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Genomic studies have been a major approach to elucidating disease etiology and
to exploring potential targets for treatments of many complex diseases. Statistical
analyses in these studies often face the challenges of multiplicity, weak signals, and
the nature of dependence among genetic markers. This situation becomes even
more complicated when multi-omics data are available. To integrate the data from
different platforms, various integrative analyses have been adopted, ranging from the
direct union or intersection operation on sets derived from different single-platform
analysis to complex hierarchical multi-level models. The former ignores the biological
relationship between molecules while the latter can be hard to interpret. We propose
in this study an integrative approach that combines both single nucleotide variants
(SNVs) and copy number variations (CNVs) in the same genomic unit to co-localize
the concurrent effect and to deal with the sparsity due to rare variants. This approach
is illustrated with simulation studies to evaluate its performance and is applied to low-
density lipoprotein cholesterol and triglyceride measurements from Taiwan Biobank. The
results show that the proposed method can more effectively detect the collective effect
from both SNVs and CNVs compared to traditional methods. For the biobank analysis,
the identified genetic regions including the gene VNN2 could be novel and deserve
further investigation.

Keywords: co-localization, gene-level, integrative analysis, Taiwan Biobank, CNV, SNV, CNV-SNV cross-platform
interaction, rare variant

INTRODUCTION

Many genomic studies based on DNA single nucleotide variants (SNVs) have been conducted to
explore mechanisms of disease etiology, evaluate treatment effects, and identify potential drivers of
disease. For instance, through genome-wide association studies (GWASs), several trait-associated
single nucleotide polymorphisms (SNPs) have been detected in past decades (Wei et al., 2010;
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Network et al., 2015; Juang et al., 2019). However, issues arise
in traditional GWAS analyses. For example, the existence of
linkage disequilibrium (LD) may lead to the discovery of non-
causal DNA markers. In addition, when signals are weak,
current statistical models may not have enough power to detect
biomarkers, especially when the signal comes from a rare variant
and/or when sample size is limited. Furthermore, GWAS findings
may only partially account for the heritability of complex
diseases, leaving a large proportion of heritability unexplained.

To avoid or reduce concerns related to the above issues,
several approaches have been adopted. Examples include, but
are not limited to, the incorporation of multi-omics data (Sun
and Hu, 2016; Hasin and Lusis, 2017; Eddy et al., 2020), the
development of statistical methodology for uncovering missing
heritability (Zuk et al., 2012; Yang et al., 2015; Young, 2019), and
the examination of gene-gene and gene-environment interactions
(van IJzendoorn et al., 2011; Kaprio, 2012; Zhou et al., 2021). For
omics data from multiple platforms, the current advancement in
high-throughput genetic technology has facilitated the collection
of genomic information from more than one single platform,
such as DNA SNVs and copy number variations (CNVs)
from SNP microarrays and/or next-generation sequencing. It
is expected that, through the combination of different types of
omics data, scientists can better capture or dissect the genetic
contribution in a specific disease. Some successful applications
include several breast cancer studies (Beckmann et al., 2007;
Curtis et al., 2012; Zahnleiter et al., 2013; Hendrickx et al., 2017),
a prostate cancer study (Taylor et al., 2010), and a study of
mental disorders (Wang et al., 2019). Review articles about such
integrated analysis have received great attention recently (see for
instance Richardson et al., 2016; Sun and Hu, 2016; and Wu
et al., 2019, among many others and references therein). Some
have focused on the biological perspective (Hasin and Lusis, 2017;
Eddy et al., 2020), some on statistical methodology in general
(Richardson et al., 2016; Sun and Hu, 2016), and some on the
perspective of variable selection and clustering (Wu et al., 2019).

Among possible omics data to be concurrently analyzed
with DNA SNVs, CNV is a common choice, since it has been
observed across all human genomes and found causative in
several phenotypic traits, by influencing the downstream gene
expression levels (Curtis et al., 2012; Li et al., 2013; Zahnleiter
et al., 2013). In gene expression profiles, it is estimated around
17% of the variation can be explained by the corresponding CNVs
(Stranger et al., 2007). However, similar to the issues in GWASs,
it is difficult to identify directly a CNV of large impact for one
specific disease, since CNV has the properties of low prevalence
and multi-scale features. One solution is to analyze multiple
CNVs simultaneously. Algorithms based on multiple CNVs have
been proposed, such as the CNV kernel association test (CKAT)
(Zhan et al., 2016), the CNV Collapsing Random Effects Test
(CCRET) (Tzeng et al., 2015) and the copy number profile
curve-based association test (CONCUR) (Brucker et al., 2020).
Successful examples using multiple CNVs have been reported in
obesity and psychiatric disorders (Lee K.W. et al., 2012; Carpenter
et al., 2015).

