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Summary
Long non-coding RNAs (lncRNAs) are important biological mediators that regulate numerous
cellular processes. New experimental evidence suggests that lncRNAs play essential roles in liver
development, normal liver physiology, fibrosis, and malignancy, including hepatocellular carci-
noma and cholangiocarcinoma. In this review, we summarise our current understanding of the
function of lncRNAs in the liver in both health and disease, as well as discuss approaches that could
be used to target these non-coding transcripts for therapeutic purposes.
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Introduction
Seventy percent of the human genome is tran-
scribed, yet only 2–3% of the genome encodes RNA
transcripts that are translated into proteins.1 Most
biomedical research has focused on protein-coding
genes, because proteins are considered the primary
molecular building blocks that control the struc-
ture and function of cells. Recent advances in
genome-wide RNA sequencing approaches have
revealed the abundance and diversity of non-
coding (nc) RNAs, and these RNA transcripts are
increasingly recognised for their diverse biological
functions in eukaryotic cells.

NcRNAs are primarily classified by their mech-
anism of transcription and mode of action. Most
ncRNAs, including ribosomal and transfer RNA
molecules, are derived through transcription by
RNA polymerase (RNA Pol) I and RNA Pol III. RNA
Pol II also transcribes various classes of small
ncRNAs including microRNAs (miRNAs), small
nucleolar RNAs, and piwi-interacting RNAs, which
have been reviewed in detail previously.2 The
functions of longer RNA Pol II-transcribed ncRNAs,
commonly referred to as long non-coding RNAs
(lncRNAs) have more recently piqued the interest
of researchers.3

What constitutes an lncRNA is still a matter of
debate. However, lncRNAs are commonly defined as
ncRNA transcripts that are greater than 200 nucleo-
tides in length, which separates them from small
ncRNAs such as miRNAs. Similar to messenger (m)
RNAs, lncRNAs are 50- capped and commonly contain
a poly-adenylated tail at their 30-end.4 Interestingly, a
few lncRNAs have been described that contain an
RNase P-catalysed triple-helical structure at their
30-ends instead of a poly-adenylated tail, presumably
increasing transcript stability.5
In comparison to mRNAs, lncRNAs tend to be
shorter transcripts and contain fewer exons.6 The
half-lives of lncRNAs are variable, but overall
lncRNAs tend to be less stable than mRNAs.7,8

Decreased stability of lncRNAs helps to explain
why transcription at genes encoding lncRNAs is
closer in level to transcription at protein-coding
genes, while there is a greater difference in
expression of mature mRNAs and lncRNAs, as
measured by RNA sequencing.9

Many lncRNAs include one or multiple open
reading frame (ORF) regions for protein synthesis.10

Yet, possible ORFs in lncRNA transcripts are often
not translated or, if translated, the resulting protein
product is unstable and rapidly subjected to
degradation; therefore these protein products are
not thought to play a substantial biological role.4

The liver is an essential organ in the gastroin-
testinal system, which mediates numerous diges-
tive and metabolic functions. Recent work from
many research laboratories has led to an increased
understanding of the role of lncRNAs in liver
development, physiology, and pathology. We will
review the identification and classification of
lncRNAs, general mechanisms of action, our cur-
rent understanding of lncRNA activities in the
context of the liver, and the potential of lncRNAs
as therapeutic targets in the treatment of liver
disease.
Identification
Early efforts to identify and characterise lncRNAs
employed sequencing of expressed cDNA libraries
and expression sequence tags (ESTs).11 However,
because of the inherent laboriousness of this
strategy, few lncRNAs were characterised.
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Key points

� Long non-coding RNAs (lncRNAs) are emerging as critical biological
mediators in the normal functioning of the liver.

� Aberrant expression of lncRNAs is associated with metabolic diseases,
fibrosis, and malignancies involving the liver.

� LncRNAs exert their pathobiological effects through a multitude of
mechanisms.

� Liver-specific targeting of lncRNAs is a promising novel treatment
modality.

� LncRNAs have potential as biomarkers in liver disease.

Review
Subsequent approaches such as chromatin profiling by immu-
noprecipitation followed by high-throughput sequencing dras-
tically improved the lncRNA discovery process. Regions
containing specific histone marks, such as trimethylation of
histone 3 lyisine 4 (H3K4me3) and histone 3 lysine 36
(H3K36me3), define areas of active transcriptional initiation and
elongation and were employed to identify lncRNA transcripts
that do not overlap with protein-coding genes.12

With the advent of next-generation RNA-sequencing, lncRNA
identification underwent a significant revolution.13 With this
approach, short RNA-sequencing reads were used to assemble a
transcriptome model by mapping reads to a reference genome to
identify exons and splice junctions between exons. The assem-
bled transcriptome was then further subjected to a multitude of
algorithms to filter out transcripts that have coding potential.14

This computational strategy involved significantly less manual
work than earlier approaches. However, this method relies
heavily on the error-prone de novo construction of transcript
sequences from short reads, which can lead to the assembly of
incomplete transcripts. With this limitation in mind, defining the
50 and 30 ends of the lncRNA through approaches such as rapid
amplification of cDNA ends (RACE)15 and cloning the full-length
lncRNA transcript in a specific cell type of interest are good
starting points to define the exons of poorly characterised
lncRNAs.

An alternative method that employs long-read sequencing is
increasingly being utilised to sequence full-length transcripts.16

The promise of this newer method is the increased accuracy of
the exons and splice junctions contained in each transcript, but
this comes at a cost of an increased rate of sequencing errors and
decreased genome coverage when performed at the same price
point as short-read sequencing.

With notable exceptions, most lncRNAs do not possess cross-
species sequence homology.17 However, this does not by any
means suggest that lncRNAs are not or cannot be evolutionarily
conserved. In contrast to the conservation of protein-coding
genes, which rely heavily on the sequence homology to main-
tain amino acid sequence, lncRNA conservation may be enforced
at the level of the RNA structure, function, and or syntenic
expression pattern. The last criterion, which relies on conserved
location in the genome relative to proximal genes, is often used
to identify human orthologs of lncRNAs that are initially found in
model organisms (e.g. mice).18 Even taking these additional
criteria into account, it is estimated that only a little over one-
third of human lncRNAs have orthologous transcripts in mice.19

Although these multiple levels need to be considered when
addressing lncRNA conservation, it offers a far better insight into
the mechanisms of lncRNA evolution across different organisms.

