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Abstract
Ischemic stroke (IS) is one of the major causes of death and disability worldwide.
However, the specific mechanism of gene interplay and the biological function in IS are
not clear. Therefore, more research into IS is necessary. Dataset GSE110993 including 20
ischemic stroke (IS) and 20 control specimens are used to establish both groups and the
raw RNA‐seq data were analysed. Weighted gene co‐expression network analysis
(WGCNA) was used to screen the key micro‐RNA modules. The centrality of key genes
were determined by module membership (mm) and gene significance (GS). The key
pathways were identified by enrichment analysis with Kyoto Protocol Gene and Genome
Encyclopedia (KEGG), and the key genes were validated by protein‐protein interactions
network. Result: Upon investigation, 1185 up‐ and down‐regulated genes were gathered
and distributed into three modules in response to their degree of correlation to clinical
traits of IS, among which the turquoise module show a trait‐correlation of 0.77. The top
140 genes were further identified by GS and MM. KEGG analysis showed two pathways
may evolve in the progress of IS. Discussion: CXCL12 and EIF2a may be important
biomarkers for the accurate diagnosis and treatment in IS.

1 | BACKGROUND

Ischemic stroke (IS) is the second leading cause of mortality
and third cause of disability in the world. The incidence rate of
IS was over 16 million 900 thousand cases in 2010 and it was
about 16 million 900 thousand globally [1]. According to up‐
to‐date statistics, 1.12 million adult patients over 20 died of
stroke in China. Pathological studies have confirmed that the
main causes of ischemic stroke are the formation of athero-
thrombosis and cardiac embolism [2]. At present, the con-
ventional treatment strategy is to perform rapid mechanical
and chemical thrombolysis after stroke. These treatment re-
quires instant therapy and intervention, besides increased
thrombolysis is also related with the high risk of bleeding
(including intracranial hemorrhage) [3]. Therefore, rapid
detection with serum biomarkers to detect the ischemic stroke
(IS) event may be of important clinical value for disease pre-
vention and treatment, intervention and prognosis. At present,
the diagnosis of IS mainly depends on cardiac tomography

imaging, such as magnetic resonance imaging (MRI) [4] and
computed tomography [5], which is labor‐redundant and time‐
consumptive. Thus it is of great significance to find potential
molecular biomarkers for the prevention, diagnosis and treat-
ment of IS.

Myocardial infarction is usually diagnosed by ECG,recent
study inferred circulating RNAs may also be valuable for the
diagnosis of acute ischemic stroke. MicroRNAs (miRNAs) are
small RNAmolecules, which are about 22 nt sequences that have
an important role in the transcription regulation and degradation
of mRNA. Because of the feasibility of detection and stability in
blood samples, they can be used as valuable biomarkers [6].Many
studies have confirmed the expression of miRNA in patients
with acute ischemic stroke, but as a biomarker, the potential and
mechanism ofmiRNAs in the diagnosis of acute ischemic stroke
has not been clear. A literature review in 2018 aggregated
reviewed data related to miRNA expression in 339 previous
studies, involving 572 patients and 431 healthy controls in eight
studies [7]. 22miRNAs (12 up‐regulated and 10 down‐regulated)
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were reported as differential expression. In previous studies,
differential expression analysis was used to identify the miRNAs
differentially expressed after probe sequencing, but this method
only focused on the role of a single gene, and could not find the
relationship between genes and establish the relationship be-
tween genes and diseases afterward [8]. This problem can be
solved by weighted gene co expression network analysis
(WGCNA).

One of the obvious advantage is that WGCNA spread genes
into co expressionmodule, which provides a new system biology
method based on microarray or RNA‐seq data, which is more
often used to discover the relationship between network, gene
and sample traits in a system with high sensitivity to low abun-
dance, or small fold change gene without losing much infor-
mation [9]. Previous studies have shown that WGCNA provides
importantmodules and pathways for many diseases [10–12], and
solved the problem in identifying miRNAs and up‐stream genes
that play a key role in some diseases as well [13, 14].The purpose
of this study is to identify is related pathways and genes based on
the top 140 genes with high degrees by the method ofWGCNA.
This finding may help in detection and the biological function of
stroke related genes.

2 | MATERIAL AND METHODS

2.1 | Study design and data preparation

The following flow chart diagram (Figure 1) with data prepa-
ration and data analysis showed the workflow of study design.
In this study, IS gene expression data was downloaded from
the public database of GEO. The most common type of
sample in stroke is peripheral venous blood. From GEO, we
obtained peripheral blood sequencing read counts from 20 IS
and 20 healthy control patients.

Gene annotation was extracted by org.Hs.for example.db
package with the corresponding information extracted
including Entrez ID and gene symbols with reference to the.