Both CNVs and SNVs play important roles in complex
diseases such as cancer. An association study with both SNVs

and CNVs included as biomarkers may increase the statistical
power. Such study designs have produced important findings.
For example, Beckmann et al. (2007) found mutant alleles
in BRCA1 and BRCA2. It was reported that copy number
variation exists in early-onset breast cancer patients (Krepischi
et al., 2012; Pan et al., 2019). Another breast cancer study
reported a possible explanation of gene expression changes by
somatic CNVs and several putative cancer genes with copy
number deletion (Curtis et al., 2012). Intriguingly, many DNA
sequence mutants, especially the loss-of-function alleles, can
be identified in the vicinity of CNVs (Hastings et al., 2009),
and CNVs frequently cluster together instead of randomly
distributing across the genome. These findings suggest that an
integrated analysis with both SNVs and CNVs together may
better capture their collective influence on the outcome variable
(Liu et al., 2018). Approaches in this direction include studies
that sequentially analyze SNVs and CNVs, such as the breast
cancer research project and studies of human height (Beckmann
et al., 2007; Curtis et al., 2012; Zahnleiter et al., 2013). This
integrative approach may be crucial in refining a region for
further investigation of causal variants.

Traditional integrated analyses of multi-omics data often
analyze each single platform separately to identify a set of
statistically significant signals, and then take the naïve union
or intersection of these resulting sets as the final finding
for potential candidate genes (Myocardial Infarction Genetics
Consortium et al., 2009; Curtis et al., 2012; Li et al., 2013).
This analysis scheme considers each omics data platform in
a parallel sense (Wu et al., 2019). Such an approach is based
on set operations and may fail to identify causal variants,
especially when the trait is driven concurrently by both SNVs
and CNVs and not marginally associated with either of the two
types of biomarkers. As an alternative, methods that examine
simultaneously both types of markers have been adopted. Such
a scheme is termed as hierarchical or vertical (Richardson et al.,
2016; Wang et al., 2019; Wu et al., 2019). For instance, Gamazon
et al. (2014) suggested the use of a single SNV association test
with the copy number status as a covariate to achieve better
performance. Different from the single gene and/or single-variant
approach, Momtaz et al. (2018) proposed analyzing the multiple
variants at the gene-set or pathway level simultaneously. They
all noted that a joint analysis of SNVs and CNVs would be a
favorable approach in exploring genetic contributions to complex
diseases. Most current integration studies analyze omics data
with a vertical scheme. In a vertical integration study, different
genomic profiling from the same subject is collected; while in
a horizontal integration study, such as the meta-analysis of
multiple GWAS datasets, the collection of the same type of
omics data from different subjects in multiple studies is collected
(Richardson et al., 2016; Sun and Hu, 2016; Wang et al., 2019;
Wu et al., 2019).

The integration analysis we consider here involves omics data
of different molecular levels collected from the same individual.
We propose in this study an efficient integrative co-localization
(INCO) algorithm to integrate SNVs and CNVs and to provide
a refined genetic region for identification of causal variants. The
proposed INCO is a hybrid approach and has several advantages.
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First, the INCO starts with a screening procedure at the gene-
level to preserve the biological interpretation while reducing the
dimensionality. Second, the INCO incorporates the effects of
SNVs and CNVs in a collective way rather than in a parallel
manner, so that the concurrent effect from both types of markers
can be modeled. This differs from the interaction studies where
the main effects of both SNVs and CNVs have to be significant
before modeling the interaction effect. Third, though the INCO
starts the analysis at the gene-level, its final procedure focuses
on narrower genetic regions. Such an arrangement can alleviate
the burden of multiplicity on statistical power and guard against
the sparsity problem due to rare variants. The methodology of
INCO will be explained in Section 2, followed by simulation
studies to evaluate its performance and to compare it with other
existing methods. Then the INCO method will be applied to the
Taiwan Biobank data (TWB), focusing on low-density lipoprotein
cholesterol (LDL-C) and triglyceride (TG) levels.