Through these efforts, a large collection of annotated lncRNAs
have been described in an increasing number of organisms and
are accessible through a multitude of sources, including NON-
CODE,20 GENCODE,21 RNAcentral,22 and LNCipedia23 databases.
Fig. 1 shows the number of genes encoding lncRNAs and the
number of different lncRNA transcripts annotated in different
species. The increased number of lncRNAs in humans and mice
compared to other vertebrates likely reflects the greater depth of
sequencing analysis in these two species.
Species

Fig. 1. Quantifications of lncRNA genes and their transcripts in multiple
species as deposited in the release of NONCODE v.5 database. Transcripts
consider the number of lncRNA isoforms identified for each lncRNA gene.
Diverse genomic origins of lncRNAs
LncRNAs are classified according to their sites of transcription
relative to annotated protein-coding genes24 (Fig. 2). Transcripts
JHEP Reports 2021
that do not overlap with known protein-coding or small
RNA-coding genes are termed long intervening non-coding (linc)
RNAs.12,17 LincRNAs are also often described as intergenic non-
coding RNAs in the literature. This category of lncRNAs was
easier to identify because of their distance from known genes,
and many of the earliest described lncRNAs, including H19,25

X-inactive specific transcript (XIST),26,27 and HOX transcript
antisense RNA (HOTAIR),28 fall into this category.

Natural antisense transcripts (NATs) are widely expressed in
the human genome. NATs are the result of transcription on the
opposite strand to the sense protein-coding gene such that the
non-coding transcript is the reverse complement of a region of
the protein-coding transcript.29 NATs are understood to function
predominantly in cis (i.e. acting in proximity to where they are
transcribed) by regulating the sense protein-coding transcript.30

One mechanism proposed to explain how NATs regulate gene
expression is through the formation of duplexes in which the
sequence complementarity between NATs and the sense tran-
scripts interferes with the recruitment of the splicing machinery,
resulting in skipped exons or incomplete splicing through a
process called RNA masking.31 In an alternative mechanism, the
RNA duplex may serve as an immediate substrate for either RNA
editing32 or promote degradation through the RNA interference
pathway.33
2vol. 3 j 100177
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Fig. 2. LncRNAs are classified by genomic origins relative to protein-coding genes. Divergent lncRNAs are encoded on the opposite strand and direction from
protein-coding genes. As the name suggests, lincRNAs are found in regions between genes. NATs are transcribed from the antisense strand of a protein-coding
gene. 1D-eRNAs are lncRNAs transcribed from regions identified as enhancers and are distinct from 2D-eRNAs, which are divergently transcribed and non-
polyadenylated transcripts produced from enhancers. eRNA, enhancer RNA; lincRNA, long intervening non-coding RNA; lncRNA, long non-coding RNA; NATs,
natural antisense transcripts; TSS, transcription start site.
Divergent lncRNAs are transcribed head-to-head from
protein-coding genes so that the transcription start sites of the
lncRNA and protein-coding genes are in close proximity and are
oriented in opposite directions. Transcription of the divergent
lncRNA can be facilitated by a shared bi-directional promoter
that induces the expression of both lncRNA and protein-coding
genes.34 A criterion that is increasingly being used to define
this class of lncRNAs is whether the lncRNA transcription starts
within 300–500 base pairs of the transcription start site of a
protein-coding gene.24

Enhancer RNAs (eRNA) are another novel class of RNA species
and are exclusively expressed at enhancer regions.35 Most eRNA
transcripts are divergently transcribed (2D-eRNA) from en-
hancers, are composed of single exons, and are non-poly-
adenylated.36 Because of the relatively open chromatin structure
at enhancers, these eRNAs are considered to be the indirect effect
of noisy transcriptional activity mediated by Pol II-containing
transcriptional machinery as enhancers loop into proximity
with promoters.35 This transcriptional activity is primarily
associated with divergently transcribed eRNAs that are not pol-
yadenylated and has been exploited to identify novel enhancer
regions by transcriptional profiling of eRNAs.37 Whether or not
these divergent, non-polyadenylated eRNA transcripts have
functional activity has been the subject of multiple studies.38–40

However, it is also imaginable that the process of eRNA tran-
scription at the enhancer region could regulate enhancer activity
by itself, through recruitment of activating transcription fac-
tors.36 A less abundant class of eRNAs is unidirectional and
polyadenylated (1D-eRNA).41 These unidirectional eRNAs have
similar features to lncRNAs but are encoded by genomic regions
associated with an increased abundance of H3K4me1 relative to
H3K4me3 when compared to regions encoding lncRNAs. The
functional distinction between a non-coding transcript labelled
as a unidirectional eRNA and one labelled as an lncRNA is still not
well understood, and likely represents different RNA species
across the same continuum.
Mechanisms of action: Transcript or transcription,
that is the question
Perhaps the most studied question at the core of lncRNA biology
is whether the non-coding transcript or the act of its transcrip-
tion confers function to the lncRNA locus. In this line, evidence
for each scenario is rapidly mounting for individual lncRNAs.

For some lncRNAs, genetic manipulation of the lncRNA locus
in mouse models suggests that the mere act of transcription or
related processes that include splicing allow cross-regulation of
JHEP Reports 2021
lncRNAs with that of nearby protein-coding genes.42 However,
the use of genetically manipulated models to study lncRNA
function should be carefully interpreted, as complete or partial
deletion of regulatory regions (i.e. promoters or enhancers) that
control transcription of lncRNAs may adversely affect the
expression of nearby genes. In contrast, other studies point to
the direct role of transcripts, often exerted in trans, as opposed to
the act of transcription, as described below. We will briefly
review the range of functions attributed to lncRNA transcripts
before discussing how specific lncRNAs function in the liver.

