance accuracy on DENV burden was fur-

ther supported in a study by Milinovich et al. that noted a poorer performance of Google-

based DENV prediction in Australia (r = 0.75) despite its very high internet access [15]. While

Milinovich et al. only used a single Google search term to predict DENV activity, the discrep-

ancy between internet access and performance of Google-based DENV surveillance may

reflect the low incidence of DENV in Australia, which only experiences small local outbreaks

in one state (Queensland) in addition to travel-imported cases [29,30]. This study also demon-

strated a breakdown of predictive accuracy with finer spatial resolution, with poorer predic-

tions in any one state compared to those based on Australia-wide aggregated data. Such a

possible dependency of Google-based DENV surveillance on larger spatial scales is potentially

concerning because, ultimately, public health action is taken locally and best guided by more

granular surveillance data. However, as mentioned above, the models presented by Althouse

et al. showed high predictive accuracy in two individual cities—Singapore and Bangkok—at

weekly and monthly resolutions, respectively [14].

Taken together, Google-based DENV surveillance appears more accurate in the setting of

(i) DENV endemicity, (ii) high burdens of disease (which may also lower the threshold for

populations searching about DENV-related terms when experiencing a febrile syndrome), and

(iii) climates characterized by seasonal high rainfall periods resulting in seasonal or semiseaso-

nal peaks of disease. Its performance in nonendemic settings, such as the returning traveler to

a nonendemic country, seems more limited, even in the context of high internet access. While

there is some evidence that it is dependent on larger temporal and spatial scales, its perfor-

mance has been shown to be excellent in a single hyperendemic city with a weekly temporal

resolution [14].

Google-based surveillance for other VBD

Google search data have also been explored for enhancing the surveillance of several other

arboviruses. As part of a scoping study to screen the suitability of Google-based surveillance

for a range of pathogens, Milinovich et al. determined the correlation of Google search terms

with monthly Australian MoH surveillance for endemic alphaviruses (Ross River virus [RRV]

and Barmah Forest virus [BFV]), a nonendemic alphavirus (Chikungunya virus [CHIKV]),

and a local neurotropic flavivirus (Murray Valley encephalitis [MVE]). While a robust external
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validation of a prediction model was not an aim of this study, it was notable that Google data

performed best in the detection of arboviruses endemic in Australia (RRV, BFV, MVE) and

worst for CHIKV, which had, to date, only been detected in travelers returning to Australia

[31]. Intriguingly, there also appeared to be a better performance for the endemic alphaviruses

that generally have a higher number of case counts, higher symptomatic attack rates, greater

geographic distribution, and more regular seasonal variation in activity compared with MVE,

which causes a very low proportion of notifiable and/or symptomatic cases and only sporadi-

cally causes outbreaks [31]. Such findings offer more evidence that Google-based surveillance

is somewhat dependent on disease burden (which, in turn, likely prompts local population

awareness of a particular arbovirus) and cyclical epidemiology. Importantly, Milinovich et al.

examined the performance of Google-based surveillance of these pathogens on finer spatial

scales and found that accuracy broadly deteriorated on a subnational scale.

Beyond arboviruses, predictive models fit with Google search terms have also been devel-

oped for malaria. Ocampo et al. fit a Google predictive model and compared with World

Health Organization (WHO) reference malaria surveillance data for Thailand, with a high cor-

relation between model-predicted and observed malaria activity (maximum r = 0.92) [11].

While this study was robust in that it used a holdout set of data to test predictions, it only pro-

vided predictions on the national level, again restricting its public health utility. Moreover, this

study did not attempt to examine the role of seasonal effects and how much they may contrib-

ute to model performance, which may be considerable.

Finally, Google data have also been applied to the surveillance of a nontropical VBD, which

primarily affects high-income settings. Seifter et al. qualitatively examined the agreement

between US states’ volumes of Google searches for the term “Lyme disease” and US Centers

for Disease Control and Prevention (CDC)-notified US case counts of Lyme disease over a

5.5-year period. Of the top 10 states for Google searches about Lyme disease, six were in the

top 10 states with the highest Lyme disease incidence [32]. While this suggests some value as a

surveillance signal, the study was limited in its scope, and it is hard to comment further about

its utility for Lyme disease.

