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Abstract: Despite the great strides in healthcare during the last century, some challenges still remained
unanswered. The development of multi-drug resistant bacteria, the alarming growth of fungal
infections, the emerging/re-emerging of viral diseases are yet a worldwide threat. Since the discovery
of natural antimicrobial peptides able to broadly hit several pathogens, peptide-based therapeutics
have been under the lenses of the researchers. This review aims to focus on synthetic peptides and
elucidate their multifaceted mechanisms of action as antiviral, antibacterial and antifungal agents.
Antimicrobial peptides generally affect highly preserved structures, e.g., the phospholipid membrane
via pore formation or other constitutive targets like peptidoglycans in Gram-negative and Gram-
positive bacteria, and glucan in the fungal cell wall. Additionally, some peptides are particularly active
on biofilm destabilizing the microbial communities. They can also act intracellularly, e.g., on protein
biosynthesis or DNA replication. Their intracellular properties are extended upon viral infection
since peptides can influence several steps along the virus life cycle starting from viral receptor-cell
interaction to the budding. Besides their mode of action, improvements in manufacturing to increase
their half-life and performances are also taken into consideration together with advantages and
impairments in the clinical usage. Thus far, the progress of new synthetic peptide-based approaches
is making them a promising tool to counteract emerging infections.

Keywords: antimicrobial peptides; antifungal; antibacterial; antiviral; peptide-based therapies;
synthetic peptides

1. Introduction

When Fleming in 1922 discovered the first natural antibiotic, the lysozyme, [1] able to
“lyse” bacterial cells and in 1928, Penicillin, from the fungus Penicillium notatum, able to
inhibit bacterial growth, [2] the dawn of the antibiotic age started. Later on, in 1939, René
Dubos isolated an antibacterial agent from Bacillus brevi, called gramicidin [3]. Gramicidin
demonstrated its broad-spectrum activity against Gram-positive and Gram-negative bacte-
ria becoming the first antibiotic commercially manufactured and sold up to this day [4].
Since the discovery of human defensins, histatins and cathelicidins, antimicrobial peptides
(AMPs) have been studied, sequenced, and synthesized in laboratory in order to be used in
the clinic for the treatment of several bacterial, fungal and viral infections. Besides repre-
senting the first defense of the innate immune system against pathogens, [5] they also have
immunomodulatory effects working as mediators of the infection-associated inflammation,
recruiting, and enhancing the activity of leukocytes and the release of cytokines but also
contributing to the infection control and resolution [6,7].

Besides humans, natural AMPs have been found in different kingdoms (animals,
plants, bacteria, fungi but also archaea and protists) and registered in the AMP database
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(https://aps.unmc.edu/, accessed on 3rd November 2021) [8,9]. Briefly, all AMPs share
common features, such as a sequence composed of less than 100 amino acids (aa), [10] with
the majority having between 10 and 60 aa [11]. Even if some anionic AMPs, rich in glutamic
and aspartic acids, are negatively charged [12], almost all antimicrobial peptides have a
net positive charge for the presence of a high number of lysine, arginine and histidine
(protonated in acidic conditions) [13]. Finally, another common feature is represented by
the hydrophobicity conferred by hydrophobic aa that often overcomes 50% of the total
amino acid sequence [14]. The high lipophilicity is useful especially for the penetration in
the biological membranes but considering the net charge, overall, AMPs are amphipathic
molecules. The classifications are based on their structure or the presence/absence of
recognizable motifs. AMPs could be α-helix, β-sheet, linearly extended, both α-helix and
β-sheet, cyclic and with complex structure or, seen from a different perspective, tryptophan-
and arginine-rich, histidine-rich, proline-rich and glycine-rich [15,16].

In the last decades, the increasing resistance to antibiotic treatments, i.e., Methicillin,
Vancomycin-resistant Staphilococus aureus and the rise of species with intrinsic multi-drug
resistance, such as Candida auris, highlights the need for the development of new agents [17–19].
It has been estimated that nowadays in the US every year 2.8 million people are infected by
antibiotic-resistant microorganisms with a death rate of 35,000 people [20] and just in recent
years the world was affected by a new pandemic virus (SARS-CoV-2) with 236 million cases
and 5.9 million deaths up-to-date [21].

Studies on the AMPs synthetic analogs provided a new tool to understand the different
and unique modes of actions against diverse microorganisms. Thus, this review will focus
on the improvements of their properties with respect to their natural counterpart, their
activity on bacterial and fungal conserved structures, i.e., membranes and cell walls, as
well as on biofilm formation, their antiviral properties and execution dynamics.