Interactions between lncRNAs and chromatin
Perhaps the earliest and the best-known lncRNA that directly
interacts with chromosomes to exert its function is XIST.43 One X
chromosome is transcriptionally silenced in somatic cells of
female mammals early in development in a process known as
X-chromosome inactivation.44 X-chromosome inactivation be-
gins with the expression of the XIST transcript and distribution of
the transcript along the entire X chromosome. XIST assists the
formation of silent heterochromatin through the recruitment of
two polycomb repressive complexes (PRCs) known as PRC1 and
PRC2.45

A host of lncRNAs have also been described that function as
more targeted activators or suppressors of gene expression
through modification of chromatin or DNA. HOTTIP (HOXA
transcript at the distal tip), for instance, functions through the
adaptor protein WDR5 to recruit histone methyltransferases to
trimethylate the fourth lysine residue of histone 3 protein
(H3K4me3), promoting gene expression.46 In contrast, immu-
noprecipitation of the PRC2 silencing complex provided the first
indications that lncRNAs can direct regulatory complexes to
specific loci in the genome to repress gene expression.28 HOTAIR
is expressed within the HOXC cluster47,48 and functions in trans
(i.e. function at distant sites from transcription) to silence the
HOXD loci, which is located on a different chromosome.28 Other
lncRNAs such as KCNQ1OT1 recruit DNA methyltransferases in cis
to catalyse CpG dinucleotide methylation and suppress gene
expression in the KCNQ1 gene cluster of the paternal
chromosome.49

Structural lncRNAs
NEAT1 (nuclear enriched abundant transcript 1) was first
described as an abundant nuclear lncRNA.50 Together, with other
ncRNAs,51 NEAT1 plays a structural role to promote the formation
of membrane-less nuclear bodies named paraspeckles.52 Para-
speckles contain both proteins and RNAs and are thought to
3vol. 3 j 100177
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regulate gene expression through the retention of mRNAs in the
nucleus, as recently reviewed.52,53 Similarly, another structural
lncRNA MALAT1 (metastasis-associated lung adenocarcinoma
transcript 1) is associated with nuclear speckles,54 which contain
splicing factors.55 Both NEAT1 and MALAT1 are present at hun-
dreds of transcriptionally active regions and act as structural
components of these two nuclear bodies.56

Unexpectedly, a crosstalk between NEAT1 and mitochondria
was recently described.57 In response to mitochondrial stress,
the transcription factor ATF2 is activated, inducing expression of
NEAT1, leading to a change in nuclear paraspeckle morphology
and an increase in the number of paraspeckles that retain
mitochondrial mRNAs. This response results in decreased pro-
duction of mitochondria and mitochondria-dependent apoptosis
proteins. Thus, NEAT1 affects mitochondrial function and dy-
namics through changes in the expression of mitochondrial
proteins.

LncRNAs as miRNA sponges
One mechanism by which lncRNAs can regulate gene expression
post-transcriptionally is to serve as miRNA sponges.58 Because
this class of lncRNAs competes with mRNAs for miRNA binding,
these lncRNAs also belong to the category of competing endog-
enous RNAs (ceRNAs) and have been shown to regulate a vast
number of genes and related pathways.59 However, for an
lncRNA to function as a miRNA sponge, it must be expressed at a
high enough level to compete with mRNAs that contain the same
miRNA seed sequence. LncRNAs are usually expressed at lower
levels than mRNAs, and it is not clear how the stoichiometry
could support this competing function for many examples of
ceRNAs, even if an lncRNA contains multiple seed sequences for
the same miRNA.60
LncRNAs in early liver development
Organ development and cell fate determination are driven by the
coordinated regulation of hundreds to thousands of genes.61

Owing to their ability to modulate gene regulatory pathways
and the tight control of their expression in differentiation,
lncRNAs have been shown to play important roles in
development.62

Foetal liver development is a complex process that comprises
multiple differentiation stages from cells derived from different
lineages.63 Lineage studies indicate that hepatocytes and chol-
angiocytes are derived from the mesendoderm lineage that in
turn differentiates into the definitive endodermal (DE) layer of
the early embryo. DE then organises in a tube along the anterior-
posterior axis of the embryo, which ultimately forms the prim-
itive digestive tract, including the foregut, midgut and hindgut.
The foregut is the progenitor region for many internal organs
including the liver, gastrointestinal system, lungs and thyroid.64

Differential expression analysis of lncRNAs during DE differ-
entiation led to the identification of the DE-specific lncRNA
DEANR1 (definitive endoderm-associated lncRNA1).65 Activin
signalling drives embryonic stem cell differentiation towards DE
through activation of the transforming growth factor-b (TGF-b)
receptor signalling pathway and phosphorylation of the co-
activators SMAD2 and SMAD3 (SMAD2/3). DEANR1 recruits
SMAD2/3 to the FOXA2 promoter to induce FOXA2 expression
and promote DE differentiation.

Combined analysis of SMAD3 gene occupancy and expression
profiling of DE differentiation led to the identification of DIGIT
JHEP Reports 2021
(divergent to goosecoid, induced by TGF-b family signalling).66

The transcription of DIGIT, which is divergently transcribed
from the gene encoding goosecoid (GSC), is induced during DE
differentiation in both human and mouse models of embryonic
stem cell differentiation. DIGIT interacts with BRD3 at sites of
histone 3 lysine 18 acetylation (H3K18ac), regulating gene
expression and promoting DE differentiation.67
LncRNAs in normal liver function and lipid processing
The liver is responsible for homeostasis and regulation of lipid
metabolism in mammals, and disruption of normal lipid
metabolism can lead to hepatic steatosis.68 Many lncRNAs have
been described that affect lipid metabolism and are reviewed
elsewhere.69,70 We will focus our discussion on lncRNAs that
have been shown to regulate key steps in lipid metabolism
(Fig. 3).