Platform GPL570 (Illumina Inc.). To ensure the integrity
and comparability of the data sets, normalization with log two
transformation is calculated with RMA package [15]. For the

identical gene symbol corresponding to multiple probes, the
gene annotation is mapped with the probe with the highest
average expression among all samples, and then the expression
matrix of all samples is combined according to the miRNA/
gene symbols. All samples were tested to remove batch effect
using SVA toolkit, and standard Q‐Q diagram was drawn [16].

2.2 | Quality control of raw data

The first step is to raw data processing. Samples sequencing
read counts in SRA format is initially processed by internal
Python script. In this step, clean data is obtained by deleting
the too short read or read containing head adapter, the read
containing deploy‐n tail, and excluding the low‐quality read(≤
20%) from the original data [17]. In the meantime, the clean
data of Q20, q30 and GC content were calculated. All down-
stream analyses are based on clean data of high quality.

2.3 | Differential microRNA screening

40 samples of sequencing raw data (SRR6761159 ∼
SRR6761198) were obtained fromGEO, and 60,617 count reads
were obtained after header adapt and removing the redundant,
after which, it was subsequently compared with the whole hu-
man genome (hg38). After eliminating the duplicate and ab-
normalities, the differential expressed genes were normalized
and calculated with package DEseq, finally, genes with p.
adjusted value < 0.05 and log2Foldchange > 1 were selected for
the further analysis. This finding may be illustrative to elucidate
their biological function in IS.

2.4 | Construction of WGCNA network and
identification of disease‐associated miRNAs

The data is processed with WGCNA package [18] in R Studio
3.6.0 software [19]. To ensure the reliability of network con-
struction, abnormal genes were eliminated. First of all, the soft
threshold of network construction is selected to make the

F I GURE 1 Flow chart diagram of study design
showing the data preparation and analysis
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adjacency matrix continuous between 0 and 1, so that the con-
structed network conforms to the power‐law distribution and is
closer to the real biological network state [19]. Secondly, the
scale‐free network is constructed by using the block module
function, and then the module partition analysis is carried out to
determine the gene co expression module, and the genes with
similar expression patterns are paired and clustered [20]. By using
the dynamic tree cutting algorithm, the cluster tree is cut into
branches to define modules, and modules are assigned to
different colors for visualization [21]. All modules are summa-
rized bymodule eigengene (ME).Modules were characterized by
its most important module eigengene (ME), which is calculated
as a symbolic gene, representing the expression spectrum of all
genes in a given module [22]. Module membership (MM) was
defined as a correlation between individual gene and module
eigengene [23]. In addition, Gene Significance (GS) of genes in
the module is further calculated, which represents the correla-
tion between genes and traits [24].

2.5 | Identification of miRNA targets

The miRDB(http://mirdb.org/) database and the mirtarbase
(http://mirtarbase.cuhk.edu.cn/) provides a large collection of
predicted and experimentally verified miRNAs‐targets binding
sites information. We downloaded the significant miRNA‐
mRNA intersection data from the miRNAs‐target‐gene
retrieval system, which contains all literature‐reported
miRNA‐target genes. However, the validated target genes
were from various diseases models, so the expression of those
genes in IS might not be consistent. Then we selected the
genes from the intersection between the two data and the
significance miRNA‐targetgenes combination were defined.

2.6 | GO enrichment analysis and KEGG
pathway analysis

Based on the whole genome annotation information, we
analyzed the Gene Ontology (GO) function using annotation,
visualization and integrated discovery database (David) [25] and
KOBAS 3.0 [26], and adjusted p‐value < 0.05. KEGG analysis
was on KOBAS and further visualization was performed on the
platform from ehbio (http://www.ehbio.com/). The 10 most‐
enriched KEGG pathways are listed in the map and visualized
with the online tools on the interactive Ehbio analysis platform.

2.7 | PPI network construction

The STRING database (Error! Hyperlink reference not
valid.) [27] has been applied to analysis the protein‐protein in-
teractions (PPI) network. Confidence score> 0.4was significant.
In this study, we used R studio 3.5.0 to pick and visualize the
target genes out of the first 140 hub‐genes using the 3.7.9 version
ofCytoscape for visualization [28], and screened thehub genes in
the network with reference to the correlation degree and

biological interpretation. In this network, the degree can be
recognized as the correlation with IS.

2.8 | Cross validation

GSE22255 dataset is a previously released dataset of Ischemic
stroke, which is obtained from the GEO database [29]. the gene
expression was analyzed for peripheral blood monocytes from
20 IS patients and 20 age‐matched healthy control with Affy-
metrix oligonucleotide arrays. All 40 participants' nationality
were Portuguese. The normalization with log2 fold change of
GSE22255were performed. Based on these data, the differential
expression data in GSE22255 was analyzed by T‐test. p‐value
and log 2‐fold change value were obtained separately. Then,
GSE22255 was used to determine the expression changes of
differential genes in RNA sequencing results of this study.

