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Abstract: Synapse structures, including neuronal and immunological synapses, can be seen as the
plasma membrane contact sites between two individual cells where information is transmitted from
one cell to the other. The distance between the two plasma membranes is only a few tens of nanome-
ters, but these areas are densely populated with functionally different proteins, including adhesion
proteins, receptors, and transporters. The narrow space between the two plasma membranes has
been a barrier for resolving the synaptic architecture due to the diffraction limit in conventional
microscopy (~250 nm). Various advanced super-resolution microscopy techniques, such as stimu-
lated emission depletion (STED), structured illumination microscopy (SIM), and single-molecule
localization microscopy (SMLM), bypass the diffraction limit and provide a sub-diffraction-limit
resolving power, ranging from 10 to 100 nm. The studies using super-resolution microscopy have
revealed unprecedented details of the nanoscopic organization and dynamics of synaptic molecules.
In general, most synaptic proteins appear to be heterogeneously distributed and form nanodomains
at the membranes. These nanodomains are dynamic functional units, playing important roles in
mediating signal transmission through synapses. Herein, we discuss our current knowledge on
the super-resolution nanoscopic architecture of synapses and their functional implications, with a
particular focus on the neuronal synapses and immune synapses.

Keywords: central synapses; neuromuscular junctions; immune synapses; nanodomains; super-
resolution microscopy; STED; SIM; SMLM

1. Introduction

The term “synapse” means “conjunction” and first appeared in 1897 in a textbook to
describe the hypothesized connections between neurons in the nervous system [1], and
which are nowadays known as central synapses. The actual existence of synapses in the
central nervous system and their fine structural features were later characterized in detail
with electron microscopy (EM) [2,3]. The concept of the neuronal synapse was further
extended to include the communication from a neuron to another cell type, such as muscle
cells [4]. These motor neuron-to-muscle cell synapses are also called neuromuscular junc-
tions (NMJs). Furthermore, lymphocytes (including T and B cells and natural killer cells in
the immune system) form cell-to-cell contacts with antigen-presenting cells (APCs) that
resemble the neuronal synapses with respect to overall morphology, thus termed immuno-
logical synapses or immune synapses (IS) [5–7]. Bearing a similar name, “synapse”, these
different types of synapses share similar characteristics in their structural organization. In
general, they are cellular adhesions of stable plasma membrane segments of individual cells,
mediating directed signal transmission [8,9]. Herein, generally, three compartments are
distinguished: pre-synaptic compartment, synaptic cleft, and post-synaptic compartment.

The synaptic cleft is the space between the two plasma membranes (Figure 1). For
central synapses, the cleft measures on average 20–30 nm along the perpendicular axis by
EM [2,3]. The clefts of NMJs are roughly 30–50 nm [10], whereas the immune synapses are
about 10–30 nm [11,12]. Though with variations, the synaptic clefts of different synapse
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types bear in common their similarly narrow spaces. On the other hand, the lateral
dimensions of neuronal and immunological synapses differ largely (Figure 1). Central
synapses are generally below 1 µm [13,14]. At NMJs, the motor nerve terminals form
numerous varicosities (also called “boutons”, are generally 1–5 µm wide), and in total, can
span 10–60 µm laterally [15,16]. The immunological synapses can also extend to several
micrometers (5–10 µm) in diameter [17].
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Figure 1. Synaptic structures under super-resolution microscopy. (A) Dual-color direct stochastic optical reconstruction 
microscopy (dSTORM) of pre-synaptic Rab3-interacting molecule 1/2 (RIM1/2) (in blue) and post-synaptic gephyrin (in 
red) at inhibitory synapses in cultured spinal cord neurons, showing the alignment of their nanodomains (modified from 
[18]). Scale bar: 200 nm. (B) dSTORM of acetylcholine receptor (AChR) strip at a neuromuscular junction (NMJ) (left) and 
line-scan profile (right) showing the slit in the AChR strip [19]. (C) 3D-structured illumination microscopy (SIM) imaging 
of an activated Jurkat T cell stained with phalloidin, showing the discrete actin networks [20]. Zoom-in view of the boxed 
region on the left is shown on the right. Scale bar: 5 µm. (D) Excitatory and inhibitory synapses in the central nervous 
system, with a size generally below 1 µm and synaptic cleft of 20–30 nm. Post-synaptic receptors are organized into sub-
synaptic domains (SSDs) and aligned with pre-synaptic vesicle release sites, forming trans-synaptic nanocolumns (indi-
cated by boxes with dashed lines in the upper panel). The lower panel shows the en face view of the excitatory and inhib-
itory post-synaptic density (PSD). The left shows the N-methyl-D-aspartate receptor (NMDAR) SSD in the center and 
several α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) SSDs surrounding it at the excitatory 
PSD. The right shows the glycine receptor (GlyR) and γ-aminobutyric acid type A receptor (GABAAR) SSDs and their 
partial overlapping at the inhibitory PSD. (E) The vertebrate neuromuscular junction (NMJ), which has a diameter of 1–5 
µm, and the synaptic cleft is 30–50 nm (lower panel). The muscle cell plasma membrane forms many junctional folds, and 
the synaptic cleft is resided by the basal lamina. The lower panel is the zoomed-in view of the boxed region in the upper 
panel. The dashed boxes indicate the trans-synaptic nanocolumns consisting of the pre-synaptic active zones (AZ) and the 
post-synaptic AChR clusters at the junction crest shoulder. (F) The immune synapse (IS) formed between T cell and anti-
gen-presenting cell (APC), with a size of 5–10 µm and a cleft of 10–30 nm. The lower panel is the en face view of the post-
synaptic compartment of the IS, depicting the central supramolecular activation cluster (cSMAC) enriched in T cell recep-
tors (TCRs, light orange), the peripheral SMAC (pSMAC) enriched in linker for activation of T cells (LATs, orange), and 
the distal SMAC (dSMAC) enriched in F-actin (brown). 

