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Abstract

Objectives

(1) To develop and internally-validate Euclidean Norm Minus One (ENMO) and Mean

Amplitude Deviation (MAD) thresholds for separating sedentary behaviours from common

light-intensity physical activities using raw acceleration data collected from both hip- and

wrist-worn tri-axial accelerometers; and (2) to compare and evaluate the performances

between the ENMO and MAD metrics.

Methods

Thirty-three adults [mean age (standard deviation (SD)) = 27.4 (5.9) years; mean BMI (SD)

= 23.9 (3.7) kg/m2; 20 females (60.6%)] wore four accelerometers; an ActiGraph GT3X+

and a GENEActiv on the right hip; and an ActiGraph GT3X+ and a GENEActiv on the non-

dominant wrist. Under laboratory-conditions, participants performed 16 different activities

(11 sedentary behaviours and 5 light-intensity physical activities) for 5 minutes each.

ENMO and MAD were computed from the raw acceleration data, and logistic regression

and receiver-operating-characteristic (ROC) analyses were implemented to derive thresh-

olds for activity discrimination. Areas under ROC curves (AUROC) were calculated to sum-

marise performances and thresholds were assessed via executing leave-one-out-cross-

validations.
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Results

For both hip and wrist monitor placements, in comparison to the ActiGraph GT3X+ moni-

tors, the ENMO and MAD values derived from the GENEActiv devices were observed to be

slightly higher, particularly for the lower-intensity activities. Monitor-specific hip and wrist

ENMO and MAD thresholds showed excellent ability for separating sedentary behaviours

from motion-based light-intensity physical activities (in general, AUROCs >0.95), with vali-

dation indicating robustness. However, poor classification was experienced when attempt-

ing to isolate standing still from sedentary behaviours (in general, AUROCs <0.65). The

ENMO and MAD metrics tended to perform similarly across activities and accelerometer

brands.

Conclusions

Researchers can utilise these robust monitor-specific hip and wrist ENMO and MAD thresh-

olds, in order to accurately separate sedentary behaviours from common motion-based

light-intensity physical activities. However, caution should be taken if isolating sedentary

behaviours from standing is of particular interest.

Introduction

There is cumulative evidence that sedentary behaviour, characterised as any waking behaviour
with low energy expenditure (�1.5 metabolic equivalents) while in a sitting or reclining pos-
ture [1], is detrimentally associated with a number of health outcomes including cardiovascular
disease, type 2 diabetes mellitus and all-cause mortality [2–7]. This has important implications
given that adults spend the majority of their waking hours (~55% to ~70%) sedentary [8–11].
Correspondingly, engaging in light-intensity physical activities (e.g. standing and light walk-
ing) has been shown to have beneficial effects on health [12–14]. Therefore, accurately identify-
ing and distinguishing between sedentary behaviour and light-intensity physical activity is
extremely important. Tri-axial accelerometers, which quantify the acceleration and decelera-
tion in orthogonal directions of three dimensional space, have gained a reputation as the pre-
ferred method of collecting objectivemeasurements of physical activity and sedentary
behaviour data in health research [15, 16]. These devices have the ability to accumulate large
amounts of acceleration data (usually over an adjustable sampling frequency range) that can be
translated into physical activity and sedentary behaviour parameters (i.e. duration, frequency
and intensity) [17].

Accelerometers have historically provided data in the form of ‘counts’—an aggregate mea-
sure of the intensity and magnitude of accelerations over a given time epoch [18, 19]. Count-
based systems are straightforward to operate and do not expend substantial amounts of
computational memory. However, counts are produced via proprietary algorithms which are
developed and patented by the manufacturers of these monitors (entailing different amplifiers,
filters, frequencies, etc.) [18, 19]. Therefore, even if the same reference acceleration signal is
being measured, different devices can produce diverse count values [19]. This makes it difficult
to equate data between different accelerometer brands and thus, problematic to compare
results from studies that have employed different devices.However, due to the significant
improvements in technologies over the last few years, raw acceleration data can now be mea-
sured and stored at high frequencies, with no need to summarise into proprietary count-based
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epochs [19–24]. As a consequence, there is a necessity for the analysis of raw acceleration data
using approaches that can be understood and used by all.

The challenge of analysing raw signals revolves around several factors: the management of
vast amount of data which are generated; the requirement to remove the gravitational and
noise components incorporated within the signals [25]; and the requirement of feasible mathe-
matical and/or statistical tools to accurately analyse and make valid interpretations from the
data. Procedures for processing the raw acceleration data and attempting to separate the move-
ment and gravitational components of the signal include the: Signal Magnitude Area (SMA)
[26–28], Euclidean Norm Minus One (ENMO) [25, 29, 30] and Mean Amplitude Deviation
(MAD) methods [31–33]. The SMA can be calculated after applying computationally expen-
sive mathematical filters (e.g. Butterworth high pass filters, etc.) in order to remove the gravita-
tional component [26–28]. In contrast, the recently proposed ENMO and MAD metrics do not
require the data to be filtered in order to correct for gravity—since they systematically take this
element into account within their algorithms [25, 29–33], making these particular analytical
techniques attractive. For example, MAD represents the mean value of the dynamic accelera-
tion component. It is computed from the resultant vector value of the measured orthogonal
acceleration, which involves a dynamic component due to deviations in velocity, and a static
element due to gravity. The static element is removed from the analysed epoch and the remain-
ing dynamic component is revised. Thus, the MAD value can be regarded as the mean of the
revised acceleration signal autonomous of the static element within the epoch. The ENMO
metric, which is also computed from the resultant vector of the measured orthogonal accelera-
tion, adjusts for gravity via subtracting a fixed offset of one gravitational unit from the Euclid-
ean Norm of the three raw acceleration signals. Therefore, ENMO, which can also be regarded
as the revised acceleration signal autonomous of the static gravitational element, equally signi-
fies the dynamic acceleration component.