3 | RESULTS

3.1 | WGCNA network construction

A total of 1544 miRNAs were screened by WGCNA. After
removing the deleted and abnormalities, there are 294 screened
differential expression miRNAs for subsequent analysis
(|log2FoldChange| > 0.5, p‐value < 0.05). As shown in
Figure 2A, when the soft threshold power is defined as 6, the
scale‐free topological index is 0.9. Therefore, the network is
closer to the real biological network state as it adheres to the
power‐law distribution. The resulting gene tree and corre-
sponding module colors are shown in Figure 2B. The number
of genes per module is shown in supplementary Table S1.

3.2 | Identification of clinical important
modules

The heatmap shows the traits‐gene adjacency of the module
(Figure 3). In this study, the parameters of 12 include age
(mean), sex (M/F), hypertension (%), smoking history (%),
hypercholesterolemia (%), obesity (%), diabetes mellitus (%),
family history (%), total cholesterol (mean, mg/dl), HDL
(mean, mg/dl) and infraction volume (mean). And on which
basis, the Framingham score (%) to evaluate the risk of car-
diovascular event is calculated. Our research focuses on the
relationship of IS traits and gene type, so we initially focus on
turquoise module(r = 0.7, P = 5e‐07), which has the highest
correlation with the clinical traits of infraction volume in IS
patients versus healthy control group (Figure 4).

3.3 | Key miRNAs and miRNA‐target genes
identification and functional annotation

The key miRNAs were considered to have high module
membership (MM) and gene significance (GS), and were
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further selected for subsequent analysis (supplementary
Table SA2). All the 11 miRNAs from the turquoise module
were submitted, and by miRNA‐gene retrieval system, we got
2019 candidate genes of the 11 significant Key miRNAs
(supplementary figure SA1). To verify this differential gene
expression, we proceed to analyze the microarry data set from
GSE162072 and differential gene expression analysis (|log2-
FoldChange| > 0.5, p‐value < 0.05) revealed significant change

in 147 unique transcripts. The 125 differential expression and
miRNA‐target genes common to the two datasets were used.

Finally, David web tool was used to perform the repre-
sentative Kyoto Encyclopedia gene and genome (KEGG)
pathway to further clarify its function annotation. The two
pathways are particularly important, in this study, the cancer
pathway and gyroid hormone synthesis pathway were identi-
fied (Figure 5 and supplementary Table SA3).

F I GURE 2 (a): Network topology analysis under different soft threshold power. The left panel shows the influence of soft threshold power on the scale‐
free topological fit index; the right panel shows the influence of soft threshold power on the average connectivity. (b) Gene clustering tree (tree view) based on
hierarchical clustering of adjacency differences
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3.4 | PPI network

The 125 differential expression and miRNA‐target genes were
used to construct gene‐gene interactions using the STRING
tool (https://string‐db.org/). There are 112 nodes and 43
edges in PPI network, representing protein‐protein interaction
(Figure 6). The confidence level > 0.4 is set as criteria of
significance. Combined with biological function interpretation,
and selected top 5% degree genes, CXCL12 and EIF2A were
assessed as hub genes (supplementary figure SA2).

3.5 | Cross‐validation

The expression of differentially expressed genes was validated
with GSE22255 dataset. RNA sequencing is better than
microarray in characterizing transcriptions. However, the data

of GSE22255 was measured by GPL570 (hgu133‐plus‐2)
Affymetrix humangenomeu133 + 2.0 array. The expression
profiles of differentially expressed genes and microRNAs are
based on measured intensity of the array. Most of the probes in
the array were mRNA, and a few belong to miRNA. Therefore,
the miRNA probes in the array alone is not enough to cover
all the genes in the study. The top 250 differentially expressed
genes in GSE22255 with p‐value and log 2‐fold changes are
shown in supplementary table SA4.

4 | DISCUSSION

In this study, WGCNA method was used to study the
pathways and target hub‐genes in IS. The pathways in
cancer and Thyroid hormone synthesis signaling pathway
and the first two genes of CXCL12 and EIF2A are

F I GURE 3 Heat map of traits and hub‐gene
adjacency. The color bars on the left and below
indicate the modules for each row or column
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considered to be biomarkers of important biological func-
tion in IS.