Figure 1. Synaptic structures under super-resolution microscopy. (A) Dual-color direct stochastic op-
tical reconstruction microscopy (dSTORM) of pre-synaptic Rab3-interacting molecule 1/2 (RIM1/2)
(in blue) and post-synaptic gephyrin (in red) at inhibitory synapses in cultured spinal cord neurons,
showing the alignment of their nanodomains (modified from [18]). Scale bar: 200 nm. (B) dSTORM
of acetylcholine receptor (AChR) strip at a neuromuscular junction (NMJ) (left) and line-scan profile
(right) showing the slit in the AChR strip [19]. (C) 3D-structured illumination microscopy (SIM)
imaging of an activated Jurkat T cell stained with phalloidin, showing the discrete actin networks [20].
Zoom-in view of the boxed region on the left is shown on the right. Scale bar: 5 µm. (D) Excitatory
and inhibitory synapses in the central nervous system, with a size generally below 1 µm and synaptic
cleft of 20–30 nm. Post-synaptic receptors are organized into sub-synaptic domains (SSDs) and
aligned with pre-synaptic vesicle release sites, forming trans-synaptic nanocolumns (indicated by
boxes with dashed lines in the upper panel). The lower panel shows the en face view of the excitatory
and inhibitory post-synaptic density (PSD). The left shows the N-methyl-D-aspartate receptor (NM-
DAR) SSD in the center and several α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
(AMPAR) SSDs surrounding it at the excitatory PSD. The right shows the glycine receptor (GlyR) and
γ-aminobutyric acid type A receptor (GABAAR) SSDs and their partial overlapping at the inhibitory
PSD. (E) The vertebrate neuromuscular junction (NMJ), which has a diameter of 1–5 µm, and the
synaptic cleft is 30–50 nm (lower panel). The muscle cell plasma membrane forms many junctional
folds, and the synaptic cleft is resided by the basal lamina. The lower panel is the zoomed-in view
of the boxed region in the upper panel. The dashed boxes indicate the trans-synaptic nanocolumns
consisting of the pre-synaptic active zones (AZ) and the post-synaptic AChR clusters at the junction
crest shoulder. (F) The immune synapse (IS) formed between T cell and antigen-presenting cell
(APC), with a size of 5–10 µm and a cleft of 10–30 nm. The lower panel is the en face view of the
post-synaptic compartment of the IS, depicting the central supramolecular activation cluster (cSMAC)
enriched in T cell receptors (TCRs, light orange), the peripheral SMAC (pSMAC) enriched in linker
for activation of T cells (LATs, orange), and the distal SMAC (dSMAC) enriched in F-actin (brown).
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In addition to structural similarities, different types of synapses also share evolu-
tionarily similar proteomes, such as cell adhesion molecules like cadherins and soluble
N-ethylmaleimide sensitive-factor attachment protein receptors (SNAREs) that mediate
vesicle fusion [21–23]. Given these structural and proteomic similarities, we consider
that it can be insightful to discuss the nanoscale architecture of neuronal synapses and
immunological synapses in the same context, particularly of super-resolution fluorescence
microscopy (SRFM). Even though EM offers superior resolving power and has provided
enormous advances in studying biological structures, it is limited by the substantial sample
preparation procedure, the extreme imaging conditions, and the limited protein speci-
ficity with immuno-gold labeling. On the other hand, SRFM offers high throughput and
compatibility for live-cell imaging, resulting in a wealth of new discoveries in the cellular
ultrastructure as well as dynamics [24–26].

