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Abstract
Purpose Convolutional neural networks have become rapidly popular for image recognition and image analysis because of its
powerful potential. In this paper, we developed a method for classifying subtypes of lung adenocarcinoma from pathological
images using neural network whose that can evaluate phenotypic features from wider area to consider cellular distributions.
Methods In order to recognize the types of tumors, we need not only to detail features of cells, but also to incorporate
statistical distribution of the different types of cells. Variants of autoencoders as building blocks of pre-trained convolutional
layers of neural networks are implemented. A sparse deep autoencoder which minimizes local information entropy on the
encoding layer is then proposed and applied to images of size 2048×2048. We applied this model for feature extraction from
pathological images of lung adenocarcinoma, which is comprised of three transcriptome subtypes previously defined by the
Cancer Genome Atlas network. Since the tumor tissue is composed of heterogeneous cell populations, recognition of tumor
transcriptome subtypes requires more information than local pattern of cells. The parameters extracted using this approach
will then be used in multiple reduction stages to perform classification on larger images.
Results We were able to demonstrate that these networks successfully recognize morphological features of lung adenocar-
cinoma. We also performed classification and reconstruction experiments to compare the outputs of the variants. The results
showed that the larger input image that covers a certain area of the tissue is required to recognize transcriptome subtypes. The
sparse autoencoder network with 2048× 2048 input provides a 98.9% classification accuracy.
Conclusion This study shows the potential of autoencoders as a feature extraction paradigm and paves the way for a whole
slide image analysis tool to predict molecular subtypes of tumors from pathological features.

Keywords Deep learning · Lung cancer · Computer-aided diagnosis · Autoencoder · Independent subspace analysis

B Naoaki Ono
nono@is.naist.jp

Victor Andrew A. Antonio
victor.antonio.uv9@is.naist.jp

Akira Saito
asaitou-tky@umin.ac.jp

Tetsuo Sato
tsato@is.naist.jp

Md. Altaf-Ul-Amin
amin-m@is.naist.jp

Shigehiko Kanaya
skanaya@gtc.naist.jp

1 Graduate School of Science and Technology, Nara Institute of
Science and Technology, Ikoma, Japan

2 Data Science Center, Nara Institute of Science and
Technology, Ikoma, Japan

Introduction

Recent rapid development of machine learning algorithms
brings us a wide range of applications for image recognition
and classification. In particular, a significant advancement
of visual recognition using deep learning architectures has
been shown by the ImageNet Large-Scale Visual Recog-
nition Challenge (ILSVRC) [16], which has served as a
testbed for a few generations of large-scale image classi-
fication systems. A convolutional neural network (CNN)
provides a promising architecture that can extract features
from given images automatically, optimize the manifold of
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image space, and show great success in image classifica-
tion and medical image analysis [17,20]. In this study, we
propose an application of CNNs for feature extraction and
classification of lung adenocarcinoma pathological images
and use the learned features for classification of large image
data.

These approaches use small images as input, usually
less than 300 px by 300 px. However, whole slide images
gathered by the Cancer Genome Atlas (TCGA) network
are of a much larger magnitude. This paper presents an
approach that transfers information learned from small input
images to larger input data. By applying unsupervised
learning through autoencoders, we will be able to extract
features that are not heavily reliant on classification infor-
mation [5,7].

Specifically, this project has two goals. First, it aims
to compare the performance of different network architec-
tures in reconstruction and visualization tasks. To do this,
we conduct experiments using several types of networks on
lung cancer images gathered from the Cancer Genome Atlas
database (http://cancergenome.nih.gov) as an example train-
ing database. Second, we developed the extended network to
process much larger input of pathological images, in order to
evaluate not only local phenotypic features but also their dis-
tribution in the tissue, in order to apply the deep convolutional
autoencoders, for the classification of lung adenocarcinoma
images into their transcriptome subtypes, with the under-
standing that modifying existing machine learning methods
to target specific image sets can optimize the precision and
accuracy of the analysis.