METHOD

Notation and the INCO Algorithm
Let K denote the type of genomic variants in the target genomic
region. For instance, K = 1 refers to SNVs and K = 2 to CNVs.
For any fixed gene, the genetic information of the i-th (i = 1,. . ., n)
subject is denoted as girKK . For instance, whenK = 1 and rK = r1,
then girKK = gir11 denotes the genotype of the r1-th SNV in the
gene, where r1 ranges from 1 to q1 with q1 being the number of
SNVs in the gene. When K = 2 and rK = r2, then girKK = gir22
denotes the copy number status of the r2-th segment in this gene,
where r2 ranges from 1 to q2 with q2 being the number of CNV
segments in the gene. Quantities q1 and q2 may differ from gene
to gene. For SNVs, gir11 is coded as 0, 1, or 2 based on the additive
model assumption, whereas gir22 is coded as 1 for copy number
gain or loss, and 0 if unchanged. Then, at the gene-level, the
marker data can be displayed as the matrix G.

G = (GirKK)n × (q1+q2)

=


g111 g121
g211 g221

· · ·
g1q11
g2q11

...
. . .

...

gn11 gn21 · · · gnq11

|

|

|

|

g112 g122
g212 g222

· · ·
g1q22
g2q22

...
. . .

...

gn12 gn22 · · · gnq22


n×(q1+q2)

(1)

where i = 1, 2, ..., n, rk = 1, 2, ..., qkand K = 1, 2.

Figure 1 outlines the procedures of INCO. The first step is
to map SNVs and CNV segments to the corresponding gene or
regulatory regions in order to prepare the matrix G for each
gene [step (1) in Figure 1]. In step (2), this matrix is included
in a gene-level association test to filter for potential target genes.
To test for both common and rare variants simultaneously, the
SKAT-O test (Lee S. et al., 2012; Ionita-Laza et al., 2013) is
utilized. This test follows a generalized linear model approach
with the link function g (E [Yi]) = Giβ+ Ziα, where Yi is the
disease phenotype of the i-th subject; α and β are parameters
to be estimated; and Zi contains other non-genetic covariates.

FIGURE 1 | Flowchart of the integrative co-localization (INCO) analysis.

Note that this gene-level test is a fundamental and crucial step
of INCO. The use of the matrix Gi can include simultaneously
both types of markers, each coded as a categorical variable, and
the SKAT-O test is used with the data matrix evaluated at the
gene-level. Genes passing the association test are considered as
candidate targets, and are retrieved for further examinations
at a finer scale. In step (3), these target genes are investigated
with a fine-mapping moving window approach to co-localize
the potential causal regions. In each window, the number of
genetic components is much smaller and the association test is
performed to evaluate the concurrent association in the region.
This is the final step of INCO which is carried out at the region-
level where the corresponding matrix Gi is now evaluated at the
region-level, and this completes the integrative co-localization
association analysis. Since both types of markers in the G matrix
are treated equally, and this genetic region is to be tested with
the generalized linear model in INCO, we consider it a test of
the collective effect from both types of markers. This differs from
the parallel analysis in which each omics platform is analyzed
separately (Wu et al., 2019).

Numerical Simulation Experiments
In the following simulation studies, the performance of INCO is
evaluated based on genetic components generated from TWB to
preserve the relationship between SNVs and CNVs. Specifically,
twenty-one genes were first randomly selected and the SNV
components and CNV status as well as the segments were
retrieved. Table 1 lists each of these selected genes along with
its chromosome number, number of SNVs (q1), and number
of CNV segments (q2). Some of the genetic regions were then
selected as exerting association with the phenotype, while the
others were not. In Part A, the genetic region has a concurrent
effect varying from null to strong, with or without a marginal
effect from each of its SNVs and CNV segments. In Part B, this
setting was extended to two regions, where each region exerts
an association of a different degree. The proposed INCO was
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TABLE 1 | The twenty-one genes considered in the simulation studies.

No. Chromosome Gene q1 q2

1 1 GNB1 15 10

2 5 LOC102467217 7 1

3 4 PDE5A 11 1

4 11 C11orf48 2 2

5 1 CTTNBP2NL 5 2

6 9 PTCH1 12 3

7 9 SLC25A25 4 3

8 17 CCL15-CCL14 9 4

9 6 CD164 7 4

10 11 IGSF22 10 5

11 3 CRBN 9 5

12 12 VAMP1 5 6

13 19 CLEC17A 7 6

14 5 DMGDH 21 7

15 6 LPA 24 7

16 15 CD276 7 8

17 12 MED13L 19 8

18 3 KBTBD12 22 9

19 6 HLA-DQB2 19 9

20 5 GM2A 12 10

21 13 LRRC63 20 10

The information contains the chromosome, gene id, number of SNVs ((q1)), and
number of CNV segments ((q2)). Some variants in the first gene, GNB1, are taken
as the causal variants in all simulation settings except A1.

compared with traditional integrative analysis methods, which
identified signals based on the single-platform analysis followed
by the naïve union or intersection of the results.