In conventional fluorescence microscopy, the resolution is limited by the diffraction
and defined as 0.61 λ/NA according to the Rayleigh criterium, where λ is the wavelength
and NA is the numeric aperture of the objective. This renders a resolution of approximately
250 nm, which often fails to resolve subcellular structures in detail. Several super-resolution
techniques overcome this diffraction limit by different methodologies and achieve a much-
enhanced resolution. Structured illumination microscopy (SIM) uses a series of spatially
structured excitation light patterns to achieve a two-fold enhanced resolution [27]. Stimu-
lated emission depletion (STED) microscopy reduces the focal spot by stimulated depletion
at the rim, thus achieving a five-fold improvement of resolution [28,29]. Single-molecule
localization microscopy (SMLM) comprises of several techniques, including stochastic
optical reconstruction microscopy (STORM) [30], direct STORM (dSTORM) [31], photo-
activated localization microscopy (PALM) [32,33], and points accumulation for imaging
in nanoscale topography (PAINT) [34]. Though these SMLM techniques manipulate the
fluorescent probes differently, they all enable the detection of single fluorophores and
achieve resolution at a single molecule level of 10–40 nm [35].

In this review, we focus on the nanoscale structures of the central synapses in the
nervous system, the NMJs between motor neurons and muscle cells, and the immune
synapses. Previous studies on these synapses with confocal microscopy and EM, including
freeze-fracture, have also provided enormous information on their (ultra) structures [36–38].
Here we discuss the recent discoveries in the ultrastructure of these synapses as analyzed
in particular through the more recently developed SRFM technologies. By illustrating the
similarities in the nanoscale organization of these different types of synapses, we argue
that a common structural basis of synapses may exist for cell-to-cell communication and
that researchers can find inspirations by comparing these different types of synapses.

2. The Neuronal Synapse

Neuronal synapses are the conjunctions between a neuron and another cell (either
a neuron or another cell type, such as a muscle cell). Here, we particularly discuss the
central synapses, which are formed between two neurons in the central nervous system
(Figure 1D), and the NMJs, which are formed between motor neurons and muscle cells
(Figure 1E).

2.1. Central Synapses
2.1.1. Laminar Organization at Post-Synaptic Density

Central synapses appear as small puncta in conventional fluorescence microscopy due
to their small size. EM of immuno-gold labeled proteins has shown that specific proteins at
the post-synaptic density (PSD) are arranged in different layers along the perpendicular axis
of the synapse, with PSD-95 closer to the plasma membrane (~12 nm) and other proteins
such as Shank and CaMKII closer to the cytoplasmic side (~24–26 nm) [39–41]. Proteins
closer to the plasma membrane (such as PSD-95) have lower recovery rates/dynamics
compared to those located more to the cytoplasmic side (such as Shank), as revealed by
fluorescence recovery after photobleaching (FRAP) experiments [42]. With multi-color
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3D STORM, Dani and colleagues have recapitulated this laminar organization at the PSD,
with a much higher throughput of synapses and synaptic proteins [43]. This laminar
organization and the dynamics of PSD proteins demonstrate the functional importance of
the spatial distribution of synaptic proteins.