Review of previous work

Classification of lung adenocarcinoma
transcriptome subtypes

Lung cancer is the leading cause of cancer-related mortality,
and adenocarcinoma is its most common histological sub-
type [8,9]. The overall prognosis for lung cancer remains
poor, despite recent advances in molecular targeted thera-
pies. Several cancer genome projects have analyzed cohorts
of lung cancer patients and revealed genome and transcrip-
tome alterations. Most recently, the Cancer Genome Atlas
(TCGA) has described the comprehensive genomic land-
scape of lung adenocarcinoma in a large cohort [18]. These
studies not only elucidated oncogenic mechanisms but also
shed light on previously unappreciated heterogeneity of gene
expression profiles. As a consequence of genomic alterations
and gene mutations in cancer cells, aberrant patterns of gene
expression profiles occur, which eventually determine can-
cer cell behaviors. The pathological images from resection
are paired with transcriptome data from DNAmicroarray for

Fig. 1 Pathological images of three lung adenocarcinoma subtypes

each patient. In line with this, it is worth noting that the afore-
mentioned TCGA study has identified three transcriptome
subtypes of lung adenocarcinoma: the terminal respiratory
unit (TRU, formerly bronchioid), the proximal-proliferative
(PP, formerly magnoid), and the proximal-inflammatory (PI,
formerly squamoid) transcriptional subtypes [19]. It has been
further demonstrated that this classification is associated
with clinical features and gene mutation profiles. In terms
of morphological features, lung adenocarcinomas display
high inter-individual and intra-tumoral heterogeneity. How-
ever, it remains undetermined whether the transcriptome
subtypes are associated with distinctive patterns of patho-
logical findings. If it is the case, image analyses on biopsy of
resected tissue sampleswill be helpful to infer transcriptional
changes in tumor tissues, which can assist precise diagno-
sis and clinical decision making. In this study, we propose
a model to classify three lung adenocarcinoma transcrip-
tome subtypes from their pathological images using a deep
learning approach. Figure 1 shows a sample of each of the
three subtypes alongside four different samples of normal
images.

Image processing via CNNs

Machine learning continues to be a vital innovation used
in several fields. From a biology standpoint, it can be
used for gene expression interpolation and classification of
several datasets. Moreover, it has been an important instru-
ment for image classification and inference in recent years.
On the other hand, image classification and analysis has
been an important achievement of computational systems
in recent times, and in fact, it is still a growing, revolu-
tionary field. Specifically, being able to perform analysis
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on pathological images proves to be vital for medicine and
bioinformatics. Image processing methods using deep neu-
ral networks are currently developing very rapidly. However,
those approaches mainly target general image analysis such
as photo-classification and face recognition. On the other
hand, an analysis of biomedical images requires a more
specific viewpoint focusing extensively on their biological
features [2,12,14,15].

This study relies on an investigation conducted by Masci
et al. [13] to determine the ability of standard CNNs to
extract features using an unsupervised learningmethod. They
used the MNIST dataset, which has been the standard for
this type of testing. We see in this work the ability of
pre-training a network for reconstruction to still be capa-
ble of performing classification. They were able to extract
features from unlabeled data, which when combined with
backpropagation algorithms can still become efficient clas-
sifiers.

We also constructed a deep learning model of the sparse
autoencoder (SAE) for the differentiation of the distinct
types of lung adenocarcinoma from pathological images [3,
21].

Finally, we see from [11] a specific type of CNN using
the notion of a reconstruction independent subspace anal-
ysis (RISA). This is an unsupervised learning method for
the reconstruction of images emphasizing the invariance
between the extracted features, which means that neighbor-
ing filters are designed to share the same property. They were
able to show that these invariant features are vital in the clas-
sification of images if we attach a supervised layer to the
pre-trained RISA network.

Since part of our goal is an understanding of the internal
architectures of several CNN variations, we also look at [22].
Their work provides a number of visualization experiments
for this purpose, and we can follow a similar approach for
our data.

Finally, machine learning and computer vision has pro-
vided us powerful methods to improve accuracy and effi-
ciency of image classification. These methods rely upon
manually curated image features to characterize specific fea-
tures of tumors. However, recent development of approaches
like deep neural networks allows us to extract image fea-
tures from given data automatically, without using handmade
features. Using pre-trained neural networks, we can extract
features of tumors and distinguish them according to their
shapes. However, when we address the classification of ade-
nocarcinoma subtypes, local features of cell shapes are not
enough to describe the variation and distribution of various
cells in the tissue [10]. In this paper, we propose variations
of CNNs that uses multiple reduction layers in order to eval-
uate a large area of pathological images and classify lung
adenocarcinoma subtypes.