Simulation Settings
In Part A, the causal region was comprised of one risk SNV
(effect size β1), one risk CNV segment (with effect size β2), and
one concurrent effect (expressed as an interaction) of these two
variables (effect size was set at β3). Individuals were randomly
sampled with replacement from TWB, and the corresponding
dichotomous disease status was generated based on a logistic
regression model,

Yi~Bernoulli(pi),

logit(pi) = β0 + β1SNV1i + β2CN1i + β3SNV1i × CN1i.

For the ith individual, Yi represents the dichotomous disease
status and pi is the probability of having the disease. The variable
SNV1i denotes the genotype of the selected risk SNV with the
coding 1 if this subject carries the minor allele and 0 otherwise.
The CNV variable CN1i contains the information from the risk
segment; it is coded 1 if there is a copy number change and 0 if
not. The intercept β0 is the disease prevalence, which was set at
0.01 for all settings. The values of (β1, β2, β3) are listed in Table 2
for different settings in Part A. Setting A1 contains the null effect
for all variants, as a way to evaluate the false positive rate (FPR)

TABLE 2 | The list of settings and parameter values in simulation Part A, where W
stands for weak, M moderate, S strong, and N no effect.

Setting SNV & CNV effect Interaction effect β1 β2 β3

A1 N-N N 0 0 0

A2 W-W W 0.01 0.01 0.01

A3 W-W S 0.01 0.01 1

A4 W-W S 0.01 0.01 2

A5 M-M S 0.5 0.5 1

A6 M-M N 0.1 0.1 0

A7 M-M N 0.5 0.5 0

A8 S-S N 1 1 0

A9 S-S N 2 2 0

of INCO and competing methods. Settings A2-A4 contain weak
marginal effects (main effects of SNV and CNV, respectively)
and different levels of interactions (β3 ranging from 0.01 to 2)
between SNV and CNV. Setting A5 represents the case when both
marginal and concurrent effects are moderate or strong. Settings
A6-A9 contain the null interaction effect and different levels of
main effects. These four settings accompany A1 as different types
of the null concurrent effect.

The settings for the two causal genetic regions in Part B are
similar, but the effect size in each region can be different or even
opposite. These two regions can both exhibit null to strong effects,
simultaneously or separately. The disease status is generated by
the model,

Yi~Bernoulli(pi),

logit
(
pi
)
= β0 + {β1SNV1i + β2CN1i + β3SNV1i × CN1i}

+{γ1SNV2i + γ2CN2i + γ3SNV2i × CN2i}.

A representative list of settings used for the values of
(β1, β2, β3, γ1, γ2, γ3) is displayed in Table 3, while the
remainder of the settings tested is in Supplementary Table 1. For
example, in settings B9-B11 the two causal regions exert opposite
effects, and in settings B12-B14 the effect sizes of CNV and SNV
are different. The sample size was set at 50, 100, or 200 for the
disease and healthy group, and the number of replications was
1,000 for each setting in both Part A and B.

Traditional Integrative Analysis
The proposed INCO algorithm was compared with two naïve
integrative approaches, the intersection and the union. Briefly,
these two approaches start with obtaining significant genes based
on data from each platform separately, and then the significant
genes across different platforms are combined with the union
set operation or are filtered with the intersection operation. It is
called union if a gene is selected because any one of its component
SNVs or CNV segments is significant. In contrast, it is called
intersection if both a SNV and CNV segment in this gene are
significant. This is stage 1 of the traditional analyses. In stage 2,
these selected significant genes then undergo a moving window
analysis to detect if a finer genetic region is associated with the
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TABLE 3 | The list of selected settings and parameter values in simulation Part B, where W is for weak, M for moderate, S for strong, and N for no effect.