LncRNAs in lipid metabolism
Cholesterol is imported into the liver from LDL lipoproteins via
LDL receptors on hepatocytes. This influx is counterbalanced by
the efflux of cholesterol through ATP-binding cassette trans-
porter A1 (ABCA1), which delivers cholesterol to HDL lipopro-
tein.71 Intracellular cholesterol is processed by cholesterol
7a-hydroxylase (also called cytochrome P450 family 7 subfamily
A member 1 [CYP7A1]) to form 7a-hydroxycholesterol,72 which
is then modified by cytochrome p450 family 8 subfamily
b member 1 (CYP8B1) to eventually form cholic acid.73 Cholic
acid, in addition to chenodeoxycholic acid, is then conjugated to
taurine or glycine for excretion in the bile.74 CYP8B1 activity
shifts the ratio of cholic acid:chenodeoxycholic acid in favour of
cholic acid, which has a weaker stimulatory effect on the far-
nesoid X receptor (FXR),75 a sensor of bile acid composition.76–79

Lnc-HC was discovered as an upregulated transcript in the
livers of rats with high-fat diet-induced metabolic syndrome.80

Although Lnc-HC is not highly evolutionarily conserved, syn-
tenic transcripts have been found in other organisms. The study
of protein interactors of this lncRNA revealed that Lnc-HC in-
teracts with hnRNPA2B1 and forms a ribonucleoprotein complex.
Analysis of data from RNA-immunoprecipitation showed that
transcripts encoding CYP7A1 and ABCA1 are present in the Lnc-
HC-hnRNPA2B1 complex. These two genes have previously been
shown to function as key regulators of lipid and specifically
cholesterol catabolism.81 In vitro experiments using hepatocytes
indicated that interaction with the Lnc-HC-hnRNPA2B1 complex
induces nuclear retention and eventual degradation of CYP7A1
and ABCA1 transcripts, culminating in cholesterol accumulation
in hepatocytes.

LncLSTR (lncRNA liver-specific triglyceride regulator) is a
murine lncRNA whose depletion results in reduced plasma tri-
glyceride levels.82 LncLSTR interacts with TDP-43 and interferes
with the ability of TDP-43 to suppress the expression of CYP8B1,
which is an essential enzyme in cholesterol metabolism. Thus,
depletion of lncLSTR leads to decreased expression of CYP8B1,
which affects bile acid composition.83,84 Activation of apolipo-
protein C2 (APOC2) and the reduction in plasma triglyceride
levels observed with depletion of lncLSTR were attenuated with
depletion of FXR.76–79 Together these results suggest that lncLSTR
modulates bile acid composition to regulate APOC2 expression,
via FXR,85 and to control serum triglyceride levels.

Steroid response binding proteins (SREBPs) are a family of
transcription factors that bind sterol response elements (SREs)
4vol. 3 j 100177
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Fig. 3. LncRNAs regulate various aspects of lipid metabolism. Extrahepatic cholesterol enters hepatocytes through the LDL receptor (LDLR). lncRNAs lnc-HC and
lncLSTR control key enzymes in cholesterol catabolism. H19 and MALAT1 regulate SREBP-1c stability. SREBP-1c controls the expression of genes regulating fatty
acid synthesis including ACLY (ATP citrate synthase), ACC (acetyl-CoA carboxylase), FASN (fatty acid synthase) and ELOVL1 (ELOVL fatty acid elongase 1).186

HNF4a, which regulates critical genes such as PEPCK in gluconeogenesis, is inhibited by H19. Changes in the ratio of bile acids triggers FXR activation as a
transcription factor to promote the expression of APOC2. Lipoproteins including APOA1 and APOA4 are involved in transfer of lipid molecules and are regulated by
APOA1-AS and APOA4-AS. ER, endoplasmic reticulum.
in promoters to regulate the expression of genes involved in
lipid metabolism.86 SREBPs are found as transmembrane pro-
teins in the endoplasmic reticulum and Golgi; protein cleavage
releases the DNA-binding domain which then acts as a tran-
scription factor.87 In the past few years, several lncRNAs that
modulate the activity of SREBPs have been characterised.
Overexpression of MALAT1 in HepG2 cells, for example, in-
creases the stability of the mRNA encoding SREBP-1c, resulting
in increased intracellular lipid droplets.88 siRNA-mediated
knockdown of MALAT1 in the ob/ob mouse model of obesity
results in a decrease in hepatic lipid content. These experi-
ments also revealed that depletion of MALAT1 in the ob/ob
mouse results in improved insulin sensitivity and glucose
tolerance.

In a similar mechanism, H19 – through interaction with
PTBP1 – stabilises the SREBP-1c transcript and may also promote
nuclear localisation of the SREBP-1c protein.89 Both H19 and its
binding protein are increased by fatty acids in hepatocytes and
JHEP Reports 2021
mouse fatty liver models. Data also suggest that H19 is induced in
patients with type 2 diabetes.90 Interestingly, H19 is increased in
mouse models of diabetes and temporary fasting.91 Mechanisti-
cally, it is proposed that H19 also interacts with S-adenosylho-
mocysteine hydrolase to suppress DNAmethylation92 of the gene
encoding hepatocyte nuclear factor-4a (HNF4a), resulting in
increased expression of this transcriptional regulator of
gluconeogenesis.

Liver X receptors (LXRs) are key transcription factors that
control cholesterol homeostasis.93 Activation of LXRs results in
decreased cholesterol content in the liver.94 LeXis (liver-
expressed LXR-induced sequence) was originally characterised
in cells treated with the LXR agonist GW3965.95 Detailed
analysis of the LeXis interactome suggests that LeXis regulates
cholesterol anabolic pathways through interaction with the
transcriptional coactivator RALY. In adenovirus-transduced
mouse models, the induction of LeXis is associated with
reduced serum cholesterol levels.
5vol. 3 j 100177
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Review
LncRNAs that modulate the transfer of lipid molecules
Lipoproteins are a class of lipid-binding proteins that are
involved in transfer of lipid molecules in the body. Apolipopro-
tein A1 (APOA1) is synthesised in both the liver and intestine and
is the primary protein found in HDL complexes,96 which are
responsible for the transport of excess cholesterol to the liver (as
previously reviewed97). Apolipoprotein A4 (APOA4), is produced
in the intestinal epithelium upon lipid absorption and is involved
in a number of different physiological functions including lipid
absorption, metabolism, and platelet aggregation.98

APOA1-AS is a transcript antisense to the gene encoding
APOA1, which negatively regulates APOA1 transcription in both
in vivo and in vitro liver models.99 Although not much is known
about the functional mechanisms of this lncRNA, it is proposed
that APOA1-AS recruits various histone-modifying enzymes to
the APOA1 locus, which in turn regulate APOA1 expression.