Model

Autoencoders

An autoencoder is an unsupervised machine learning archi-
tecture that extracts characteristic features from given inputs
by learning a networkwhich reproduces input data from those
features. Figure 2 shows the basic design of the autoencoder
used in our model. The input data are scanned by a convolu-
tional filter and down-sampled by a max-pooling layer then
passed on to an encoding layer. The output here can then be
used to generate the input data using the reversed network.
The total network is optimized to minimize the difference
between input and output data.

To enhance the efficiency of feature extraction and infor-
mation compression in the autoencoder, we introduced a
sparsity penalty. We compute information entropy of the
output of the encoding layer and add the penalty for the opti-
mization function (L) to minimize the effect of overfitting.
The optimization function is defined as follows:

L = R + λs S, (1)

where

R =
N∑

i

(
xoutputi − x inputi

)2
(2)

and

S =
∑

k = 1n
M∑

j=1

(
−r encodej log r encodej

)
. (3)

Here, r encodej is the output intensity of filter j in the encod-
ing layer relative to their total summation. N and M are the
numbers of nodes in the input and encoding layers, respec-
tively, and λs is a weight constant.

Stacked autoencoders allow us to extract more complex
image features with higher-order structures, while some
detail information will be lost in down-sampling. It is worth
noting that stacked autoencoders can be trained indepen-
dently. That is, the network of the first autoencoder can be
fixed after training and left aside when we train the network
for the second optimizer. This reduces the number of train-
able parameters and required computation.

Classifier variants

In the first part of this study, we implemented three types of
classifiers and compared their corresponding results. These
networks can be distinguished based on how the convolu-
tional filters will be learned and extracted.

We call the first network a direct classifier, and it is
described by a convolution network attached to a softmax
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Fig. 2 Autoencoder model
based on a convolutional neural
network
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Fig. 3 Pipelines for classifier variants. Conv.: convolution layer with 5 × 5 filters. Pool.: pooling layers with 2 × 2 max pooling. Dense: fully
connected layers. Unpool: unpooling by copying to 2× 2 pixels. Deconv.: deconvolution with the same size of filters

classification layer. The features will be extracted according
to optimal classification. Softmax cross-entropy will be used
as a loss function. The subsequent networks are pre-trained
autoencoder CNNs. The final layer of these networks will
be attached to a softmax classification layer, and its features
will be extracted similar to the direct classifier.

Particularly, the second network is a pre-trained autoen-
coder whose features are extracted following the reconstruc-
tion paradigm R from Eq. (2).

On the other hand, the third network is a pre-trained recon-
struction independent subspace analysis (RISA) network. It
is a two-layer autoencoder variant composed of convolution
and pooling layers. The main distinction of a RISA network
is that it emphasizes minimal translational invariance [11].
If we denote the learned matrix from the convolutional layer
as C , and the fixed matrix from the pooling layer as H , then
for an input vector x, the second layer output is

pi (x;C, H) =

√√√√√
k∑

m=1

Him

⎛

⎝
n∑

j=1

Cmjx j

⎞

⎠
2

.

The features extracted from a RISA network will be learned
through the following heuristic:

argmin
C

N∑

t=1

⎛

⎝ 1

N

∥∥∥CCTx(t) − x(t)
∥∥∥
2 + λ

k∑

i=1

pi

(
x(t);C, H

)
⎞

⎠ ,

where
{
x(t)

}N
t=1 is the input dataset and λ a weight constant.

This rule extracts features less expensively than manually
designed feature extraction methods.

Figure 3 shows a summary for the different pipelines for
the three variants. Here, the softmax classifier takes logistic
outputs.
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Fig. 4 Structure of the whole network

Toward classification of larger images

In the second part of this study, we constructed a model
based on three autoencoders and one classification reducer
that takes logistic outputs. Figure 4 shows the structure of
the network. 2048 px × 2048 px slices from the pathologi-
cal images were used as input for the first autoencoder. For
an initial feature extraction, we first pre-train three stages
of convolutional autoencoder. The output from the encoding
layer of the third autoencoder is passed to the reduction clas-
sifier. Since the size of the third encoding layer is still large,
we divided it into 16×16 subpanes, and in each subpane, the
input from the encoding layer is reduced to 24 output nodes
through fully connected networks. Note that all the subpanes
share the same reduction network; in other words, it is also a
convolution without overlap between windows. Finally, the
output of the reduction layer is reduced again into three nodes
which represent the three classes of lung adenocarcinoma
subtypes. Using multiple reduction layers, we can evaluate
larger pathological images in order to recognize the features
based from cell distribution in the cancer tumor and classify
the transcriptome subtypes. The network in this model is
composed of 11 layers and 97,227 nodes in total. We imple-
mented these networks basedonpythonusingTensorFlow [1]
libraries, which provides various basic functions for neural
networks and machine learning algorithms. We constructed
and trained our network from scratch instead of applying
transfer learning since the features of pathological images
are not consistent with general image recognition. This time
we incorporate the sparsity penalty as described in Eq. (3) to
extract features and Adam algorithm for optimization.