Region 1 Region 2 (β1,β2,β3,γ1,γ2,γ3)

SNV & CNV Interaction SNV & CNV Interaction

B1 W-W W W-W W (0.01, 0.01, 0.01, 0.01, 0.01, 0.01)

B2 W-W M W-W M (0.01, 0.01, 0.5, 0.01, 0.01, 0.5)

B3 W-W S W-W S (0.01, 0.01, 1, 0.01, 0.01, 1)

B5 M-M W M-M W (0.5, 0.5, 0.01, 0.5, 0.5, 0.01)

B6 S-S W S-S W (1, 1, 0.01, 1, 1, 0.01)

B8 S-S S S-S S (1, 1, 1, 1, 1, 1)

B9 W-W M W-W M (0.01, 0.01, 0.5, −0.01, −0.01, −0.5)

B10 W-W S W-W S (0.01, 0.01, 1, −0.01, −0.01, −1)

B12 M-N W N-M W (0.5, 0, 0.01, 0, 0.5, 0.01)

B13 S-N W N-S W (1, 0, 0.01, 0, 1, 0.01)

response. In this stage, any window that contains a significant
SNV or a significant CNV segment is considered a significant
window. Since either SNV or CNV segment can determine the
significance of the window, it is always a union operation in
stage 2. We therefore call these traditional integrative methods
the traditional union-union (TUU) analysis and the traditional
intersection-union (TIU) analysis. Both are classified as parallel
integrative analyses.

The intersection approach requires that the selected gene is
concurrently identified in multiple platforms, whereas the union
approach requires that the gene is identified in at least one
platform. Therefore, the traditional union approach TUU tends
to be more liberal and may identify more false positives and fewer
true negatives. On the other hand, the traditional intersection
approach TIU is more stringent and may produce a higher
true negative rate.

RESULTS

Evaluation of False Positive Rate
To evaluate and compare if the three competing analyses can
control type I error, the results under setting A1 are examined.
Since the effect sizes under setting A1 are set to zero, no gene
or region is associated with the response variable. Therefore,
any identified significant findings are false positives. The false
positive rates (FPRs) evaluated at the gene- and region-level of

TABLE 4 | The false positive rates calculated at the gene-level and at the
region-level under the simulation setting A1 of null effects.

Sample size INCO Traditional
intersection-union,

TIU

Traditional
union-union, TUU

Gene-level 200 0.047 0.011 0.384

100 0.059 0.010 0.360

50 0.085 0.002 0.306

Region-level 200 0.038 0.010 0.034

100 0.053 0.010 0.031

50 0.079 0.002 0.004

INCO, TIU, and TUU under sample sizes of 50, 100, and 200,
respectively, are listed in Table 4.

The proposed INCO maintained the nominal rate when the
sample size was 100 or 200, at both the gene- and region-level.
Even when the sample size was as small as 50, the FPR of INCO
was less than 10%. The other two algorithms, however, were
either too conservative or failed to control the false positives.
The conservative traditional intersection-union TIU achieved the
lowest rate of close to or less than 1% at both the gene- and
region-level, while the liberal traditional union-union had high
FPRs of around 30–40% at the gene-level but low FPRs of around
3% at the region-level.

Evaluation of True Positive Rate
To examine how well the algorithm can detect the true causal
variant, the first criterion is the true positive rate, which is either
calculated at the gene-level (TPR_g) or at the causal region-level
(TPR_r). The former TPR_g is defined as the average proportion
of causal genes that was successfully identified in the simulation
studies. The latter TPR_r is defined as the average proportion of
causal regions/windows that was identified among all windows
containing at least one causal variant. Note that the causal variant
can be the SNV and/or the CNV segment, and these two may be
located in the same or different regions. Figures 2A–D display
the true positive rates (TPRs) under several selected settings
in Part A and B, where the sample size is set at 200. Below
the X-axis in each subfigure in Figure 2, letters in different
colored squares highlight the strength of the corresponding
association: W for weak, M for moderate, S for strong, and
N for no effect.

When the evaluation is conducted at the gene-level
(Figure 2A) and when only one region is causal (Simulation
Part A), the traditional union-union, TUU, method outperforms,
whether the association is from the marginal SNV or CNV
marker and/or from the concurrent effect. However, when
the evaluation of TPR is at the region level (Figure 2B), the
proposed INCO algorithm becomes the best. This pattern does
not change in Simulation Part B when two causal regions are
involved, as observed in Figure 2C for TPR_g and Figure 2D
for TPR_r. In other words, when the interest lies in detecting
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FIGURE 2 | Plots of true positive rates at the gene-level (TPR_g) or region-level (TPR_r) and true negative rates at the gene-level (TNR_g) or region-level (TPR_r)
based on selected simulation studies. The letters in colored shades below each figure indicate the degree of effect size of the main and interaction effect in both SNV
and CNV. The abbreviations of N, W, M, and S represent Null, Weak, Moderate and Strong, respectively. (A) TPR_g in simulation Part A. (B) TPR_r in simulation Part
A. (C) TPR_g in Part B. (D) TPR_r in Part B. (E) TNR_g in Part A. (F) TNR_r in Part A. (G) TNR_g in Part B. (H) THR_r in Part B.

finer causal regions, INCO has the best performance through
the co-localization technique. Furthermore, it is worth noting
that, the TPR of INCO does not change dramatically between
TPR_g and TPR_r; its performance is fairly stable. In contrast,
TUU and TIU can perform quite differently on the two tasks and
are less satisfactory. TIU remains the worse in these comparisons
because the intersection criterion is too conservative.