2.1.2. Sub-Synaptic Domains (SSDs) in the Post-Synaptic Density

It was previously believed that PSD scaffolding proteins were evenly distributed in
the lateral planes of the PSDs, based on EM observations [39,40,44,45]. However, and
thanks to SRFM techniques, it is now realized that many synaptic proteins are distributed
heterogeneously and form nanodomains within the synapses, termed sub-synaptic domains
(SSD) [14]. SSD can be defined as a sub-compartment of a synapse in which the density of
a specific synaptic protein is higher than in the surrounding area and which is typically
observed in super-resolution microscopy [14]. Therefore, synaptic proteins forming SSDs
indicate, in essence, their heterogeneous spatial distribution within the synapse. It is
important to keep in mind that large populations of proteins reside in non-SSD areas,
and all of them go through dynamic changes. PALM imaging revealed that the major
post-synaptic scaffold proteins at excitatory synapses (including PSD-95) and inhibitory
synapses (including gephyrin) formed distinct SSDs [46–48]. The size of PSD-95 SSDs are
~80 nm in diameter [46]. This SSD organization of PSD-95 was also observed by STED
microscopy of synapses in vitro [49,50] and in vivo [51–53]. The scaffold protein at inhibitory
synapses, gephyrin, was also shown to form SSDs in studies with STORM, PALM, SIM, and
STED microscopy [18,48,49,54]. Notably, these scaffold protein SSDs go through dynamic
morphological changes both spontaneously and in response to activity changes. Time-
lapse PALM imaging of PSD-95 revealed a continuous variation in the distribution of
PSD-95 SSDs, and the number of PSD-95 SSDs per synapse was reduced by tetrodotoxin
(TTX) treatment in primary hippocampal neurons [46]. Enlarged spine size resulting
from chemically induced long-term potentiation (cLTP) was shown to associate with an
increased number of PSD-95 SSDs in vitro by STED microscopy, and this increase occurred
within hours in the time-lapse STED imaging [50]. Likewise, in vivo STED microscopy has
shown the sub-structure and morphological changes in PSD-95 puncta within hours [53].
Therefore, these protein SSDs should be viewed as dynamically changing structures rather
than rigid units.

At the post-synaptic plasma membrane, neurotransmitter receptors have also been
shown to be organized into SSDs by SRFM. PALM imaging has provided evidence that
the excitatory α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs)
are organized into SSDs of ~70 nm in diameter [55]. These AMPAR SSDs are as well
dynamically changing in their composition, shape, and position and are regulated by
PSD-95 expression levels [55]. 3D-SIM imaging of γ-aminobutyric acid type A receptors
(GABAARs) at inhibitory synapses in the hippocampal and cortical neurons [54] and Dual-
color dSTORM imaging of both the GABAARs and glycine receptors (GlyRs) in the spinal
cord neurons [18] showed that these receptors are also organized into SSDs at inhibitory
PSDs. Notably, the sub-domains of GlyRs were also observed in EM graphs [56].

Furthermore, synapses often accommodate different types of receptors at the same
PSDs. In the neocortex and hippocampus, the ionotropic AMPARs and N-methyl-D-
aspartate receptors (NMDARs) and the metabotropic glutamate receptor 5 (mGluR5) co-
exist at excitatory synapses. A recent study using dSTORM showed that NMDARs formed
a singular SSD mainly at the center of the PSD, whereas AMPARs segregated into several
SSDs surrounding the NMDARs [57]. The differential distribution of these receptors detected
by dSTORM is in line with the former observations using EM [58–61] and is consistent with
the notion that NMDARs are less mobile than AMPARs at mature synapses [62,63]. On
the other hand, mGluR5s are homogeneously distributed and broadly dispersed at the
synaptic surface [57]. Similarly, mGluR4s at the parallel fiber active zones in the mouse
cerebellum exist mostly as monomers or dimers [64]. As to the mixed inhibitory synapses,
GlyRs and GABAARs are located at the same PSDs in spinal cord neurons [65,66]. Here
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they form distinct SSDs which are only partially overlapping, as shown by dual-color
dSTORM [18]. These distinct SSD formations of GlyRs and GABAARs imply different
underlying pathways for regulating glycinergic and GABAergic neurotransmission. The
glycinergic and GABAergic co-transmission in spinal cord neurons is particular, given that
GlyRs and GABAARs are activated by different neurotransmitters (glycine and GABA,
respectively) released from the same pre-synaptic vesicles [67,68], whereas NMDARs, AM-
PARs, and mGluRs are activated by the same neurotransmitters (glutamate). However, the
physiological consequences of this differential spatial organization and neurotransmitter
activation of GlyRs and GABAARs at inhibitory synapses remain to be determined. Thus
far, modeling data on excitatory synapses suggest that the distance between receptor SSDs
to pre-synaptic vesicle release sites defines the number of activated receptors and shapes
the neurotransmission response [46,57]. Given that GlyR- and GABAAR-mediated post-
synaptic currents are kinetically different, their differential spatial organization at mixed
inhibitory synapses may function alike at excitatory synapses to tune inhibitory neuro-
transmission. In addition, the heterogeneous content of glycine and GABA in pre-synaptic
vesicles [68] may be another player to regulate inhibitory neurotransmission.