Real-time surveillance of DENV with Twitter

Twitter is another promising large data source for VBD detection because user Tweets are geo-

tagged to precise location, and an estimated 500 million daily Tweets are archived in real time

[33]. In contrast with Google search logs, all Tweets are public, and extracting key Tweet

words related to arboviruses has been explored as a method of VBD real-time detection. While

Twitter does not aggregate normalized trends about specific Tweet terms, various application

programming interfaces enable Twitter mining, and customized R packages allow the parsing

of Twitter data in a biostatistical environment [34,35]. Tweets are often longer and have a

more complex ontology than Google searches, so a variety of bioinformatic approaches have

been required to dissect relevant terms from the corpus of a Tweet, thus posing a considerable

technical challenge in using this data source. However, this also allows for capturing more per-

sonal Tweets, which would be more likely to represent true cases of a VBD rather than re-

Tweets of a media or MoH announcement regarding disease activity. Aside from this, the con-

cept of Twitter disease prediction is broadly similar to Google-based prediction, with time

trends in Tweet volumes used as predictor terms in regression models that are fitted and vali-

dated against conventional-reference MoH DENV surveillance data. Such Twitter-based

DENV models have been examined in Brazil, with two studies examining the performance of

Twitter models in predicting DENV activity on a national and city scale against MoH data

[36,37] and a third presenting a simple correlation of DENV-related Tweet volumes versus
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weekly DENV case counts in the state of Rio de Janeiro [38]. While the best performance of

Twitter-based DENV surveillance was noted at a national aggregate scale (r = 0.98), and per-

formance varied on finer spatial scales, Twitter does appear to offer remarkable spatial granu-

larity. Souza et al. were able to track disease activity in locales as small as 100,000 persons.

Importantly, the evaluation by Souza et al. also determined that disease incidence and popula-

tion size generally influenced the accuracy of Twitter-based DENV surveillance on a city scale,

although Twitter models still performed moderately well in some small-size and/or low-inci-

dence cities. In their study, Gomide et al. also demonstrated how filtering Tweets to those spe-

cific to individual cases of DENV improved model performance [36].

Wikipedia page views and DENV prediction

Wikipedia is a widely used, free, open-source, searchable encyclopedia and the fifth most vis-

ited website globally [39,40]. Trends in specific Wikipedia article views are provided via Wiki-

pediaTrends, with a granularity to the day and normalized as a function of all Wikipedia

article views and searches for that time period [41]. Similar to the concept of Twitter and Goo-

gle-based VBD surveillance, time series of Wikipedia topic views related to a specific commu-

nicable disease are thus obtainable and may serve as a proxy of that disease’s activity. Beyond

capturing only a fraction of the search volumes of other big data sources like Google and Twit-

ter, the primary limitation of WikipediaTrends is that it is unable to provide geographically

defined page-view estimates [41]. However, other Wikipedia metadata sources allow limiting

the searches to a specific language, thus indirectly determining trends in Wikipedia topic

views by certain countries [42]. Generous et al. used this approach to examine the accuracy

of Wikipedia-based predictive models in detecting changes in DENV and noted low to very

low model prediction error in detecting monthly WHO-reported case count changes in

Thailand (r = 0.86) and weekly case counts for Brazil (r = 0.93), although the lack of spatial

resolution makes Wikipedia-based VBD surveillance quite limited for public health practice

[6]. Moreover, it is unclear what proportion of this model’s predictive ability was accounted

for by Google searches directing users toward the Wikipedia website. Since this study was con-

ducted, Wikipedia has changed WikipediaTrends metrics to exclude such search engine redi-

rects [41].

Internet newswire scraping and crowd-sourced surveillance to enhance

arbovirus surveillance

Informal reporting of epidemics and outbreaks through internet newswires has been demon-

strated to be reasonably accurate and often more timely than official public health agency

announcements [43,44]. The ProMed system was one of the earliest examples of scraping

unstructured internet newswire data to rapidly detect outbreaks and epidemics [1]. The

HealthMap project, launched in 2006, is an extension of this concept and provided an auto-

mated platform that offers outbreak and epidemic data signals scraped hourly from internet

newswire feeds in addition to public health agency web alerts. In its current form, HealthMap

draws data from four internet newswire streams (two English, two Chinese), the ProMed sys-

tem, online official Eurosurveillance and WHO outbreak alerts, zoonosis outbreak databases,

and the Geosentinel travel-illness network. [45]. Highly granular epidemic data are then

mapped, real time, to GoogleMaps with a user-friendly graphical user interface. HealthMap

therefore combines both conventional epidemiological and internet data streams in an auto-

mated, real-time fashion for a broad range of pathogens [45]. Importantly, unlike ProMed and

other event-based news-scraping systems like WHO’s Global Public Health Intelligence Net-

work, the HealthMap system may operate without any manual curation [46]. HealthMap also
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contains a more recent and semicurated function allowing for “crowd-sourced” epidemic sur-

veillance (“Outbreaks Near Me”), a concept similar to the Salud Boricua mobile phone applica-

tion, which enables digitally enrolled participants in Puerto Rico to report symptoms of

DENV and CHIKV, irrespective of healthcare contact [47,48].