Evaluation of True Negative Rate
The third criterion used to evaluate the performance is the
true negative rate (TNR), which is also calculated at either
the gene-level (TNR_g) or at the region-level (TNR_r). The
former is defined as the average proportion of non-causal
genes (noise) that are not identified as significant over the
1,000 replications, and the latter is defined as the average
proportion of non-causal windows that are not detected as
signals. Figures 2E–H demonstrate these TNRs. Both INCO and
traditional intersection-union performed well, with comparable
results, whether the concurrent and marginal effects were weak
or strong, and whether this was evaluated at the gene-level
(Figures 2E,G) or at the finer region-level (Figures 2F,H).
The liberal traditional union-union, however, failed to provide
satisfactory results, especially when evaluated at the region-level.

Application to Taiwan Biobank Data
The Taiwan Biobank project started in 2012 aiming to collect
Taiwan population data for large-scale studies of chronic and

local diseases. It was designed to recruit 200,000 subjects and is
still an ongoing project. Data collected include questionnaires
of demographic information, physical examinations, blood and
urine tests, and biological samples. Here we consider two
biochemical measurements, low-density lipoprotein cholesterol
(LDL-C) level, as a continuous phenotype, and triglyceride (TG)
level, coded as “optimal” or “high” with a cutoff of 200 mg/dL
based on the WHO guidelines (World Health Organization,
2006), as a dichotomous phenotype.

For 15,829 subjects with genotype data, their SNVs and
CNV segments were mapped to a total of 22,427 autosomal
genes, based on the hg19 gene list. Based on high identity-
by-descent (IBD) values, mismatched physical data, and having
unrealistically high blood lipid levels, a total of 4,165 subjects
were removed first. The value 0.09375 was set as the threshold
of IBD, which is half of the expected IBD value between third
and fourth degree relatives (Anderson et al., 2010). In addition,
40,294 SNVs failed to pass the quality control (QC) procedures
including missing rate >5% and HWE test p-value <1 × 10−6.
The Principal Component Analysis (PCA) was then carried
out on the remaining 589,867 SNVs and the top 10 principal
components were extracted to account for possible population
stratification. Next, each SNV genotype was coded as 0, 1, or 2
representing the number of minor alleles. All the QC procedures
and SNV data recoding were performed with PLINK 1.9 (Purcell
et al., 2007; Chang et al., 2015). For CNV segment detection,
the following steps were considered: all the raw CEL files were
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initially examined for quality control with Affymetrix Power Tool
(APT) version 1.18.0 and the output summary file was imported
to the Partek Genomics Suite 6.6 software for CNV calling.
After detection of the individual CNV regions, a segmentation
approach was applied, and each segment was recoded as 1 to
indicate a change in CNV or 0 to indicate no-change. Among
these genes, 72% of them contained both types of markers. Details
of the data management are described in Figure 3.

Based on the resulting 589,867 SNPs and 230,226 CNV
segments in 22,427 genes of 11,664 subjects, the INCO algorithm
was performed with the adjustment of covariates including sex,
age, body mass index (BMI) and 10 principal components (PCs)
for population stratification. Figures 4A,B are the Manhattan
plots of step 2 (the gene-level) of INCO for the continuous LDL-
C and the dichotomized TG phenotypes, respectively. First, we
compare the gene-level results with the associated genes reported
earlier. We searched the Online Mendelian Inheritance in Man
(OMIM) database (Amberger et al., 2009) and obtained 236
and 185 genes for LDL-C and TG, respectively. These genes are
colored in orange in Figures 4A,B. The overlap of the top twenty
genes between the set from OMIM and INCO is limited but not
inconsistent. For instance, the lipoprotein (A) (LPA) in Figure 4A
is identified in OMIM and ranks 23rd by INCO. The lipoprotein
lipase (LPL) gene in Figure 4B is identified by INCO and reported
in OMIM. Both LPA and LPL could be common susceptible genes
across populations.