The actual dataset is composed of pathological images
of lung adenocarcinoma from the Cancer Genome Atlas
(TCGA) [4,6]. There are 409 whole slides from 230 can-
cer patients which are classified into three transcriptome
subtypes according to their gene expression patterns. The
original pathological slide images have quite high resolution
of over 20,000–40,000 pixels, whose actual sizes are approx-
imately 1–2 cm2. We randomly clipped the original images
into slices of 2048× 2048 image size and obtained 106,505
slices (TRU:43122, PP:27047, PI:36336) as the input data
for our models.

Fig. 5 Example of the output of the autoencoder

Results

Visualization of filters

First we look at the results of the reconstruction algorithm.
While the actual slides are paired with their respective
transcriptome subtypes, we use the unlabeled tiles for the
autoencoder and apply the labeling for the classifier. Now,
we trained three stages of autoencoder as pre-training. Fig-
ure 5 shows an example of the output of the first stage of the
autoencoder. The original images here come from the general
collection of images.

We now look into some of the activations of the autoen-
coder. Though some color hue changed after reconstruction,
the structural detail of the original input was recovered from
compressed information of encoded layers whose resolution
is one fourth of the original image, as shown in Fig. 6.

In order to understand how the network extracts features
after training, we randomly clipped the original images to
generate 10,000 sample input of size 32 × 32 pixels. Then,
wecomputed theoutput of the encoding layer and sorted them
according to the value of one node in the encoding layer of
the third stage. The goal of Fig. 7 is to emphasize a specific
feature extracted by the autoencoder. We take the average of
the pixel intensities of the top 100 encoded images based on
the sorted feature activation. A sample image is then obtained
representing the activation in one of the encoding layers.
This represents a feature of the training image patterns. It
seems that they represent different local structures of cell
boundaries such as stripe- or target-like patterns.

Internetwork comparison

We want to determine whether the convolutional filter size
has an effect on the reconstruction outputs and the classifi-
cation accuracy of the networks.

For the following experiments, we used 64 × 64 images
as input, and the networks follow the pipeline described in
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Fig. 6 Left: input image, a sample of TRU subtype. Right: output of some encoding layers in the second autoencoder. The gradient from red to
blue represents increase in signal intensity

Fig. 7 Examples of optimized local image for encoded outputs

Fig. 8 Comparison of AE and RISA training

Fig. 3. First, we take a look at the reconstruction. Here we
vary the convolution filter size on a standard convolutional
autoencoder and a RISA network.

The results are shown in Fig. 8. We take the natural loga-
rithm of the reconstruction error over the number of training
steps. Here, 3×3, 4×4, and 5×5 are the convolutional win-
dow sizes. It can be observed that performance does not vary
significantly as we change the filter size. However, it can be

seen, especially in theRISAnetwork experiment, that a slight
increase in reconstruction performance is brought about by a
decrease in the filter size. This implies that a smaller receptive
field works better for this type of task.

Next, we performed a comparison between the activated
filters of each of the networks that we are working on. We
take the activations of the first layer of the direct classifier,
the first stage of the autoencoder, and the lone convolutional
layer of the RISA network. The goal here is to determine and
hopefully interpret the features extracted from each of the
networks.

In Fig. 9, we can observe several differences in the types
of filters extracted. We observe that the output for the direct
classifier shows some edge detection scheme through the
contours in someof the filters.On the other hand, the standard
autoencoder seems to emphasize shape and hue. The RISA
network shows features similar to the standard autoencoder,
but we also observe that some of them have paired up as
part of the underlying architecture of RISA. (Note that the
RISA filters were scaled to match the filters of the other
networks.)

In the interest of finding themost accurate implementation
of the convolutional classifier, we continue the experiment
of varying the size of the input along with the convolutional
filter size of the network variants. Specifically, we incorpo-
rate 32 × 32, 64 × 64, and 128 × 128 experiments. Table 1
summarizes the accuracy of the different convolution mod-
els. In this table, we can see that, in general, there is some
slight improvement in performance when we increase the
filter window size.