To our knowledge, only three studies have methodically investigated the use of the MAD
metric with raw acceleration data relating to physical activity [31–33]. Vähä-Ypyä and col-
leagues recently derived MAD-based universal thresholds for differentiating sedentary and
standing activities from walking and different speeds of bipedal movement [33]. Although
these are useful, they are not beneficial for researchers focusing on the time spent in sedentary
behaviours (e.g. lying/sitting) and common light-intensity physical activities (e.g. washing
pots, dusting, etc.). Besides the ActiGraph GT3X device [30 Hz; ActiGraph Corporation, Pen-
sacola, Florida, United States of America], the thresholds were defined for unconventional
devices (Hookie AM13 [100 Hz; Hookie Technologies Ltd, Espoo, Finland] and Gulfcoast X6-
1A [20 Hz; Gulf Coast Data Concepts LLC, Waveland, Mississippi, United States of America])
that are not in widespread use. Vähä-Ypyä and colleagues proceeded to develop universal
thresholds applicable to raw acceleration data collected from these monitors worn at the hip;
however, as significantly large differences in MAD values were evident between accelerometer
brands, these should be used with caution.

Accelerometers were traditionally worn on the hip, however, in recent years wrist-worn
accelerometry has emerged and is now also being used in large national health surveys (e.g.
NHANES [34] and UK Biobank [35]). Therefore, it is essential to also develop analytical meth-
ods which are appropriate for use with data from wrist-worn monitors and can be applied to
existing methods for processing raw acceleration data (e.g. ENMO and MAD). Furthermore, to
date, the MAD metric has not been compared to ENMO [31–33], which is emerging as the
model metric for efficiently analysing raw acceleration data and classifying intensity [25, 29,
30]. Although ENMO thresholds to classify moderate and vigorous physical activities using
raw acceleration data have previously been developed [29], ENMO thresholds to separate sed-
entary behaviours from light-intensity physical activities have yet to be proposed.
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Therefore, by using raw acceleration data collected from both hip- and wrist-worn widely-
used tri-axial accelerometers, our aims are to: (1) extend the premise of the ENMO and MAD
metrics via developing internally-validated monitor-specific intensity-based thresholds for dis-
criminating between sedentary behaviours and common light-intensity physical activities; and
(2) compare and evaluate the performances between the ENMO and MAD metrics. The gener-
ation of ENMO and MAD thresholds developedwill be sample and protocol specific.Hence,
the classifications of sedentary behaviours and light-intensity physical activities should be
broadly comparable between studies—irrespective of the metric, accelerometer brand and
wear-site used.

Methods

Study Sample

Investigations were carried out using data from a laboratory-based study which was conducted
by the National Institute for Health Research (NIHR) Leicester-LoughboroughDiet, Lifestyle
and Physical Activity Biomedical Research Unit (BRU). The study was implemented within a
bespoke laboratory, located at LoughboroughUniversity (Loughborough, Leicestershire,
United Kingdom), which was furnished to enable the sedentary and non-sedentary tasks to be
undertaken efficiently. Participants (aged� 18 years) were recruited via email and word of
mouth. All participants provided written informed consent, and the study was approved by the
Ethics Committee of LoughboroughUniversity.

Accelerometer Devices

Two distinct and commercially available tri-axial accelerometers were utilised: the ActiGraph
GT3X+ monitor (dynamic range: ± 6g, sampling frequency range: 30–100 Hz [ActiGraph Cor-
poration, Pensacola, Florida, United States of America]) and the GENEActiv Originalmonitor
(dynamic range: ± 8g, sampling frequency range: 10–100 Hz [Activinsights, Huntingdon, Cam-
bridgeshire, United Kingdom]); where g is equal to the Earth’s gravitational pull. The Acti-
Graph GT3X+ was initialisedwith a sampling frequency of 100 Hz using ActiLife software
V6.10.2. The GENEActiv monitor was initialisedwith a sampling frequency of 100 Hz using
the GENEActiv PC software V2.2. Both devices were initialised using the same computer.