2.1.3. Sub-Synaptic Domains (SSDs) at the Pre-Synaptic Compartment

The studies on the pre-synaptic compartment have mainly focused on the machinery
responsible for neurotransmitter release from synaptic vesicles, including the cytoma-
trix active zone (CAZ) proteins, SNARE complexes, and voltage-gated calcium channels
(VGCCs) [69,70]. SRFM data of pre-synaptic compartments, though relatively limited,
have revealed the nanodomains/SSDs of these pre-synaptic proteins, as well as the dy-
namics of synaptic vesicles during the endo/exocytosis [71]. With single-particle tracking
PALM (sptPALM), it has been shown in vivo that syntaxin1A (one of the glutamine- or
Q-SNARE proteins located on the plasma membrane) is organized into nanoclusters/SSDs,
of which the size and molecular density is regulated by activity and the general anes-
thetic propofol [72,73]. Similarly, VGCCs are also mobile yet dynamically confined into
nanoclusters/SSDs, which are regulated by network activity in synaptic plasticity [74,75].
This SSD organization of the Cav2.1 calcium channel was also observed in SDS-digested
freeze-fracture replica labeling EM [76]. In addition, numerous CAZ proteins were shown
to form SSDs by 3D STORM analysis, including Bassoon, Rab3-interacting molecule (RIM),
and Munc13 [77]. Dual-color STORM also highlighted that the nanoclustering of CAZ
proteins (Bassoon and RIM) was bidirectionally regulated by neuronal activity [78]. Herein,
long-term blockade of activity by TTX induced reversible CAZ proteins un-clustering and
local VGCC recruiting, suggesting a homeostatic regulation by the clustering status of
CAZ proteins [78]. Another STED study of the pre-synaptic vesicle-associated protein
synaptotagmin I revealed that it remained clustered at the plasma membrane after vesicle
exocytosis, suggesting that they might be recycled together [79].

2.1.4. Trans-Synaptic Nanocolumns

From another perspective, it is of great interest to know whether the synaptic vesicle
release sites are aligned with the post-synaptic receptor SSDs, because their spatial rela-
tionship may shape the neurotransmission efficacy [80]. To resolve the myth, Tang and
co-workers were first to identify that RIM SSDs predict the vesicle release site distribution
and further demonstrated that post-synaptic AMPAR SSDs and scaffold protein (such as
PSD-95 and Homer) SSDs are aligned with the pre-synaptic RIM SSDs [77]. Thus, they hy-
pothesized the formation of trans-synaptic nanocolumns which guide the neurotransmitter
release to occur near the receptors [77,81]. This trans-synaptic alignment was also observed
in vitro and in vivo by STED microscopy [50]. Remarkably, the number of the nanocolumns
scaled positively with the enlarged spines induced by cLTP, and these nanocolumns re-
mained aligned though with enhanced mobility induced by cLTP [50]. Similarly, 3D SIM
of inhibitory synapses in hippocampal and cortical neurons revealed that post-synaptic
gephyrin SSDs and GABAAR SSDs are aligned with pre-synaptic vesicular GABA trans-
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porter (VGAT) and RIM SSDs, also forming nanocolumns at inhibitory synapses [54]. At
mixed inhibitory synapses in spinal cord neurons, the distinct GlyR and GABAAR SSDs
are as well integrated into nanocolumns consisting of gephyrin and RIM SSDs as revealed
by dual-color STORM [18]. These trans-synaptic nanocolumns may therefore provide a
novel genuine mechanism for regulating synaptic transmission and plasticity [81–83].