The latest studies in vivo and in vitro will be discussed, with highlights on the suc-
cessful therapeutic application despite drawbacks like toxicity and immunogenicity.

2. Synthetic Antimicrobial Peptides

Natural antimicrobial peptides have been always present during the evolutionary
process [22], however, many natural AMPs showed host toxicity, rapid degradation by
proteases, instability due to pH changes, loss of activity in presence of serum and high
salt concentrations, lack of suitable delivery systems able to limit the drawbacks, and high
costs of production [23–25]. Moreover, their complex design, low antimicrobial activity
and pharmacokinetics led many laboratories to improve their structure and amino acid
sequence to enhance their therapeutic properties [26]. Despite the multiple obstacles in the
clinical application, synthetic peptides were developed to overcome the difficulties linked
to the natural peptides while mimicking their pharmacological qualities [27].

The approaches commonly used for the development of non-natural AMPs are (1) the
site-directed mutations characterized by the addition, the deletion or the substitution of aa,
(2) the de novo design which doesn’t use any template sequence, (3) the template-based
design that uses fragments of the parental compound as starting point for the construction
of new AMPs (in this case, antibodies seem to be a big source of patterns, especially those
which recognize and bind components of the cell membrane and wall), and lastly (4) the
self-assembly-based design that exploits the formation of simple nanostructures like dimers,
or more complex as micelles, vesicles and nanotubes [11].

Semi-synthetic AMPs maintained the active sites of the natural source, but chemical
changes were brought in order to reach the optimal properties whereas synthetic AMPs are
obtained from chemical synthesis with frequent usage of the solid phase. This technique is
based on the addition of one aa at a time, thus favoring the investigation of the role of each
amino acid in the sequence [28].

Apart from the solid-phase method, synthetic AMPs can also derive from the cat-
alytic ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydride (NCA),
an exquisite tool for the fabrication of long polypeptides with low polydispersity but
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variable chemical composition and topology [29]. Chemical synthesis represents a great
step forward in peptide production with higher efficiency, reliability, and speed, especially
when compared to the AMPs produced through the technology of the recombinant DNA
followed by bacterial expression and purification.

The advances in the AMPs synthesis are the result of several studies about machine
learning and algorithms able to predict or identify potential sequences based on the physic-
ochemical and structural properties and on the quantitative structure-activity relationship
(QSAR) of AMPs and targets already present in databases followed by high-throughput
screenings [30]. Therefore, several strategies were tested to achieve a superior half-life
e.g., the usage of D-amino acids [31], peptide cyclization [32], unnatural amino acids [33].
With peptidases able to recognize mainly L-amino acids sequences, stereogenic D-variants
of amphipathic peptides could be resistant to proteolysis [34], as well as peptides with
uncommon amino acids, i.e., ω and β-amino-acids [35,36]. Protection from cleavage could
be also conferred by modifying or protecting vulnerable peptide bonds so that they cannot
be easily accessed [37]. In some cases, such modifications could be applied just to the N-
and C-terminus i.e., C-amidation or N-acetylation [38].

Similarly, PEGylation, the covalent attachment of polyethylene glycol (PEG) chains
to lysine or to the N-terminus [39], could also be applied to mask other residues like
arginine [40]. On the other hand, lipidation, consisting in the attachment of one or more fatty
acid chains to a lysine residue or to the amine of the N-terminus, [41] could improve AMPs
properties by enhancing their interaction with the membranes. Introduction of sulfonamide
groups has been also investigated to exploit their bio-active properties, enhance their
proteolytic stability and hydrogen bonding ability [42].