For the fine-mapping with moving windows, the results for
three genes with a window size of 0.5kb are illustrated in Figure 5.
TheVNN2 gene for LDL-C is illustrated in Figure 5A. ThisVNN2
gene is close to the known LPA. In the figure, three skylines
for the negative log p-value are used to represent the moving
window analysis based on SNV-only, CNV-only, and INCO,
respectively. With INCO, the skyline for co-localization peaks

around rs1883613 and rs35939522, implying a strong collective
association. Note that this region would not be identified with
the single-platform analysis, let alone with TUU or TIU. Further
investigation of this region demonstrates that samples carrying
mutations both from SNV and CNV simultaneously have lower
LDL-C values (Supplementary Figure 1B). Similar patterns
can be observed in other genes identified by INCO, such as
the TOMM40, ZNF155 and DDX4 genes. The LDL-C values
of subjects with or without the mutations are displayed in
Supplementary Figures 1A,C,D.

As for the dichotomized status of TG, the odds ratios of
the identified regions are calculated to illustrate if individuals
carrying mutations in this region tend to have higher risk
of higher TG levels. In the calculation, subjects carrying no
mutations of an SNV or a CNV in the region are defined as
the reference group. The co-localized regions in TUFT1, TFIP11,
SNX27 and TDRKH genes are displayed with the odds ratio
plots in Supplementary Figure 2, where subjects with mutations
in both an SNV and a CNV segment do show a larger odds
ratio than those without mutation and those with just one
type of mutation.

DISCUSSION

In this study, we propose the INCO algorithm to integrate SNV
and genomic copy number data in one statistical model for co-
localization and identification of associated markers. The novelty
targets incorporate data from multi-platforms to account for
concurrent effects and to guard against sparsity due to rare
variants. The simulation studies suggest that INCO provides
a powerful tool for detecting a collective effect of mutants
across platforms, as compared with single platform analyses and

FIGURE 3 | Flowchart of genomic data management for Taiwan Biobank Data.
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FIGURE 4 | Manhattan plots of TWB, (A) continuous LDL-C level and (B) dichotomized TG level. In panel (A), LOC391003, PRAMEF4, PRAMEF6, PRAMEF7,
PRAMEF8, PRAMEF9 and PRAMEF22 share the same copy number segment which contains no SNV.

traditional intersection and union methods, while controlling the
false discovery rate at a nominal level. The analyses of real data
applications identified associated genes and a region potentially
related to phenotypes of interest. The region spans 500 base pairs
and can be considered a candidate region for further studies.

For the real application to the Taiwan Biobank database,
dietary habits and other environmental factors may vary across
populations, which can affect the lipid-related phenotypes more
than the genetic contribution to the phenotype. In addition,
the Taiwan Biobank project recruited healthy controls without
a history of cancer. This could explain why genes identified
here do not overlap much with genes reported in earlier studies.
Nevertheless, the collective association of the SNV and CNV

identified in VNN2, as shown in Supplementary Figure 1A,
could be a novel finding. VNN2 is a protein coding gene
involved in cell migration and fatty acid metabolism (van Diepen
et al., 2014). Studies have shown that the gene expression
level of VNN2 changed in monocytes from hyperlipidemia
patients under atorvastatin treatment, which is a prescription
medication used to improve cholesterol metabolism (Llaverias
et al., 2008). Another study showed that genes, including the
TUFT1 gene, were differentially expressed in liver cells from
hyperlipidemia mice under treatment with red raspberry extract.
The expression of those genes regulated by the treatment may
inhibit liver cholesterol synthesis and accelerate the conversion
from triglyceride to fatty acid, which further ameliorates lipid
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FIGURE 5 | Plot of co-localization analysis. (A) The VNN2 gene for LDL-C. (B) The LPA gene for LDL-C. (C) The FGF14 gene for TG with three platforms (SNV-only,
CNV-only, and both). (D) The FGF14 gene for TG with four window sizes. Below each X-axis, the orange ticks inside the yellow region indicate positions of SNVs and
the blue bars below it represent the CNV segments. Extra color lines below the X-axis in panel (D) denote the identified association regions (p < 0.0001) under
different window sizes.

metabolism disorder (Tu et al., 2019). The list of identified
genes and regions can be candidates for future investigation
of the mechanism.

A limitation of the current TWB application study, however,
is that we focus on demonstration of the INCO algorithm for
integrative analysis and have not conducted studies to validate
the influence of the identified associated regions on the LDL-C
and triglyceride level. In addition to advancing this algorithm in
the future, collaboration with experts in animal studies would be
a means to overcome this limitation.