Given that synapses are dynamic rather than static structures [84], the next question is
how are the pre-synaptic and post-synaptic SSDs aligned together and maintained through
synaptic changes? EM data have shown the existence of discrete trans-cleft proteinaceous
filaments [85–87], pointing to the synaptic adhesion molecules as a potential organizer for
trans-synaptic nanocolumns. Neurexin and neuroligin complexes are potential candidates
due to their important roles in synaptic functions [88,89]. Indeed, neuroligin-1 was shown
to be tightly associated with AMPAR SSDs, and truncated neuroligin-1 shifted the align-
ment between RIM and AMPAR SSDs, impairing synaptic transmission [90]. However,
combing several SRFM techniques (STED, STORM, and universal PAINT or uPAINT),
Chamma and co-workers demonstrated that neuroligin-1 had a disperse distribution
whereas leucine-rich repeat (LRR) transmembrane protein 2 (LRRTM2) was organized into
SSDs at the post-synaptic membranes [91]. On the other hand, the pre-synaptic neurexin-1
displayed a dual-pattern distribution [92]. Given that both LRRTM2 and neuroligin-1 are
binding partners for neurexin-1, the interaction between neurexin-1 and LRRTM2 has been
proposed to potentially function as the nanocolumn organizer. Further evidence with
STORM indicated that neurexin-1 was organized into nanoclusters at excitatory synapses
that were dynamically regulated via ectodomain cleavage through a disintegrin and met-
alloproteinase domain-containing protein 10 (ADAM10) [93], supporting the notion of
neurexin as a functional organizer for trans-synaptic nanocolumns. Alternatively, synapses
may incorporate different adhesion molecules to account for the widely various synaptic
changes. Ephrin receptors and their corresponding ephrin ligands are both membrane-
bound proteins that have important functions in synapse formation, among many other
cellular processes [94]. Given that Ephrin type-B receptor 2 (EphB2) was observed at
synapses and formed nanodomains within the PSD area by STED microscopy [95], EphB2
and ephrin interaction may be the next candidate as nanocolumn organizers. Further
investigation of EphB2 and ephrin distribution at synapses by dual-color SRFM, together
with functional studies such as the effect of knock-out or overexpressing EphB2 on synaptic
structures, may provide more insights into their potentiality as nanocolumn organizers.
Identifying the trans-synaptic organizers will be key to understanding the dynamic changes
of these synaptic ultrastructures. Herein, more recently developed proximity labeling tech-
niques, including APEX2 and TurboID [96–99] followed by mass spectrometry analysis,
could be instrumental in identifying such synapse-specific organizers.

2.2. Neuromuscular Junctions (NMJs)

NMJs feature the numerous varicosities at the motor neuron terminus, or boutons,
which accommodate several active zones at each bouton, and the folding of muscle cell
plasma membranes which are called junctional folds [100,101]. The pre-synaptic active
zones in EM graphs appear as T-bars in Drosophila NMJs or as small aggregates in verte-
brate NMJs (Figure 1E). Given their relatively large size, NMJs (especially of Drosophila)
have been the model synapses for understanding the pre-synaptic vesicle release mecha-
nisms during neurotransmission. The Drosophila NMJs have been subjects of several SRFM
based studies, providing protein identities in addition to the ultrastructure of NMJs with
novel functions allocated to these proteins. Excellent recent reviews have been published
elsewhere on the ultrastructure of NMJs [71,102,103], and here, we summarize the most
important aspects. Briefly, most of these studies have focused only on the pre-synaptic com-
partment of NMJs, revealing the nanodomain distribution pattern of proteins responsible
for synaptic vesicle release. In Drosophila NMJs, the coiled-coil domain protein Bruchpilot
has been observed in donut-shaped structures centered at the active zone by STED mi-
croscopy [104]. Further dSTORM analysis revealed substructural units of the active zone
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containing an average of 137 ± 29 Bruchpilot proteins [105]. Each active zone could contain
different numbers of these units, which were linked to the active zone physiological states
and neurotransmitter release [105]. STED microscopy also revealed the distinct sub-active
zone patterning of the two isoforms of Unc13A and Unc13B, with the former located at
70 nm away from the active zone center marked by Bruchpilot signal and the latter 120 nm
away [106]. The same group further analyzed that Unc13A was positioned by Bruchpilot
and RIM-binding proteins (RBPs) and that its precise positioning and local levels affect the
release site number, position as well as functionality [106,107]. Based on these observations,
a model of molecular nanostructure coupling for synaptic vesicle release has been proposed
where scaffold proteins establish nanodomains that connect VGCCs to synaptic vesicles,
thus influencing the probability of synaptic vesicle release [108]. This nanodomain pattern-
ing of synaptic proteins in NMJs is reminiscent of the SSDs in central synapses. During
long-term synaptic potentiation of NMJs, it was shown by STED microscopy that the num-
ber of nanodomains or the quantity of proteins in each nanodomain was increased [109],
supporting a quantal addition model for regulating synaptic strength and plasticity. This
quantal addition model has also been proposed for the central synapses [81,82].