Similar to APOA1-AS, APOA4-AS belongs to the class of NAT
lncRNAs.100 Expression of APOA4-AS is elevated in fatty liver
disease, and depletion of this lncRNA in the ob/ob mouse model
results in reduced expression of APOA4 and decreased serum
triglyceride levels. APOA4-AS interacts with an RNA-stabilising
protein named human antigen R (HuR) in a sequence-
dependent manner. The depletion of HuR protein is associated
with reduced APOA4-AS and APOA4 transcript levels and suggests
that interaction with HuR may help promote stability of both
APOA4-AS and APOA4 mRNA.
LncRNAs in liver injury and fibrosis
Microarray profiling of lncRNAs in the whole mouse liver un-
covered multiple transcripts whose expression changed signifi-
cantly as a result of liver injury induced by 3 weeks of carbon
tetrachloride (CCl4) treatment.101 Among these, Gm2199 was
shown to be repressed with CCl4-induced damage. Treatment of
JHEP Reports 2021
hepatocytes with CCl4 caused a significant reduction in prolif-
eration, which was restored by ectopic expression of Gm2199. As
for the mechanism, the authors provide evidence that Gm2199
achieves these effects through increased expression and activa-
tion of mitogen-activated protein kinase ERK1/2. In vivo studies
corroborated these results by showing that increased expression
of Gm2199 protects cells from the adverse effects of CCl4 treat-
ment. Although a human lncRNA orthologous to Gm2199 has not
yet been described and thus Gm2199 may not have relevance for
human disease, this study demonstrates how an lncRNA can
affect intricate molecular pathways involved in liver injury.

The list of lncRNAs identified that modulate fibrosis, in gen-
eral, continues to grow and was recently reviewed elsewhere.102

We will focus here on lncRNAs most relevant to liver fibrosis
(Fig. 4). Hepatic stellate cells (HSCs) are the primary cell type
responsible for liver fibrosis,103–105 and lncRNAs expressed in
human HSCs were recently described, many of which are co-
expressed with extracellular matrix genes.106

In mouse models of CCl4-induced liver fibrosis, lincRNA-p21
was found to be significantly decreased. Overexpression of
lincRNA-p21 in primary HSCs resulted in increased expression of
the p21 protein and reduced expression of a-smooth muscle
actin (ɑ-SMA [ACTA2]) and collagen type I a 1 (COL1A1), sug-
gesting a role for lncRNA-p21 in suppressing HSC activation and
transformation to myofibroblasts.107

MEG3 (maternally expressed gene 3) is a maternally imprin-
ted gene whose non-coding product has been described in
multiple cancers.108,109 MEG3 expression is decreased in fibrotic
liver tissue and activated in primary HSCs. Overexpression of this
lncRNA through a viral induction system also showed antifibrotic
activity in murine CCl4-induced liver fibrosis.110,111 In the
immortalised human HSC line LX-2, MEG3 transcript levels are
reduced in response to TGF-b treatment.111 The mechanism by
which MEG3 confers antifibrotic activity is still largely unknown.
6vol. 3 j 100177



Table 1. LncRNAs associated with liver cancer.

LncRNA Role Mechanism Ref

Hepatocellular carcinoma (HCC)
MALAT1 Oncogene Activation of oncogenic splicing factor SRSF1 118

NEAT1 Oncogene Acts through the sponge activity to inhibit miR-129-5p. 121

HEIH Oncogene Interacts with PRC2 component EZH2 122

HULC Oncogene Inhibition of PTEN tumour suppressor gene through
the sponge-activity on miR-15a

131

HOTTIP Oncogene Regulates gene expression from the HOXA region 134

HOTAIR Oncogene Repressively alters the chromatin landscape of promoters
through recruitment of PRC2

137

DANCR/ANCR Oncogene Increased stability of HNRNPA1 143

H19 Mixed Conflicting studies suggest both oncogenic and tumour
suppressor roles in HCC

138–140

MEG3 Tumour suppressor Increases expression of miR-122 through which pyruvate
kinase muscle isozyme M2 (PKM2) is down-regulated

153

FENDRR Tumour suppressor Acts as a miR-423-5p sponge to regulate GADD45B expression 155

DILC Tumour suppressor Interacts with the IL6 promoter to suppress its expression.
Inhibits IL6/STAT3 autocrine signalling pathway in LCSCs

157

GAS5 Tumour suppressor Functions as a sponge to bind miRNAs. Binds to miR-126-3p,
whose ectopic expression has been shown to decrease cell
proliferation in HCC. Binds to miR-21 to derepress the PTEN protein levels

161

Cholangiocarcinoma (CCA)
DANCR/ANCR Oncogene Associated with increased cellular proliferation and migration

through interaction with EZH2

145

In HCC, lncRNAs have been described to function as both oncogenes and tumour suppressors. In CCA, DANCR/ANCR has been shown to function as an oncogene.
MEG3 is suggested to inhibit HSC activation by suppressing
epithelial-mesenchymal transition through interactions with
smoothened (SMO) protein.MEG3 has also been shown to induce
cholestatic liver damage by accelerating the decay of small het-
erodimer partner (SHP) mRNA through interactions with
PTBP1.112 In turn, attenuation of SHP protein, which is a key
repressor in the bile acid biosynthesis pathway, results in liver
injury.