The performance of HealthMap in detecting DENV diffusion in the tropics was carefully

evaluated by Hoen et al., who determined the sensitivity and specificity of HealthMap in

detecting new DENV circulation in previously DENV-nonendemic regions in Latin America

and used the CDC’s Yellow Book as a reference standard for DENV surveillance [49]. Over a

1.5-year period, HealthMap detected new autochthonous spread of DENV, with an overall

sensitivity of 74% and specificity of 85% when compared to the CDC reference. This study also

indicated the promising granularity of automated newswire scraping surveillance systems like

HealthMap, with the detection of new DENV epidemics on a provincial scale. HealthMap’s

DengueMap, a collaboration with the CDC, offers such granular surveillance to public health

and clinical end users, including estimates of regions at risk for DENV spread. During the

ZIKV epidemic, HealthMap has offered similar granular detail about locales with ZIKV circu-

lation [50], and such information may be useful for personalized pretravel advice for those

travelling to countries with a blanket label as “Zika endemic” yet which may have ZIKV-free

areas.

Beyond disease detection, internet newswire scraping has also been explored for rapid

determination of epidemic model parameters and even modeling the effect of interventions to

inform public health preparedness and decision-making early in the course of VBD epidemics.

Such an approach was demonstrated as feasible during the 2010 Haiti cholera and 2014–2015

West Africa Ebola epidemics [51] [52,53] and more recently was applied to the 2015–2016

ZIKV epidemic in Colombia. Majumder et al. sought to reconstruct the R0, predicted final out-

break size, and the duration of the ZIKV Colombia epidemic by using HealthMap data in con-

junction with Google Trends time series data (for the search term “Zika”), the latter used to

smooth incidence curves estimated by HealthMap data [54]. The confidence intervals of the Ro

estimated from HealthMap and Google data overlapped with those estimated from formal

MoH-reported ZIKV case counts. Digital data yielded similar estimates for the proportion of

the susceptible population that would require vaccination, should a 100% efficacious vaccine

have been developed before the end of the epidemic. This study made the point that important

epidemic transmission parameters can be determined by using digital data alone should there

be limited or no conventional surveillance infrastructure; however, it was unclear what pro-

portion of HealthMap-measured ZIKV cases would be attributable to media reporting of

Colombian MoH case counts or WHO case summaries.

More recently, HealthMap and ProMed data have been used alongside conventional sur-

veillance data to reconstruct the dispersal of the ZIKV epidemic across Brazil and to map

global environmental suitability for ZIKV, two notable examples of combining internet-based

biosurveillance data with traditional surveillance data forms to enhance disease surveillance

and prediction [55,56].

Other internet data sources: YouTube and Facebook

While Facebook is the third most visited website in the world, its data are generally less amena-

ble to enhance communicable disease surveillance because of the lack of public access to much

of the data [40]. YouTube is open access and also commonly used, yet automating data extrac-

tion and content analysis from videos is challenging. As a result, this digital data stream has

primarily been evaluated with respect to its potential to spread misinformation or clinically

useful material rather than as an epidemic surveillance or prediction tool [57]. Nevertheless,
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particular mention should be made of the study by Alasaad, who sought to evaluate the surveil-

lance potential of Facebook and YouTube posts concerning probable leishmaniasis cases in

Syria [12]. While this study had a very limited validation and the reference data set was difficult

to reproduce (Skype-calling individual clinicians in conflict zones with deteriorating public

health infrastructure to confirm whether leishmaniasis had been seen in regions where You-

Tube and Facebook posts indicated disease), the findings were nevertheless valuable for

exploring a possible public health application of social media in a conflict zone.

Limitations, challenges and future directions in the application of

internet-based VBD biosurveillance

The putative advantages of internet data for communicable disease surveillance are clear;

namely, these data are free, fast, and may offer valuable surveillance signals in regions with lim-

ited conventional surveillance infrastructure and rising internet access. Such regions generally

experience the brunt of VBD, although it is worth emphasizing that internet access may vary

considerably between and within countries with high burdens of VBD [58]. The widespread

use of HealthMap by international public health agencies, the partnership between the CDC

and HealthMap’s DengueMap, the recent integration of internet-based DENV prediction plat-

forms into broad nongovernmental organization (NGO) DENV initiatives [59], and the use of

novel internet data streams in ZIKV predictions used to brief the US Government suggests

that public health agencies and other key players are recognizing the potential of novel data

sources in VBD epidemic response [27,60–62]. A recent pilot evaluation of US communicable

disease surveillance professionals indicated that the majority were looking for new data

sources to inform public health decision-making, and more specifically, that the majority

found internet search and media scraping as moderately useful for early outbreak situational

awareness [63].

Yet despite these promising examples, internet-based VBD surveillance arguably faces an

unclear future in public health and clinical medicine. Despite over five years of academic pub-

lications, which often claim the importance of real-time digital data for VBD surveillance, and

valuable conceptual frameworks, which suggest how digital data streams can be integrated into

public health practice, there are little published data—to our knowledge—that have indicated

how these novel forms of surveillance have actually been used in public health response or clin-

ical medicine nor what measurable impact they have had on epidemic control or clinical care.