Procedures

Following arrival at the laboratory, study procedures were explained to the participants and
written informed consent was obtained. The ActiGraph GT3X+ and GENEActiv accelerome-
ters were then attached to both the hip (right side) and wrist (non-dominant). Consequently, a
total of 4 devices were worn by each participant (1 ActiGraph GT3X+ on the hip and wrist;
and 1 GENEActiv on the hip and wrist) whilst they performed 16 different activities (4 lying
positions, 7 sitting postures and 5 upright activities) in a sequential order for 5 minutes each
under laboratory-conditions. The start and end time of each activity was observed (using a
clock on a computer) and recorded onto a log sheet. A 30 second break was allocated between
each activity. Table 1 summarises the sedentary behaviours and light-intensity physical activi-
ties undertaken by the participants.

Data Reduction and Processing: Mean Amplitude Deviation (MAD)

The raw acceleration data from the two ActiGraph GT3X+ (100 Hz; .gt3x files) and two GEN-
EActiv (100 Hz; .bin files) devices were downloaded using ActiLife V6.10.2 and GENEActiv
PC software V2.2, respectively. For the computation of the MAD metric, the four sets of raw
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acceleration files were converted to time-stamped .csv files, which were then exported into
Stata/IC V13.1 (Stata Corporation, College Station, Texas, USA) for processing and analysis.
The laboratory log sheets (with the observed start and end times of each activity) were utilised
for identifying each activity in the time-stamped .csv files.

MAD is defined as:

Mean Amplitude Deviation ðMADÞ≔
1

n
�
Xn

i¼1

jri � �r j

where;

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ y2
i þ z2

i

p
¼ ith vector magnitude at each time point

�r ¼ mean vector magnitude within the time period of interest

n = length of the time period
Each axis (x, y, z) of the raw tri-axial data were first multiplied by 1000 to transform the sig-

nals from gravitational units into milligravitational (mg) units. This was implemented in order
to ensure that the developed thresholds would be comparable with the prior findings in the lit-
erature [33]. Research suggests that a 5 second time period can be considered to be adequate
for reporting different activities [33, 36]. Therefore, since the accelerometers were initialised at
their maximum possible frequencies (100 Hz i.e. 100 samples per second), the length of the
time period (n) was derived to be 500 (100 Hz x 5 seconds). The vector magnitude (r) was cal-
culated at each time point (i), followed by the mean vector magnitude for the 5 second time
period (�r). This allowed the computation of the MAD metric—which provided a measure of
the intensity for every 5 seconds of data.

Table 1. Summary of sedentary behaviours and light-intensity physical activities.

Posture Activity

Lying † 1 Lying flat on back with legs straight

2 Lying on back with both legs bent

3 Lying on side with both legs straight

4 Lying on side with both legs bent

Sitting ‡ 5 Sitting on chair whilst watching TV with both feet on floor (knees at 90 degrees)

6 Sitting on chair whilst watching TV with legs crossed (right leg over left leg)

7 Sitting on a chair whilst watching TV with right foot resting on left thigh

8 Sitting on chair whilst watching TV with legs stretched out forwards (feet touching floor)

9 Sitting on chair whilst watching TV with legs bent backwards underneath chair

10 Sitting on a chair with some upper body movement (typing a set statement on a computer)

11 Sitting whilst playing games on a mobile phone

Upright 12 Standing still

13 Washing pots

14 Dusting (set area)

15 Sweeping floor (set area)

16 Self-paced free-living walk around the room

† During all lying activities, participants were asked to keep their hands straight by their sides
‡ During seated activities 5–9, participants were asked to keep their hands on their thighs

The velocity range of the self-paced free-living walk was approximately 3km/h to 4km/h with movement in a

forward direction.

doi:10.1371/journal.pone.0164045.t001
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Data Reduction and Processing: Euclidean Norm Minus One (ENMO)

For the computation of the ENMO metric, the ActiGraph GT3X+ .gt3x files were converted to
time-stamp free .csv files (to avoid computer memory issues, using time-stamp free .csv files is
recommended here). The ActiGraph GT3X+ .csv files and the GENEActiv .bin files were then
exported into R statistical software V3.1.2 (R Foundation for Statistical Computing, Vienna,
Austria, https://cran.r-project.org/) for processing using the GGIR package V1.2–0 which
auto-calibrated the raw triaxial accelerometer signals and computed the ENMO metric [30].
The package regenerated the time-stamps and the files were exported into Stata/IC V13.1 for
further processing and analysis.

ENMO, described in detail elsewhere [25, 29, 30], is defined as:

Euclidean Norm Minus One ðENMOÞ≔ri � 1000

where;

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ y2
i þ z2

i

p
¼ ith vector magnitude at each time point

1000 = 1000 milligravitational units = 1 gravitational unit
The ENMO subtracts a fixed offset value of 1 gravitational unit at each time point to correct

for gravity [25, 29, 30]. Negative ENMO values are rounded up to zero to reduce any bias and
error [29, 30]. By design, the ENMO metric is sensitive to poor calibration [30]. Therefore, in
order to address these calibration issues, ENMO was calculated using the GGIR package V1.2–
0 in R statistical software V3.1.2, which auto-calibrates the raw triaxial accelerometer signal.
Further information on the accelerometer calibration technique can be found elsewhere [30].
As with MAD, ENMO was expressed in mg and calculated over 5 second epochs.