However, ifwe look at the accuracies of theRISAnetwork,
we see a different result. This can be attributed to the fact that
as we increase the filter size, we have a relatively significant
drop in reconstruction performance. It must be said that the
effect does not seem to be drastic for the standard AE.
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Fig. 9 Comparison between filters and output of networks. The upper image is an original sample from PP subtype. The middle row shows outputs
of some feature filters. The lower row shows the reconstructed images

Table 1 Subtype classification accuracy tables for varying networks
and filter sizes (#)—umber of test images

Window size Direct class. AE + class. RISA + class.

32× 32 (12,000)

3× 3 73.6 76.4 52.5

4× 4 74.1 65.9 50.9

5× 5 80.5 68.8 71.3

64× 64 (3000)

3× 3 82.9 74.7 89.2

4× 4 87.8 79.5 62.5

5× 5 89.0 82.2 71.2

128× 128 (750)

3× 3 68.4 73.3 56.7

4× 4 86.4 74.3 35.9

5× 5 89.1 54.9 72.1

Deeper networks

Using a pre-trained three-stage sparse autoencoder network,
we trained to classify the transcriptome subtypes. First we
confirmed the effect of block reduction. We evaluated the
accuracy of the network by changing the input image size.
This time, we used 128× 128, 512× 512, and 2048× 2048
images as input. From the results described in the previous
section, we see that there is some advantage to altering the
filter size of the autoencoder. As such, we use 7×7, 5×5, and
3× 3 for the filter size of the three stages of the autoencoder
and 16× 16 for the classifier.

To actually perform the classification on the 2048× 2048
images, we first divide them into smaller tiles on which to

apply the pre-trained convolutional autoencoder. We then
concatenate the output of the final stage of the autoencoder
and use it as input for the convolutional classifier.

Table 2 shows that when the input size was small, the
network could not learn the difference between transcriptome
subtypes very well. But as we increase the input size, more
information is being read by the network, and hence, more
complex features are extracted. Accordingly, the accuracy
increases. It is worth noting that the number of nodes was
not changed for the three experiments.

Discussion and conclusions

We aimed to implement models involving CNNs for the
reconstruction and classification of lung adenocarcinoma
transcriptome subtypes. The experiments using different
input sizes indicate that the network requires a certain num-
bers of cells in the input images to recognize difference
between transcriptome subtypes.

Looking at the differences of the convolutional filter
output of each of the networks, we can see the features
emphasized by the three variants. The convolutional net-
work classifier outperforms the other two networks, and it
can be seen that the important features have something to do
with some combination of edge and hue detection. On the
other hand, the autoencoder network emphasizes hue above
all else. A deeper analysis of these filters is worth pursuing.
Moreover, the pre-training implemented on the autoencoder-
classifier networks provides several advantages like lower
computational cost without a drastic effect on accuracy.

Using the pre-trained autoencoder as a feature extrac-
tion mechanism for a convolutional classifier and tiling the
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Table 2 Confusion matrices and accuracy for 128 px, 512 px, and
2048 px experiments

Subtype Prediction

TRU PP PI Total Accuracy (%)

Diagnosis

128 px

TRU 47 32 1 80 58.8

PP 20 64 11 95 67.4

PI 16 21 44 81 54.3

Total 83 117 56 256 60.5

512 px

TRU 54 32 0 86 62.8

PP 15 48 15 78 61.5

PI 17 16 59 92 64.1

Total 86 96 74 256 62.9

2048 px

TRU 60 0 0 60 100.0

PP 0 49 1 50 98.0

PI 1 0 65 66 98.5

Total 61 49 66 256 98.9

2048 × 2048 images into individual and independent tiles
paved the way for a classification algorithm involving large
image input, having a 98.89% test accuracy. Even though
they belong to different clusters in gene expression profiles,
it was difficult to distinguish them from their morphologi-
cal phenotypes since their local cell structures were not so
different. In order to distinguish statistical distribution of cel-
lular features in larger tissue images, we introduced multiple
reduction layers and succeeded to classify transcriptome sub-
types correctly.

This new approach will be helpful for differentiation of
various tissue types, not clearly different in cell morphology,
but different in cellular distribution in the tissue. This result
will help the diagnosis of lung cancer for appropriate treat-
ment, and further applications will provide us useful tools
for diagnosis of various tumor types.
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