At vertebrate NMJs, dual-color STED microscopy revealed that the pre-synaptic
Bassoon and Piccolo nanodomains are organized into Piccolo-Bassoon-Piccolo sandwich-
like structures and that VGCC nanodomains colocalize with Bassoon nanodomains [110].
The same study also uncovered that Bassoon and VGCC protein levels were significantly
decreased during aging, while Piccolo protein levels remained relatively stable. Therefore,
selective degeneration of specific active zone proteins has been proposed as an aging
process [110,111]. While most studies focused on the pre-synaptic nerve terminus of NMJs,
York and Zheng examined the post-synaptic compartments of muscle cells adopting both
SIM and STORM [19]. Their study revealed that the acetylcholine receptors (AChRs) were
not uniformly distributed on the crest of junctional folds as previously thought. Instead,
AChRs were concentrated at the edge of the crest, segregated from the integrin clusters
that are more located towards the center of the crest [19]. It has been known for a long
time that the pre-synaptic active zones of NMJs are aligned to the opening of the junctional
folds [100]. This new finding with SRFM, therefore, suggests that the trans-synaptic
alignment of AChRs to the active zones potentially enables effective synaptic transmission.
Laminin in the basal lamina of NMJs may be the key player for the trans-synaptic alignment
at NMJs, given that loss of laminin resulted in misalignment of active zones with junctional
folds [112,113]. Taking together with the trans-synaptic nanocolumn in central synapses,
the nano-alignment of post-synaptic receptors to pre-synaptic vesicle release sites may
constitute a common mechanism underlying synaptic neurotransmission.

3. Immune Synapses

Immune synapses are formed during T cell activation when T cell receptors (TCRs) en-
gage with the antigen-presenting major histocompatibility complex (MHC) on the antigen-
presenting cells (APCs). T cell activation is a dynamic process involving the recruitment
of TCR microclusters into the center of the immune synapse, forming a mature immune
synapse with a “bull’s eye” structure [114–116]. Specific molecules at mature immune
synapses segregate into supramolecular activation clusters (SMACs). Laterally from in-
ner to outer direction, immune synapses can be divided into three major domains, i.e.,
the central SMAC (cSMAC) enriched in TCRs, a peripheral SMAC (pSMAC) enriched in
adhesion molecules such as lymphocyte function-associated antigen (LFA), and, finally,
the distal SMAC (dSMAC) with F-actin forming dynamic protrusions [117,118]. This main
architecture of immune synapses has already been drawn up by conventional microscopy
thanks to their large size (5–10 µm). Interestingly, the segregation within the immune
synapses, though on a much larger scale, is reminiscent of the segregation of AMPARs and
NMDARs at small excitatory synapses in the central nervous system (see above).

The advent of SRFM offered a new opportunity to uncover the mechanisms underlying
T cell activation. One of the hypotheses to be tested was that TCRs are organized into
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nanoclusters at the T cell resting state [119–122]. Evidence from PALM and STORM
imaging pointed to the nanoclustering of TCRs and downstream signaling molecules at
resting T cells [123–125]. However, other studies using different single-molecule-based
fluorescent microscopy to analyze TCRs on live T cells suggested monomeric TCRs at
resting T cells [126,127]. Discrepancies have also been observed on the adaptor linker
for activation of T cells (LAT). One study using PALM and dSTORM showed that LATs
on plasma membrane were neither phosphorylated nor recruited to TCR activation sites;
instead, LATs were recruited through subsynaptic vesicles [128]. Another study using
confocal imaging and tracking of LATs revealed that cell surface LATs were efficiently
recruited within seconds of TCR engagement [129]. These discrepancies can at least be
partially explained by the limitations inherent to SMLM [130] and the different sample
preparation methods [131].