To ensure the quality of the findings, the first and last 30 seconds of data of each activity
were excluded as it was anticipated these time periodsmight include transitional movements.
As a result, only the central 4 minutes of data of each activity were utilised for analysis.

Statistical Analysis

All statistical analyses were conducted using Stata/IC V13.1. Activities 1 to 11 (any form of
lying plus any form of sitting) were combined into one group and classified as ‘sedentary
behaviours’. For each activity, the means and standard errors of the ENMO and MAD values
stratified by accelerometer brand (ActiGraph GT3X+ and GENEActiv) and monitor placement
(hip and wrist) were calculated and tabulated. Unpaired t-tests were implemented in order to
compare the mean ENMO and MAD values of each activity between accelerometer brands by
monitor placement. Statistical significancewas established at p-value<0.05.

Sedentary behaviours were separated from a continuum of light-intensity physical activities
ordered by increasing complexity and movement. To achieve this, the following activity dis-
criminations were considered: discrimination 1 = sedentary behaviours vs. standing still, dis-
crimination 2 = sedentary behaviours vs. washing pots, discrimination 3 = sedentary
behaviours vs. dusting, discrimination 4 = sedentary behaviours vs. sweeping floor, and dis-
crimination 5 = sedentary behaviours vs. self-paced free-livingwalk. Univariate binary logistic
regression models were fitted with the discrimination under review as the dependent variable
and the hip/wrist ENMO/MAD metric as the independent variable. Receiver-Operating-Char-
acteristic (ROC) analyses were implemented to derive the optimum monitor-specific hip and
wrist thresholds for activity classification. Performances were summarised by calculating the
area under the ROC curves (AUROC) and the thresholds were examined for validity by con-
ducting a leave-one-out-cross-validation (LOOCV).The LOOCV is a model validation
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technique which assesses the generalizability and performance of a developedmodel on unseen
data [37]. A training (n—1 observations) and testing (1 observation) analysis is implemented
(n times, with a different observation left out each time) to estimate the predictive performance
of a model. The method works as follows: a model is trained on seen data (n—1 observations)
(i.e. the training set) and tested on unseen data i.e. the single observation that was left out (i.e.
the testing set). With a different observation left out each time, the model is repeatedly fitted (n
times) in order to predict the performance of the model. The performances between the
ENMO and MAD metrics were compared using the AUROC and LOOCVAUROC statistics.

All data underlying the findings of this study are included in the following file: S1 File.

Results

The sample consisted of 33 participants [mean age (standard deviation) = 27.4 (5.9) years;
mean BMI (standard deviation) = 23.9 (3.7) kg/m2; 20 females (60.6%)]. Fig 1, Table 2
(ENMO) and Table 3 (MAD) show the mean (standard error) raw acceleration metric values
of the sedentary behaviours and each light-intensity physical activity stratified by accelerome-
ter brand and monitor placement (see S2 File for the mean (standard error) raw acceleration
metric values of all the activities). In general, for both hip and wrist monitor placements, the
ENMO and MAD values computed from the GENEActiv devices were observed to be slightly
higher in comparison to the ActiGraph GT3X+ devices, particularly for the lower-intensity
activities. For the monitors positioned on the hip, statistically significant differences (p<0.05)
in the ENMO metric were detected between the accelerometer brands during the sedentary

Fig 1. Euclidean Norm Minus One (ENMO) and Mean Amplitude Deviation (MAD) calculated from the ActiGraph GT3X+ and GENEActiv raw

acceleration data (MAD) (Top Left: ENMO—Hip, Top Right: ENMO—Wrist, Bottom Left: MAD—Hip, Bottom Right: MAD—Wrist).

doi:10.1371/journal.pone.0164045.g001
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behaviours (p<0.001), standing still (p = 0.014) and washing pots (p = 0.020) activities. For the
MAD metric, differences were detected during the sedentary behaviours (p<0.001) and stand-
ing still (p<0.001) activities. In comparison, for the monitors positioned on the wrist, differ-
ences in the ENMO metric were only detected during the sedentary behaviours (p = 0.010). For

Table 2. Mean (Standard Error) Euclidean Norm Minus One (ENMO (measured in milligravity units)) values for each activity stratified by acceler-

ometer brand and monitor placement.

ActiGraph GT3X+ (Hip) GENEActiv (Hip)

Activity Mean (Standard Error) ENMO † Mean (Standard Error) ENMO † p-value ‡

Sedentary Behaviours 3.6 (0.3) 6.6 (0.3) <0.001

Standing Still 3.6 (0.7) 7.7 (1.4) 0.014

Washing Pots 5.9 (0.7) 9.8 (1.5) 0.020

Dusting 18.4 (2.2) 19.8 (1.7) 0.626

Sweeping Floor 22.4 (1.8) 25.8 (2.2) 0.228

Self-Paced Free-Living Walk 58.5 (3.7) 64.8 (3.6) 0.225

ActiGraph GT3X+ (Wrist) GENEActiv (Wrist)