The CXCL12‐ CXCR4 axis formed by the interplay be-
tween CXCL12 and its specific receptor CXCR4, and the
paired axis plays an important role in modulating the immunity
and inflammation response, whose function is thought as
regulating the development and function of hematopoietic
system and lymphatic system, and participating in the devel-
opment of central nervous system and tumor [30]. In recent
years, it has been found that CXCL12 is closely related to the
formation and stability of atherosclerosis plaque, and also plays

an important role in angiogenesis, thrombosis and intimal
hyperplasia in atherosclerotic lesions [31]. Multiple tumor
associated signaling pathways are related with cell function,
metabolism, growth, proliferation and survival, and also play
an important role such as functional recovery of central ner-
vous system injury, especially axon regeneration and autophagy
[32]. Previous studies [33] have shown that ischemic stroke is a
complex disease with cerebral ischemia, hypoxia necrosis and
various other causes, resulting in the corresponding neuro-
logical deficit, in which inflammatory response is an important
cause of post ischemic nerve damage, so inflammatory signal

F I GURE 4 Module‐traits relationship. Each row corresponds to a module feature gene, and each column corresponds to a feature. Each cell contains the
corresponding correlation and p‐value; red indicates positive correlation and blue indicates negative correlation

F I GURE 5 Kyoto Protocol Gene and Genome Encyclopedia pathway of hub‐genes in Ischemic Stroke. The X axis represents the enrichment gene ratio,
and the Y axis represents the Kyoto Protocol Gene and Genome Encyclopedia term
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pathway has become the newly hot spotted for the treatment
of ischemic stroke.

In recent years, many signaling pathways related to regula-
tion of tumor are confirmed to be associated with cardiac dis-
ease, such as mTOR‐Akt signaling pathway [34], JAK‐STAT
signaling pathway [35], as well as NF ‐ κ B (NF ‐ κ b) signaling
pathway [36], which typically play a key role in the development
of tumors related inflammatory response. However, recent
studies showed the specificmolecular mechanism ofmir‐127‐5p
inhibiting NF ‐ κ B signal pathway activity was further elucidated
in cardiovascular disease [37]. It was reported that mir‐127‐5p
can inhibit the phosphorylation level of p65 and affect its en-
try cell nucleus. Further study [38] showed that the mir‐127‐5p
could inhibit the proliferation and clone formation of hepa-
toma cells, and also prohibit the expression of the target gene,
biliverdin reductase B (BLVRB), by directly binding with 30UTR.

In this study, combined with the results of KEGG and PPI
network results, we found that CXCL12 plays a key role in the
emergence and development of IS through two signaling
pathways: pathways in cancer and Thyroid hormone synthesis
signaling pathway, which may reveal that CXCL12 is a small
but important molecular protein that can nest cells to circulate
towards the injured niches, and itself is able to induce the
progenitor cells to nest and migrate to the lesion site to pro-
mote the repairing and maintenance of homeostasis [39].
Chemokine CXCL12 and its specific receptor CXC chemokine

receptor 4 (CXCR4) constitute the biological axis of CXCL12/
CXCR4, which are involved in inflammatory reaction, tumor
formation, and other disease [40]. This finding may reveal that
CXCL12/CXCR4 plays an important role in the occurrence
and development of cardiovascular and cerebrovascular dis-
eases. What worthy of noting is that, miRNA‐16 is a newly
discovered miRNA, which is involved in the progression of
stroke by upregulating chemokine CXCL12 [41].

Protein kinase R‐like Er kinase (pErk) is a type I trans-
membrane protein located on the endoplasmic reticulum,
which belongs to the upstream kinase family of EIF2a [42].
Endoplasmic reticulum stress perk‐eif2a signaling pathway,
through the inhibition of protein synthesis to protect cells,
promote cell survival [43]. With the extension of endoplasmic
reticulum stress, the activation of p‐Erk‐EIF2a‐ATF4 signaling
pathway can lead to the secretion of a variety of inflammatory
factors, thus promoting the occurrence of inflammatory le-
sions [44]. In the meantime, it promotes apoptosis by inducing
the expression of CHOP.

Further attempts to perform validation for the mechanism
of these two pathways and key proteins may be valuable.
However, this study has its limitations. The testing group is
small with limited number of samples (40), given that WGCNA
result is reliable only with the minimum sample number is 15, it
is likely the result is reliable, besides, many genes in the iden-
tified module were reported to be closely related with IS, and

F I GURE 6 PPI network and hub genes. The hub gene was identified from the first 10 miRNAs by degree analysis. The depth of color indicates the level of
key genes from low to high
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one of the biomarker CXCL12 have been verified in another
cohort. Although wet lab experiment is not tested in this study,
we believe CXCL12 and EIF2a may be potential biomarker for
accurate diagnosis and treatment of IS.

5 | CONCLUSION

In conclusion, our study confirmed that pathways in cancer
and gyroid hormone synthesis signaling pathway and two hub
genes related to IS (CXCL12 and EIF2a) may be potential
biomarker for accurate diagnosis and treatment of IS in future.
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