Redressing this dearth of implementation science for these novel forms of VBD surveillance

should be a core priority for this field (Box 1), particularly because feedback from end users of

these methods would be invaluable for improving the development of future novel digital epi-

demiological tools for these and other pathogens and could form the backbone of a roadmap

to implement these new technologies into public health practice across a range of settings. For

example, we do not know if end users find the trade-off between accuracy and timeliness of

internet data streams an acceptable one. Moreover, it is unclear if such end users find methods

validated at coarse spatial or temporal scales at all useful for public health practice and whether

they completely trust studies which have only externally validated the performance of predic-

tive models over a short period of time (if at all), particularly given the important lessons

learned regarding the deteriorating performance of Google Flu Trends over several years

[21,64]. An evaluation of end users of an influenza A/H5N1 web-based expert epidemic intelli-

gence system indicated that sensitivity and timeliness were perceived as the more important

aspects of this type of internet-based zoonotic influenza surveillance approach, and similar

efforts could be extended to end users of internet-based VBD surveillance methods [65].
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Another key limitation to internet-based VBD surveillance has been the typical use of a

Pearson correlation coefficient as a measure of instrument validity. While this does allow some

kind of standardized comparison between the different types of data and would allow a valu-

able meta-analysis that could explore determinants of internet-based VBD surveillance perfor-

mance, the Pearson correlation coefficient is highly prone to influential data points, makes an

assumption that time series data points for communicable disease case counts are indepen-

dent, and may be of limited use to public health end users who may be more interested in the

early detection and prediction of VBD epidemic onset, epidemic peak, R0, total epidemic size,

and other more practice-orientated quantitative surveillance goals [21,66]. Estimating these

metrics takes statistical methods more sophisticated than mere Pearson correlation and will

require extensive validation to ensure their accuracy [21]. The use of such metrics in evaluating

internet-based DENV—and, more recently, ZIKV surveillance—indicates promising progress

in this respect [14,54].

When considering the future role of internet big data in enhancing VBD surveillance and

control, it is important to recognize that the developers of these digital surveillance methods

have long cautioned that they are designed to augment rather than replace conventional sur-

veillance data [3]. Efforts to combine digital data (e.g., Twitter and Google) with more conven-

tional surveillance data (e.g., sentinel surveillance data from public health agencies) have

proven fruitful for influenza surveillance [67]. This approach has been recently extended to

ZIKV and DENV forecasting and/or nowcasting [55,68] and is perhaps one of the most prom-

ising future directions of internet-based surveillance for VBD and other pathogens. Along

these lines, another promising opportunity is the use of internet data streams as a measure-

ment of human behavior rather than as a proxy for disease incidence itself. A recent effort to

clarify the drivers of the spatiotemporal dynamics the 2014 CHIKV outbreak in Martinique

used just such an approach by using Twitter to measure local awareness and interest in protec-

tion against CHIKV, thereby allowing an evaluation of how such factors impact on the spread

of this virus [69].

Box 1. Critical areas of research to improve the transition of internet-
based biosurveillance into surveillance and control operations for
VBDs

• Meta-analysis of all published studies that have validated digital disease detection

methods against reference public health data to determine the best estimates of accu-

racy of internet-based VBD surveillance by pathogen type, country income, internet

access, and pathogen epidemiology.

• Implementation science studies to identify which sorts of digital data streams have

actually been used during VBD epidemics, how they were used, and whether their

timeliness had an impact on outbreak or epidemic control.

• Qualitative measurement of public health end user perceptions and sentiment regard-

ing what features of digital disease detection systems are more important for practical

use in VBD control, whether the systems are felt to be trustworthy, and how they

would consider using them in VBD control.
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Finally, in another example of extrapolating advances in internet-based influenza surveil-

lance to digital VBD surveillance, there have been very recent efforts to develop more flexible

Google-based modeling frameworks in which regression models are continuously updated by

using a sliding window training data set to best capture the changing association between pop-

ulation internet search behavior and DENV incidence, greatly improving prediction perfor-

mance and offering the prospect of an automated forecasting system [68].

Key learning points

• There are several freely accessible internet data streams available to supplement tradi-

tional sentinel surveillance vector-borne viruses, parasites, and other pathogens,

including ZIKV, DENV, other arboviruses, and malaria.

• The accuracy of these internet-based VBD surveillance systems varies. Spatial and tem-

poral scale, disease burden, and seasonality are likely strong predictors of accuracy.

• User-friendly free platforms that combine digital and nondigital data streams to

enhance VBD surveillance are now available for clinical and public health use.
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