Activity Mean (Standard Error) ENMO † Mean (Standard Error) ENMO † p-value ‡

Sedentary Behaviours 9.3 (0.5) 10.9 (0.4) 0.010

Standing Still 10.3 (1.6) 10.8 (0.9) 0.781

Washing Pots 53.8 (5.4) 58.5 (6.6) 0.578

Dusting 67.3 (7.5) 72.3 (7.4) 0.638

Sweeping Floor 107.5 (9.2) 118.0 (7.7) 0.380

Self-Paced Free-Living Walk 103.1 (7.4) 110.9 (5.6) 0.406

Sedentary behaviours = any form of lying plus any form of sitting (activities 1 to 11)
† Euclidean Norm Minus One (ENMO) measured in milligravity units
‡ Unpaired t-tests

doi:10.1371/journal.pone.0164045.t002

Table 3. Mean (Standard Error) Mean Amplitude Deviation (MAD (measured in milligravity units)) values for each activity stratified by accelerom-

eter brand and monitor placement.

ActiGraph GT3X+ (Hip) GENEActiv (Hip)

Activity Mean (Standard Error) MAD † Mean (Standard Error) MAD † p-value ‡

Sedentary Behaviours 1.2 (0.1) 9.1 (0.8) <0.001

Standing Still 1.8 (0.3) 7.3 (0.8) <0.001

Washing Pots 6.9 (0.8) 13.9 (3.7) 0.071

Dusting 29.3 (2.3) 32.8 (2.7) 0.318

Sweeping Floor 37.4 (3.1) 44.2 (4.5) 0.224

Self-Paced Free-Living Walk 119.3 (6.3) 127.3 (6.1) 0.362

ActiGraph GT3X+ (Wrist) GENEActiv (Wrist)

Activity Mean (Standard Error) MAD † Mean (Standard Error) MAD † p-value ‡

Sedentary Behaviours 6.7 (0.5) 12.7 (0.4) <0.001

Standing Still 7.5 (1.1) 11.3 (1.0) 0.012

Washing Pots 100.2 (8.3) 102.6 (9.8) 0.855

Dusting 84.2 (6.6) 86.2 (6.5) 0.826

Sweeping Floor 174.3 (10.4) 173.0 (10.1) 0.928

Self-Paced Free-Living Walk 151.5 (6.2) 151.6 (6.3) 0.998

Sedentary behaviours = any form of lying plus any form of sitting (activities 1 to 11)
† Mean Amplitude Deviation (MAD) measured in milligravity units
‡ Unpaired t-tests

doi:10.1371/journal.pone.0164045.t003
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the MAD metric, differences were detected during the sedentary behaviours (p<0.001) and
standing still (p = 0.012) activities.

Tables 4 (ENMO; hip), 5 (ENMO; wrist), 6 (MAD; hip) and 7 (MAD; wrist) show the moni-
tor-specific hip and wrist raw acceleration metric thresholds (with the corresponding statistics:
metric threshold, sensitivity, specificity, AUROC, LOOCVAUROC) for differentiating
between the sedentary behaviours and each light-intensity physical activity. For both hip and
wrist monitor placements, poor classification was observedwhen attempting to isolate standing
still from sedentary behaviours (ActiGraph GT3X+ ENMO AUROC [hip: 0.543, wrist: 0.601];
GENEActiv ENMO AUROC [hip: 0.504, wrist: 0.468]; ActiGraph GT3X+ MAD AUROC [hip:
0.638, wrist: 0.603]; GENEActiv MAD AUROC [hip: 0.297, wrist: 0.560]). However, in con-
trast, sedentary behaviours differentiated well from all motion-based light-intensity physical
activities (washing pots, dusting, sweeping floor and self-paced free-livingwalk; in general,
AUROCs >0.95). The LOOCVprocedure indicated robustness and stability as the high perfor-
mance, where observed,was maintained. ENMO and MAD registered similar performances
for classifying all motion-based activities for both devices positioned on the hip. However,
some small differences between the metrics were observedwhen distinguishing between seden-
tary behaviours and standing still. For the accelerometers positioned on the wrist, ENMO and
MAD registered comparable performances for both devices (see Tables 4–7).

Discussion

This is the first methodological study to develop and validate ENMO and MAD intensity-
based thresholds for differentiating between sedentary behaviours and common light-intensity

Table 4. Monitor-specific hip Euclidean Norm Minus One (ENMO (measured in milligravity units)) thresholds to differentiate between sedentary

behaviours and light-intensity physical activities.

Monitor Placement: Hip Discrimination

Sedentary Behaviours

vs.

Standing Still Washing Pots Dusting Sweeping Floor Self-Paced Free-Living

Walk

ENMO Threshold (milligravity) AG 2.6 2.9 7.5 9.4 26.6

GA 3.9 4.7 8.6 11.2 25.9

Sensitivity (%) AG 52% 88% 97% 100% 94%

GA 70% 85% 97% 100% 100%

Specificity (%) AG 54% 59% 92% 94% 100%

GA 35% 45% 80% 87% 97%

ENMO AUROC † (95% CI) AG 0.543 (0.447,

0.640)

0.779 (0.716,

0.842)

0.965 (0.947,

0.982)

0.979 (0.967,

0.992)

0.994 (0.987, 1.000)

GA 0.504 (0.402,

0.607)

0.666 (0.578,

0.753)