3D-SIM and STED microscopy have enabled the study of the dynamics and ultra-
structure of the cytoskeletal actin at the immune synapse [20,132–135]. The actin skeleton
is divided into four discrete actin networks, i.e., the lamellopodia-like branched actin
in the dSMAC, the lamella-like actomyosin arcs in the pSMAC, the hypodense F-actin
in the cSMAC, and the actin foci in the dSMAC and pSMAC [136,137]. These discrete
actin networks create distinct functional regions at the immune synapse. To be noted,
the actin cytoskeleton also plays important roles in the central synapses [138,139], which
highlights the universal roles of actin networks. Furthermore, and combining SMLM and
total internal reflection fluorescent (TIRF) microscopy, it has been shown that TCRs are
mainly localized to the T cell microvilli and barely on the cell body [140]. This peculiar
localization of TCRs at the microvilli may explain the discrepancies in the studies analyzing
TCR nanoclusters. A modeling study further suggests that ligand discrimination by TCRs
is likely based on these microvilli [141]. In addition, a recent study using STORM has
identified TWIK-related acid-sensitive potassium channel 2 (TASK2) as a novel player at
human immune synapses [142]. These new findings open new directions for investigating
the mechanisms underlying T cell activation [143,144].

To be noted, SRFM has also been widely applied to other cell communication struc-
tures, namely epithelial cell junctions such as tight junctions, gap junctions, adherens
junctions, desmosomes, and hemidesmosomes [145–147]. The superior resolution of SFRM
techniques has enabled the detection of nanoclusters and subdomains of junction proteins,
which could not be revealed with confocal microscopy. For example, a recent study using
STED microscopy revealed nanoscopic segregation of polarity proteins in tight junctions,
with PALS1-PATJ and aPKC-PAR6β present in an alternated pattern [148]. In the nervous
system, electrical synapses (also called gap junctions) are also subject to SRFM. Two-color
dSTORM of connexin 43 and aquaporin 4 in cryo-sectioned rat brain tissues has shown
that aquaporin 4 is positioned at the edge of connexin 43 plaques [149]. Though not the
focus of this review, these studies reinforce the promising power of SRFM in investigating
the nano-architecture for cell communication.

4. Perspectives

SRFM techniques have narrowed down the resolution gap between light microscopy
and EM. They have facilitated breakthroughs in molecular cell biology, and life sciences
aimed to decipher subcellular and molecular organization at nanoscale resolution. The
promising capacity of SRFM manifests in data throughput, target specificity, superior
resolution, and especially live-cell imaging compatibility, which enables the visualization
of dynamic cellular processes. And all that has happened in only a decade of years.
Emerging correlative approaches of SRFM with (cryo-)EM further combine their respective
advantages, up to enabling the 3D analysis of nanoclusters/structures in situ [150–152]. In
addition, other combined SRFM modalities, such as lattice light-sheet microscopy combined
with SMLM [153] and various 3D super-resolution microscopy techniques [154,155], will
also enhance the study of native nanoscopic structures. Due to their complexity in set-ups
and usage, these advanced microscopy modalities currently mainly exist in some expert
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groups and institutional imaging cores. With more and more accessibility promoted by
commercialization, these techniques are envisioned to be widely used and yielding novel
discoveries. Another future perspective is to identify the molecular components within the
nanoclusters/nanodomains. STORM has been used to identify the neurexin nanoclusters
containing different neurexin isoforms in neurons [93]. SMLM, together with high spatial
resolution proximity labeling assay like Split-TurboID [99], may provide concrete evidence
for nanocluster content screening.

The studies of synapse structures have benefited a lot from SRFM techniques and will
continue to advance with the improving microscopy modalities. On the other hand, given
the structural and molecular similarities of the various synapse structures, we argue that
studies of one synapse type can shed light and inspire the studies of another synapse type.
A necessary comparison between the discoveries in different types of synapses can help
us to better understand the basis of cell communication, irrespective of the cell types. To
extend this aspect, inter-organellar membrane contact sites (MCSs) are dynamic nanoscale
structures where intracellular organellar communication takes place. SRFM techniques
have also been developed for imaging these MCSs, such as endoplasmic reticulum (ER)-
plasma membrane MCSs [156,157] and ER-mitochondria MCSs [158,159]. MCSs share the
structural pattern of two membranes and a narrow cleft. Therefore, the methodologies in
SRFM of synapse structures can be extended to the study of MCSs, and which will lead as
well to a better understanding of the dynamics of inter-organellar communication.
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