The role of GAS5 (growth arrest-specific transcript 5) in liver
fibrosis has also been described.113 Expression of GAS5 is
decreased in human and mouse fibrotic liver tissues. Similarly,
in vitro experiments employing activated HSCs also suggest that
GAS5 expression is reduced compared to quiescent HSCs. Over-
expression of this lncRNA results in decreased expression of
COL1A1 and ACTA2 in HSCs in vitro and decreased collagen levels
in CCl4-induced murine liver fibrosis models, as determined by
measurement of hepatic hydroxyproline content. Mechanisti-
cally, GAS5 is considered to function as a ceRNA through
interaction with miR-233. The authors demonstrated that
sequestration of miR-233 by GAS5 results in increased expression
of the miRNA target transcripts including the p27 gene, whose
protein product is directly involved in HSC proliferation and
activation.

H19 is induced in cholestatic liver fibrosis.114 Ectopic expres-
sion of H19 in the liver is associated with increased necrosis and
fibrosis in the setting of bile duct ligation (BDL), and H19-defi-
cient mice show reduced cholestatic liver injury and fibrosis in
response to BDL. H19 exerts its function in this setting by binding
and inhibiting the zinc finger E-box-binding homeobox 1 (ZEB1),
whose activity suppresses activation of epithelial cell adhesion
molecule (EpCAM). Ectopic expression of ZEB1 or depletion of
EpCAM in H19-deficient mice reduced fibrosis, leading to a
model where bile acids induce H19 expression in hepatocytes
and cholangiocytes. H19 then interacts with ZEB1, preventing
binding to the EpCAM promoter, leading to increased EpCAM
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expression and increased susceptibility to cholestatic liver
fibrosis.
LncRNAs in liver cancer
LncRNAs are increasingly recognised as mediators of human
cancers.115 In this regard, depending on the context, lncRNAs can
function as either oncogenes or tumour suppressors. In the liver,
lncRNAs have been identified that are associated with hepato-
cellular carcinoma (HCC) and cholangiocarcinoma (CCA)
(Table 1), which comprise the majority of liver cancer cases, and
were reviewed recently.116 Below, we describe oncogenic
lncRNAs that are involved in promoting HCC and CCA; we then
look at lncRNAs that function as tumour suppressors to hinder
malignant growth.

Oncogenic lncRNAs
As the name suggests, MALAT1, also known as NEAT2 (nuclear-
enriched abundant transcript 2), is an oncogenic lncRNA in hu-
man cancer.117 This lncRNA is highly conserved in mammals, and
its role in numerous biological processes has been extensively
studied. In HCC, MALAT1 is upregulated, and its depletion results
in lower tumorigenicity, which is largely driven by reduced
expression of the oncogenic splicing factor SRSF1.118 Further-
more, MALAT1 activates the mammalian target of rapamycin
(mTOR) pathway through SRSF1-mediated splicing of S6 kinase 1
(S6K1) to an alternative isoform named Iso-2. The Iso-2 protein
product has oncogenic potential through direct binding and
activation of mTOR complex 1 (mTORC1).

We discussed the role of NEAT1 as a structural lncRNA pre-
viously. However, NEAT1 has also been implicated in multiple
cancers,119,120 and its role and expression status in HCC have
recently been described.121 Expression profiling of NEAT1 tran-
scripts in normal liver and HCC tumour tissues and cell lines
revealed that NEAT1 is induced in neoplastic cells. Fang et al.
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suggested that, mechanistically, NEAT1 exerts its oncogenic
property as a ceRNA through binding and inhibition of miR-129-
5p, whose main cellular targets include valosin-containing pro-
tein (VCP) and the NF-jB inhibitor protein (IjB).

HEIH (high expression in HCC) was originally identified in
HBV-associated HCC tissues.122 RNA pulldown assays indicated
that HEIH interacted with the PRC2 complex protein EZH2.
shRNA-mediated depletion of HEIH caused increased expression
of genes that are normally repressed by the PRC2 complex. HEIH
promotes cell cycle progression and tumour growth via a
pathway that is at least in part dependent on EZH2. This study
also found that the expression level of HEIH in tumour tissue has
potential as a prognostic marker in patients with HCC

HULC (highly upregulated in liver cancer) is an oncogenic
lncRNAwhose role, among others, has been described in hepatic,
gastric, and colorectal cancers.123 Abnormal expression of HULC
is associated with poor prognosis of pancreatic cancers and
hepatomas in the clinic.124,125 Measuring serum levels of this
lncRNA has also been proposed as a biomarker in liver can-
cer.126,127 HULC influences many cell traits in cancer through
multi-pronged metabolic and cellular signalling pathways that
are all relevant in hepatic biology.

The transcription factor CREB and the HBV X protein (HBx)
have been well-studied in the context of liver cancer128 and are
upstream regulators of HULC. HULC can act as a miRNA sponge. It
contains binding sites for miR-372, which usually targets trans-
lation of the CREB-kinase PRKACB. PRKACB-mediated phos-
phorylation of CREB results in chromatin modifications that
promote gene expression including that of HULC.129 Additionally,
infection with HBV is associated with increased levels of HULC in
HCC samples. Detailed analysis of HBV-induced HCCs has
demonstrated that HBV promotes the expression of HULC.130

Interestingly, HULC has also been shown to accelerate liver can-
cer via inhibition of the PTEN tumour suppressor gene through
sponge-activity on miR-15a.131

HULC also promotes lipogenesis in HCC. Cholesterol molecules
upregulate the expression of HULC by activating the retinoic re-
ceptor RXR-ɑ.125 Increased expression of HULC is associated with
increased methylation of the gene encoding miR-9. This results
in decreased expression of miR-9 and increased expression of its
target, the nuclear receptor peroxisome proliferator-activated
receptor-a (PPAR-ɑ). Increased levels of PPAR-ɑ then induce
transcription of long-chain-fatty-acid-CoA ligase 1 (ACSL1), to
promote fatty acid synthesis.