0.934 (0.906,

0.962)

0.961 (0.943,

0.980)

0.997 (0.993, 1.000)

ENMO LOOCV AUROC ‡ (95%

CI)

AG 0.382 (0.252,

0.491)

0.689 (0.605,

0.773)

0.962 (0.943,

0.981)

0.978 (0.965,

0.991)

0.993 (0.986, 1.000)

GA 0.332 (0.212,

0.451)

0.600 (0.499,

0.701)

0.930 (0.900,

0.959)

0.958 (0.939,

0.978)

0.996 (0.992, 1.000)

Sedentary behaviours = any form of lying plus any form of sitting (activities 1 to 11); ENMO = Euclidean Norm Minus One (measured in milligravity units);

AG = ActiGraph GT3X+ accelerometer; GA = GENEActiv accelerometer
† Area under Receiver-Operating-Characteristic curve
‡ Leave-One-Out-Cross-Validation Area under Receiver-Operating-Characteristic curve

doi:10.1371/journal.pone.0164045.t004
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physical activities using raw acceleration data collected from both hip- and wrist-worn Acti-
Graph GT3X+ and GENEActiv tri-axial accelerometers.

The monitor-specific hip and wrist ENMO and MAD thresholds showed excellent ability
for differentiating between the sedentary behaviours and motion-based light-intensity physical
activities (washing pots, dusting, sweeping floor and self-paced free-livingwalk). Poor classifi-
cation was experiencedwhen attempting to isolate standing still from sedentary behaviours.
However, these findings are as expected since the magnitude of the acceleration signals is very
similar when lying/sitting or standing still, and in order to accurately discriminate between
postures, more features of the acceleration signal (such as the angles between the individual
orthogonal axes of acceleration from wrist-worn accelerometers) need to be considered [11, 38,
39]. Recent experimental and epidemiological research has shown that standing can have bene-
ficial effects on health [12–14]. However, due to their poor performances, the thresholds devel-
oped in this study to discriminate between sedentary behaviours and standing would
miscalculate the times spent in each characteristic (i.e. they would overestimate sedentary time
and underestimate standing time). Whilst taking into consideration that this issue categorically
depends on the amount of time individuals actually spend standing still in day-to-day life, ade-
quate caution should be taken if isolating sedentary behaviours from standing is of particular
interest using these thresholds. In contrast, the magnitude of the acceleration signals is consid-
erably larger during standing activities which require some light movement (e.g. washing pots)
and light-intensity lateral/anteroposterior activities (e.g. dusting; sweeping floor, etc.), and as
shown, they can be separated well from sedentary behaviours using both the ENMO and MAD
metrics. In comparison to the hip ENMO/MAD values and thresholds, the wrist ENMO/MAD
values and thresholds were higher during the light-intensity physical activities, reflecting the

Table 5. Monitor-specific wrist Euclidean Norm Minus One (ENMO (measured in milligravity units)) thresholds to differentiate between sedentary

behaviours and light-intensity physical activities.

Monitor Placement: Wrist Discrimination

Sedentary Behaviours

vs.

Standing Still Washing Pots Dusting Sweeping Floor Self-Paced Free-Living

Walk

ENMO Threshold (milligravity) AG 5.7 25.8 27.9 52.5 41.4

GA 8.7 30.7 34.4 52.6 47.1

Sensitivity (%) AG 79% 94% 94% 91% 91%

GA 70% 97% 100% 100% 100%

Specificity (%) AG 45% 93% 94% 99% 99%

GA 43% 99% 99% 100% 100%

ENMO AUROC † (95% CI) AG 0.601 (0.520,

0.682)

0.965 (0.928,

1.000)

0.963 (0.913,

1.000)

0.952 (0.887,

1.000)

0.966 (0.920, 1.000)

GA 0.468 (0.381,

0.555)

0.994 (0.986,

1.000)

0.999 (0.996,

1.000)

1.000 (1.000,

1.000)

1.000 (1.000, 1.000)

ENMO LOOCV AUROC ‡ (95%

CI)

AG 0.337 (0.238,

0.436)

0.957 (0.907,

1.000)

0.955 (0.896,

1.000)

0.938 (0.855,

1.000)

0.950 (0.886, 1.000)

GA 0.383 (0.306,

0.451)

0.992 (0.981,

1.000)

0.998 (0.994,

1.000)

1.000 (1.000,

1.000)

1.000 (1.000, 1.000)

Sedentary behaviours = any form of lying plus any form of sitting (activities 1 to 11); ENMO = Euclidean Norm Minus One (measured in milligravity units);

AG = ActiGraph GT3X+ accelerometer; GA = GENEActiv accelerometer
† Area under Receiver-Operating-Characteristic curve
‡ Leave-One-Out-Cross-Validation Area under Receiver-Operating-Characteristic curve

doi:10.1371/journal.pone.0164045.t005
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supplementary arm/hand movements whilst performing these particular activities. Findings
were robust as the observedperformances were widely sustained. The ENMO and MAD met-
rics tended to perform similarly across activities and accelerometer brands.