The applicability of the proposed INCO algorithm can go
beyond integrative analysis. For instance, INCO can detect the
effects that exist only in one single platform. In Supplementary
Figure 3, the INCO procedure is compared with analyses using
only SNV or only CNV data, under the scenarios considered in
simulation Part A and B. INCO performed as well as the single-
platform analysis when the purpose was detection of only main
effects. As a demonstration, we performed the co-localization
analysis specifically for the LPA gene for LDL-C in the Taiwan
Biobank data. The skyline displayed in Figure 5B reveals the
highest peak around rs73596816, which replicates the findings
reported in earlier literature for European and Asian populations

(Mack et al., 2017; Han et al., 2019). INCO was able to detect
the signals contributed by the single platform alone. Similarly,
INCO can be applied directly to finer genetic regions with the
moving window approach. That is, if the computational cost is
not a concern, the proposed two-stage INCO can be replaced
with simply the second-stage of INCO. In Supplementary
Figure 4, we compare the one-stage and two-stage co-localization
strategies. Both performed similarly under different scenarios and
identified the same region. Therefore, two-stage INCO can be
used if filtering is required to save computational cost, or its
second stage can be applied directly when cost is not a concern.

There are issues in the implementation of INCO that
require attention. First, the size of the moving window remains
subjective. However, our experience indicates that the identified
region is robust to the choice of the size. The influence of the
size is demonstrated in the association study of the FGF14 gene
with TG in Figures 5C,D. Four different window sizes (0.5,
5, 10, and 20kb) were considered in this demonstration. It is
clear that the patterns of the skylines are similar, implying the
robustness of INCO’s findings to window size. Second, INCO
relies on a generalized linear model analysis which is parametric.
To evaluate if the distribution of the phenotype affects the
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results of INCO, we have considered three transformations of the
original LDL-C and TG measurements as the response variable
in the analysis, including continuous rather than binary TG,
dichotomized LDL-C with a threshold of 130 mg/dL, and normal
versus extremely high LDL-C (≥160 mg/dL). When comparing
the findings based on continuous and dichotomized TG, the
results are fairly consistent, with up to 90% of the identified
genes common to both. As for LDL-C, the degree of overlap
is less substantial, but more than 50% of the identified genes
are in common. Although INCO performs similarly with these
different distributions, a more careful investigation would be
required to determine how robust INCO can be to various
distributional assumptions.

Third, other localization methods may be adopted in this
integrative analysis. The current moving window represents an
intuitive and convenient choice. Many current fine-mapping
methods have been developed in the post-GWAS era. However,
methods such as fGWAS and CAVIAR are designed mainly
for locus-specific data instead of structural variants (Spain and
Barrett, 2015). Besides, Bayesian fine-mapping methods with
functional information scores for SNVs from different databases
are usually incorporated into analysis, but few scoring systems
are universally useful for copy number variations. It is promising
to extend INCO to sequencing data which have higher resolution
for finer localization to explore novel cancer-driving mutations.
Fourth, since one advantage of INCO is to screen, in stage 1, the
potential markers to enter the analysis in stage 2. The current
design of INCO is not suitable for a joint model with high-
dimensional markers tested at the same time. That is, if the total
number of markers from different omics platforms is large, then
it would be better to replace the SKAT-O test with some variable
selection procedures. Wu et al. (2019) gave a comprehensive
review of integrative analysis from the perspective of variable
selection, and methods discussed there would be good candidates.

Similar to the above issue, INCO does not test for interaction
between SNVs and CNV segments because the test applied here is
for genetic association of the region. Although the point estimate
of each coefficient in the generalized linear model can be derived,
a statistical interaction test has to incorporate the consideration
of the significance of the main effect, specification of the form of
interaction, and degree of the association due to the interaction
term. Zhou and colleagues (Zhou et al., 2021) have reviewed
methods from this perspective and provided good references
therein. Finally, the ideas of INCO can be applied to other omics
data. In this research we have demonstrated the INCO algorithm
with SNV and CNV data. When other omics platforms are of
interest, the same idea can be applied. The only difference would
be the statistical tests adopted at the gene-level and at the region-
level investigation. For instance, if transcriptome (microarray

or next-generation sequencing) or DNA methylation profiling
is considered, then association tests for continuous data, such
as the N-statistics (Glazko and Emmert-Streib, 2009), would be
more appropriate than the SKATO test; or if RNA-seq data is
considered, then other association tests for count data, such as
the generalized linear model (McCarthy et al., 2012), would be a
more appropriate choice.
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