HOTTIP is induced in HCC.132,133 Studies have shown that the
HOTTIP gene is located near to the HOXA13 gene and controls the
gene expression of the HOXA loci. The HOXA locus codes for a
multitude of transcription factors that are involved in embryo-
genesis, with aberrant expression of these factors implicated in
cancers.134

HOTAIR was originally identified through microarray tiling of
the HOXC locus on chromosome 12.28 HOTAIR repressively alters
the chromatin landscape of promoters through recruitment of
PRC2. In a separate but related mechanism, HOTAIR recruits
the lysine-specific demethylase 1 (LSD1) complex, which is
composed of LSD1, REST and CoREST proteins, and mediates
demethylation of activating histone marks (H3K4me3).135,136

The combined action of PRC2 and LSD1 complexes suppresses
target gene expression. The role of HOTAIR in HCC has been
extensively studied and reviewed elsewhere.137 Aberrant
expression of HOTAIR is correlated with worse outcomes in
patients with HCC.
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H19 is discussed above as a factor that regulates lipid meta-
bolism and liver fibrosis; its role in HCC is less clear. In one study,
increased expression of H19 was identified in the setting of
hypoxia and metastatic disease, suggesting possible oncogenic
activity,138 while in HCC cell lines ectopic expression of H19 was
shown to induce cell apoptosis and inhibit cell proliferation.139

Further data from mouse models found that expression of H19
from a modified H19 locus negatively correlates with tumour
emergence in SV40-induced HCCs.140

DANCR (differentiation antagonising non-protein coding
RNA), also known as ANCR, has been implicated in many can-
cers.141,142 DANCR is highly expressed in HCC and promotes
cellular proliferation and metastasis.143 In HepG2-induced
xenograft mouse models of HCC, depletion of DANCR results in
reduced tumour burden and decreased metastasis. The main
mechanism through which DANCR exerts its oncogenic role is
through interaction with the heterogenous nuclear protein
ribonucleoprotein A1 (HNRNPA1), which regulates epithelial-
mesenchymal transition in HCC. DANCR directly binds to the
HNRNPA1 protein resulting in its increased stability. DANCR has
also been shown to have sponge activity, binding to miR-140-3p
to inhibit its ability to affect HNRNPA1 translation.

While the role of lncRNAs in liver cancers has mostly been
described in HCCs, at least one lncRNA has been described in the
context of CCA. CCA is an aggressive form of liver cancer whose
malignant cells originate from bile ducts.144 DANCR is induced in
CCA in addition to HCC. In vitro analysis of DANCR in CCA models
shows that this lncRNA is associated with increased cell prolif-
eration and migration through interaction with EZH2, which
leads to epigenetic suppression of the fructose-bisphosphatase 1
(FBP1) gene.145 FBP1 is an enzyme that regulates gluconeogen-
esis and is implicated in multiple forms of cancer including
HCCs.146–148 While DANCR appears to function as an oncogene in
both HCC and CCA, the described mechanisms of action for
DANCR in these 2 liver malignancies are currently different.
Future studies will be required to understand if interactions with
HNRNPA1 also play a role in CCA and if interactions with EZH2
also play a role in HCC.

Tumour suppressor lncRNAs
In addition to having roles in liver fibrosis as discussed before,
MEG3 is also implicated in cervical, pancreatic, and many other
cancers.149,150 Whereas other lncRNAs appear to promote onco-
genesis, MEG3 is largely thought to function as a tumour sup-
pressor gene.108,151 Compared to normal cells, malignant
hepatocytes show a significant reduction in the expression of
this lncRNA.152 Overexpression of MEG3 in both cancer cell lines
and mouse models inhibits growth of liver cancer cells.153 The
authors suggest that MEG3 increases expression of miR-122
through which pyruvate kinase muscle isozyme M2 (PKM2) is
downregulated. PKM2 is an important metabolic enzyme in
glycolysis that influences oncogenesis.154

As a miRNA-sponge, FENDRR (foetal-lethal non-coding
developmental regulatory RNA) has a unique role in HCC
development. Compared to normal cells and tissues, FENDRR
levels are drastically lower in HCC cell lines and tissues.155 The
sponge activity of FENDRR is exerted through binding to miR-
423-5p, which targets and degrades growth arrest and DNA-
damage-inducible beta protein gene (GADD45B) transcripts.
Lower expression of the lncRNA in HCC allows the miRNA to
attenuate GADD45B protein levels, which results in unchecked
proliferation and immune evasion of tumour cells. Forced
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expression of FENDRR in mice resulted in decreased burden and
proliferation of cancer cells.

Progression of liver cancer is thought to be mediated through
a class of stem-like cancer cells termed liver cancer stem cells
(LCSCs), which are capable of sustaining proliferation within the
tumour.156 DILC (downregulated in liver cancer stem cells) has
been identified to play crucial roles in these cells.157 Depletion of
this lncRNA resulted in expansion of the LCSC population and
progression of disease, whereas ectopic expression led to a
reduction in the size of the LCSC population in the tumour.
Mechanistically, DILC is thought to interact with the IL6 promoter
leading to its inhibition. IL6 suppression disrupts the IL6/STAT3
autocrine signalling pathway, which is required for the mainte-
nance of LCSCs.

GAS5 has been implicated in multiple forms of cancers,158 and
is a well-known tumour suppressor gene.159 However, its
multitude of roles in HCC have only recently been investi-
gated.160–162 Wang et al. showed that GAS5 expression in HCC is
lower than in normal cells and tissues, and depletion of GAS5
increased resistance to the chemotherapeutic agent doxorubicin.
The authors found that GAS5 acts as a sponge to inhibit onco-
genic miR-21, which targets the tumour suppressor gene PTEN. In
contrast, Faranda et al. also reported that the GAS5 transcript
functions as a sponge to bind miR-126-3p, whose ectopic
expression has been shown to decrease cell proliferation in HCC
model cell lines. Although the authors did not elaborate on the
mechanistic function of this miRNA in the context of HCC, studies
in endothelial cells suggest that miR-126 acts through the
downregulation of Spred-1, which is a negative regulator of the
mitogen-activated protein kinase signalling pathway.163
Targeting lncRNAs?
Studies suggest that the expression of lncRNAs is more tissue
specific than that of protein-coding mRNAs.164 This observation
makes lncRNAs attractive targets for therapeutic intervention in
cases where tissue-specific modalities are highly desirable. As a
major metabolic organ, the liver also has a remarkable ability to
absorb external therapeutic agents.165–167 Because of this prop-
erty, the employment of agents to deplete lncRNAs could be an
effective approach to affect the gene expression of specific cell
types in the liver.