Hildebrand and colleagues [29] recently developedmonitor-specific hip and wrist ENMO
thresholds for moderate and vigorous physical activities using raw acceleration data from the
ActiGraph GT3X+ and GENEActiv devices. ENMO was fairly comparable between the two
accelerometer brands in adults, but not in children. The MAD thresholds developed by Vähä-
Ypyä and colleagues were much larger in comparison to our monitor-specific thresholds as
they predominantly focused on classifying higher intensity activities. [33]. However, to our
knowledge, until our study, no thresholds to separate sedentary behaviours from light-intensity
physical activities existed for any raw acceleration metric for these two devices under either
wear-site. Via using the abundance of high performing thresholds (based on different metrics,
accelerometer brands and wear-sites) generated in this study, researchers can now accurately
separate sedentary behaviours from common motion-based activities—with all the thresholds
developed for washing pots recommended to be used as potential proxy indicators of entering
and engaging in light-intensity physical activity, irrespective of the metric, accelerometer brand
and wear-site used.

For both hip and wrist monitor placements, in comparison to the ActiGraph GT3X+ moni-
tors, the ENMO and MAD values derived from the GENEActiv devices were observed to be
slightly higher, particularly for the lower-intensity activities. A greater magnitude of accelera-
tions from the GENEActiv has been previously reportedwhen conducting time domain analyses
of raw acceleration data using these two accelerometers [22, 23]. Extensive mechanical testing
(e.g. shaker diagnostics) has revealed that the differences observed in the magnitude of the raw

Table 6. Monitor-specific hip Mean Amplitude Deviation (MAD (measured in milligravity units)) thresholds to differentiate between sedentary

behaviours and light-intensity physical activities.

Monitor Placement: Hip Discrimination

Sedentary Behaviours

vs.

Standing Still Washing Pots Dusting Sweeping Floor Self-Paced Free-Living

Walk

MAD Threshold (milligravity) AG 0.8 2.8 7.4 17.8 33.2

GA 7.2 8.5 16.2 18.4 35.0

Sensitivity (%) AG 70% 94% 100% 100% 100%

GA 33% 67% 97% 100% 100%

Specificity (%) AG 52% 89% 100% 100% 100%

GA 38% 69% 99% 100% 100%

MAD AUROC † (95% CI) AG 0.638 (0.545,

0.732)

0.958 (0.927,

0.989)

1.000 (1.000,

1.000)

1.000 (1.000,

1.000)

1.000 (1.000, 1.000)

GA 0.297 (0.206,

0.387)

0.710 (0.602,

0.818)

0.986 (0.973,

0.999)

1.000 (1.000,

1.000)

1.000 (1.000, 1.000)

MAD LOOCV AUROC ‡ (95%

CI)

AG 0.584 (0.479,

0.690)

0.954 (0.917,

0.990)

1.000 (1.000,

1.000)

1.000 (1.000,

1.000)

1.000 (1.000, 1.000)

GA 0.278 (0.191,

0.365)

0.653 (0.517,

0.789)

0.975 (0.928,

0.998)

1.000 (1.000,

1.000)

1.000 (1.000, 1.000)

Sedentary behaviours = any form of lying plus any form of sitting (activities 1 to 11); MAD = Mean Amplitude Deviation (measured in milligravity units);

AG = ActiGraph GT3X+ accelerometer; GA = GENEActiv accelerometer
† Area under Receiver-Operating-Characteristic curve
‡ Leave-One-Out-Cross-Validation Area under Receiver-Operating-Characteristic curve

doi:10.1371/journal.pone.0164045.t006
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acceleration signals (e.g. vector magnitude) between the two devices (GENEActiv established to
have higher accelerations) could be due to underlying inner structural variances [22, 23], with
features such as the MEMS (microelectromechanical systems) sensor affecting the signal pro-
cessing and digitization of the output. Other potential causal factors include; the zero-g offset,
reference voltage, analog-to-digital bit-rate conversion, any proprietary filtering, and sensitivity
of the MEMS sensor [22, 40]. Methods for minimizing the differences between the devices
include the applications of affine conversions (e.g. correction factors) to the raw acceleration sig-
nals [23]. It appears that features from the frequency domain are comparable between the two
accelerometers [23], although these methods are more intricate. In theory, raw acceleration data
between different devices should be comparable to each other. However, this study further high-
lights the subtle differences that become apparent when comparing monitors.

Essentially, both the ENMO and MAD metrics offer simple ways of correcting for the gravi-
tational component. Bassett and colleagues recommend that any newly proposed raw accelera-
tion system should be compared to the ones already in use [41]. Although Vähä-Ypyä and
colleagues compared the performance of MAD to several other raw acceleration traits (where it
proved to be the most exemplary method) [33], it was not equated to the ENMO metric.
ENMO is emerging as the prototypical trait for analysing raw acceleration data and is being
widely used by accelerometer researchers [25, 29, 30], thus, following recommendations from
Bassett and colleagues [41], it is imperative to compare MAD to ENMO. Furthermore, since
the ENMO metric is sensitive to poor calibration of the accelerometer [30], it is ideal to imple-
ment sensor calibrated ENMO in order to reduce any erroneous findings. Our study indicates
that in addition to ENMO, MAD provides an alternative, yet a robust and straightforward tech-
nique for analysing raw acceleration data.

Table 7. Monitor-specific wrist Mean Amplitude Deviation (MAD (measured in milligravity units)) thresholds to differentiate between sedentary

behaviours and light-intensity physical activities.

Monitor Placement: Wrist Discrimination

Sedentary Behaviours

vs.

Standing Still Washing Pots Dusting Sweeping Floor Self-Paced Free-Living

Walk

MAD Threshold (milligravity) AG 4.2 33.4 35.9 73.4 66.1

GA 10.6 39.6 45.2 74.5 67.1

Sensitivity (%) AG 73% 100% 100% 100% 100%

GA 45% 100% 100% 100% 100%

Specificity (%) AG 55% 98% 98% 100% 100%

GA 58% 98% 99% 100% 100%

MAD AUROC † (95% CI) AG 0.603 (0.512,

0.694)

0.999 (0.998,

1.000)

0.998 (0.996,

1.000)

1.000 (1.000,

1.000)

1.000 (1.000, 1.000)

GA 0.560 (0.447,

0.673)

0.999 (0.998,

1.000)

0.998 (0.996,

1.000)

1.000 (1.000,

1.000)

1.000 (1.000, 1.000)

MAD LOOCV AUROC ‡ (95%

CI)

AG 0.372 (0.264,

0.479)

0.996 (0.990,

1.000)

0.998 (0.995,

1.000)

1.000 (1.000,

1.000)

1.000 (1.000, 1.000)

GA 0.441 (0.346,

0.535)

0.998 (0.996,

1.000)

0.998 (0.995,

1.000)

1.000 (1.000,

1.000)

1.000 (1.000, 1.000)

Sedentary behaviours = any form of lying plus any form of sitting (activities 1 to 11); MAD = Mean Amplitude Deviation (measured in milligravity units);

AG = ActiGraph GT3X+ accelerometer; GA = GENEActiv accelerometer
† Area under Receiver-Operating-Characteristic curve
‡ Leave-One-Out-Cross-Validation Area under Receiver-Operating-Characteristic curve

doi:10.1371/journal.pone.0164045.t007
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Strengths and Limitations

Our study has several strengths and some limitations. Strengths include; utilisation of widely-
used accelerometers; comprehensive data analysis of raw acceleration data collected at a high
sampling frequency; laboratory-based experimental design with usage of both hip- and wrist-
worn devices; robust statistical analysis; and the generation of monitor-specific thresholds
that distinguish between sedentary and non-sedentary activities. These thresholds are sample
and protocol specific, implying that the classifications of sedentary behaviours and light-
intensity physical activities should be broadly comparable between studies—irrespective of
the metric, accelerometer brand and wear-site used. However, these strengths also have some
inherent limitations. The laboratory-based settings may limit generalizability to free-living
environments. In particular, it may be more difficult to classify sedentary behaviours in free-
living situations using wrist-worn devices since individuals can carry out sedentary tasks
involving arm movement as highlighted in this study (e.g. using a computer and a mobile
phone whilst in a seated position). Secondly, with the participants instructed to keep their
hands on their thighs during the seated activities that involved watching TV (sitting activities
5–9), the real-life positioning and postures of these sedentary behaviours are less likely to be
reflected or fully captured. Nevertheless, for both the accelerometer brands, determining the
wrist ENMO and MAD thresholds using computer activity as the only sedentary behaviour
did not affect the performance or value of the thresholds (in general, AUROCs >0.95 with val-
idation indicating robustness and<10% change in threshold values (data not shown)). Fur-
thermore, the limited range of sedentary behaviours and light-intensity physical activities can
be considered as a weakness of the study. The inclusion of additional activities, such as eating,
reading a book or using a mobile phone whilst standing, would have added to the strengths.
Lastly, although the thresholds in this study were validated, they were only done so internally.
Therefore, it is desirable to cross-validate all available ENMO and MAD thresholds externally;
the performance of algorithms developed in laboratory conditions attenuates when applied in
field environments [42].

Conclusions

In conclusion, the ENMO and MAD metrics are accessible and increasingly used approaches
for analysing hip- and wrist-worn raw accelerometer data, however, well-developed and vali-
dated methods utilising outputs from these methods are sparse. Our study provides compre-
hensible monitor-specific hip and wrist ENMO and MAD thresholds for analysing raw
acceleration data, particularly for researchers interested in sedentary behaviour and light-
intensity movement. Users can exploit these robust ENMO and MAD thresholds in order to
accurately separate sedentary behaviours from common motion-based light-intensity physi-
cal activities. However, caution should be taken if separating sedentary behaviours from
standing is of specific interest.

In terms of making recommendations for future research, due to its’ proven competency
and continuous use in the field, this study further supports the use of sensor calibrated ENMO,
a well-performingmetric which is emerging as the prototypical tool for the analysis of raw
acceleration data, to help promote comparability between studies. Nevertheless, the MAD met-
ric also offers an alternative, robust and straightforward technique for analysing raw accelera-
tion data; however, more studies further exploring the MAD metric are required.
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