The best-studied class of molecules that through direct and
specific interactions affect RNA transcript levels are antisense
oligonucleotides (ASOs).168 ASOs constitute a large family of
chemically related molecules that exert their function through
different cellular mechanisms.169 For example, double-stranded
ASOs such as small interfering RNAs (siRNA) form a complex
with Argonaute protein that actively cleaves the target tran-
scripts in the cytoplasm,170 whereas single-stranded ASOs such
as locked nucleic acids activate RNase H to cleave target tran-
scripts in both the nucleus and cytoplasm.171 The choice between
siRNA or locked nucleic acid should, therefore, consider the
cellular localisation of target transcripts. Irrespective of the
mechanism, cleaved RNAs are quickly degraded by various
exonucleases.172

Multiple ASOs are currently being employed clinically to
target liver-based gene expression. Mipomersen, for example,
targets apolipoprotein B-100, a component of LDL, to treat pa-
tients with familial hypercholesterolemia disorder.173 However,
the clinical use of ASOs, including mipomersen, is not without
caveats and drawbacks, as ASOs may elicit an interferon response
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and tissue toxicity.174 Patisiran is another successful example of
an ASO approved for clinical use. Patisiran, a lipid nanoparticle-
containing double-stranded RNA, is used to treat poly-
neuropathy of hereditary transthyretin (TTR)-mediated
amyloidosis. Partisiran binds to TTR mRNA and causes its
degradation resulting in a reduction in serum and tissue depo-
sition of TTR proteins. We envision lncRNAs can be targeted
using similar approaches.

Conjugation of chemical groups to ASOs, as a method to in-
crease half-life and tropism to a specific tissue or cell type, has
also been examined. For example, conjugation of cholesterol
molecules to ASOs enhances their absorption by hepatocytes.175

Hepatocytes express asialoglycoprotein receptors whose func-
tion is to clear aged circulating serum glycoproteins that have
lost terminal sialic acid moieties in their glycan chain, resulting
in exposure of N-acetylgalactosamine residues.176 For this
reason, N-acetylgalactosamine-conjugated molecules have been
under active investigation for hepatocyte-specific delivery of
siRNAs.177,178

The delivery of ASOs through lipid-containing vehicles is also
under active consideration. Liposome-mediated delivery of ASOs
also enhances the efficiency and tropism of liver cells. Sato et al.
exploited vitamin A-coupled liposome systems to introduce
ASOs (targeting the collagen chaperone gp46) to rat HSCs in
order to inhibit cirrhosis.179 They found that liposome-mediated
delivery of the ASO caused a marked reduction in liver fibrosis
and increased survival in rat models. As an alternative ASO de-
livery method, lipid-like nanoparticles have also been used to
introduce ASOs into the liver.180 Lipid-like nanoparticle-siRNAs
against procollagen ɑ-I were primarily localised to non-
parenchymal cells in the liver and caused a significant reduc-
tion in collagen expression and deposition of collagen in mouse
liver tissue. With increased efficiency in the delivery of ASOs to
specific cell types in the liver, we anticipate seeing the devel-
opment of ASO-based drugs that target disease-relevant lncRNAs
in the not too distant future.

Although most of our discussion has focused on in vivo
depletion of lncRNAs, delivery of lncRNAs to specific cell types in
the liver could also have significant therapeutic value for man-
aging chronic liver disease and cancer. The methods of RNA de-
livery in general and lncRNA in particular, as well as methods to
induce their expression in tissues, are still in their infancy.
Adeno-associated virus-based delivery methods have been
acclaimed as the current gold standard for tissue delivery of
nucleic acids in model organisms.181 The rather obvious draw-
back of using this system is that it is largely limited by lncRNA
size and concern over carcinogenicity of the virus-delivery
method.182 Due to the unstable nature of RNAs and their large
size, methods to directly deliver lncRNA molecules (as nano-
particles or other vehicles) to human tissues have not been well
developed. With the development of safer and more effective
delivery methods, the introduction of lncRNAs may have great
potential in liver-based gene therapy.
LncRNAs as biomarkers in diagnostic settings
Because of their tissue-specific expression, lncRNAs are being
investigated as biomarkers in clinical settings.183 In liver cancer,
studies and meta-analyses to identify lncRNAs that could be used
as biomarkers have already begun.184 Through analysis of data
generated from the cancer genome atlas (TCGA) consortium, Li
et al. constructed mRNA-lncRNA coexpression networks. The
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expression pattern of coding and non-coding transcripts in HCC
led to the identification of several lncRNAs that have potential as
biomarkers for HCC.185 Although these lncRNAs were not able to
predict patient outcomes, they hold promise in the diagnostic
setting.

As described earlier, perhaps the most promising lncRNA
biomarker in HCC is HULC. HULC transcripts are significantly
elevated in the plasma of patients with HCC.126,127 Additionally,
in comparison to serum derived from healthy individuals, higher
levels of HULC transcripts are found in the serum of patients with
positive HBV status. Detection of lncRNAs such as HULC in plasma
suggests that lncRNAs have the potential to serve as blood-based
biomarkers in the clinical setting.
JHEP Reports 2021
Conclusion
LncRNAs play essential roles in early liver development, the
metabolic function of the liver, liver fibrosis, and cancer. While
lncRNAs have been identified that regulate each of these stages,
these transcripts likely represent only a small fraction of the
lncRNAs that control key processes from liver development to
homeostasis to disease. As we gain a deeper understanding of
the diversity and function of lncRNAs across the different cell
types of the liver, we anticipate this knowledge will lead to the
establishment of lncRNAs as therapeutic targets to treat diseases
of, or regulated by, the liver; this knowledge could also be used
to identify new biomarkers to track or predict disease
progression.
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