Another approach to improve the half-life of peptides in vivo is to synthesize them as
dendrimers around a residue or a linear polymer core [43]. These multiple antigen peptides
(MAP) developed by Tam and colleagues [44] are mainly constituted by a lysine core to
which peptide chains are attached [45]. The number of bi-, tri-, tetra and more sequence
patterns define the multivalency of those peptides and confers an increased cationic charge
as well as hydrophobic groups. The steric hindrance given by the bulk, firstly, limit
the access to the proteolytic site [46,47] and, secondly, seems to improve their activity by
increasing the local concentration of peptide units with membranolytic activity [48]. Peptide
structure is a pivotal point for the interaction with the membranes: the cationic charge
allows the initial binding to a negatively charged layer; afterwards, while amphipathicity
is necessary for membrane perturbation and peptide uptake, the hydrophobic groups are
responsible for the carving [49]. Studies on the mechanism of action would divide the
AMPs in two categories: membrane disruptive [50,51] and non-membrane disruptive (activity
on other targets) (Figure 1) [52,53].
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Figure 1. AMPs broad-spectrum antimicrobial activity. (a) Primarily, AMPs’action is based on their
action on cytoplasmic membranes, i.e., perturbation or disruption. However, in presence of Gram-
negative bacteria (A) AMPs have to firstly cross the outer phospholipidic membrane and secondly
traverse the peptidoglycan layer before reaching the inner membrane. In Gram-positive bacteria
(B) they navigate through the thick cell wall of peptidoglycan and in fungi (C), they encounter
mannitol proteins, glucans and chitin prior to access to the cytoplasmic membrane. Once reached the
phospholipidic bilayer, they induce perturbation via pore formation following either (D) (i) carpet-like,
(ii) barrel-stave or (iii) or toroidal pore model depending on the peptide composition. (b) Besides
pore formation, some AMPs bind some components and receptors on the extracellular side of the
membrane, i.e., Toll-like receptors; others manage to enter the cytosol through direct penetration in
vesicles or channels thus destabilizing the permeability and activating the inflammatory cytokines
cascade. Intracellularly, they could also interfere with DNA or RNA leading to degradation and cell
death. They may also affect mitochondrial activity or protein synthesis by targeting ribosome subunits
or protein folding. In the case of bacterial cell wall, they can prevent elongation of peptidoglycan
chains or hinder teichoic and teichuronic binding acids to amidases. Cell wall components inhibition
will promote cell autolysis. In the extracellular space, AMPs can sequestrate LPS reducing the impact
of endotoxins on the host’s immune response. In fungal cells, AMPs can intervene on glucan synthesis
thus blocking the building pieces of their wall. Further inhibitory action on biofilm matrix impairs
the quorum sensing and improves the susceptibility of the single pathogens in both bacterial and
fungal communities.
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3. Antibacterial Peptides and Their Mechanism of Action

Many factors can influence membrane perturbation and disruption by AMPs, i.e., amino
acids sequence, the lipid composition of the membrane, peptide concentration as well as
differences in membrane composition between eukaryotic and bacterial cells allow the AMPs
to distinguish a microbial target from the host. Bacterial membranes are negatively charged due
to the presence of anionic phospholipids groups, e.g., phosphatidylglycerol, phosphatidylserine,
while eukaryotic cells possess groups with a neutral charge, e.g., phosphatidylcholine and
phosphatidylethanolamine [54]. Moreover, the presence of cholesterol, a common feature in
eukaryotic cells, is able to interact with AMPs either neutralizing or reducing their activity or
stabilizing the phospholipid bilayer [55].

In Gram-positive bacteria, AMPs have to cross first the cell wall composed of crosslinked
peptidoglycan with lipoteichoic acid prior to reaching the membrane whereas in Gram-negative
they face a coat of lipopolysaccharide (LPS) followed by a phospholipidic outer membrane
and a less cross-linked peptidoglycan layer [56]. Electrostatic interactions between the cationic
peptide and the negatively charged components, e.g., lipopolysaccharide in Gram-negative
and teichoic acid in Gram-positive, are the first steps to contribute to bacterial membrane affin-
ity [57]. However, while AMPs seem to traverse the peptidoglycan layer with ease and access
to the cytoplasmic membrane of the Gram-positive, they need to disrupt or perturb both outer
and cytoplasmic membrane in Gram-negatives. Impedance in crossing or permeabilization
results in loss of antimicrobial activity (Figure 1a (A,B)) [58].

In order to explain the perturbation of the phospholipidic membranes operated by
the AMPs, three main models have been proposed: carpet-like, barrel-stave and toroidal pore
(Figure 1a (D)). Generally, when the ratio of peptide/lipids is low, AMPs interact with the
phospholipidic layer of the membrane in a parallel manner, defined as carpet-like model,
and interaction among the peptides or penetration in the hydrophobic core of the bilayer
are not taking place [59]. Membrane integrity is disrupted and micelles are formed as in
a detergent-like process [60]. With increasing AMPs ratio, they move to a perpendicular
orientation until reaching such a concentration that they can cross the membrane forming
pores (1:50–1:500 and more) [61,62]. A minimum length of ~22 amino acid for α-helix
peptides is required to span the phospholipid layer, while β-sheet structures necessitate a
minimum of 8 [63].

In the barrel-stave, interaction among peptides is a prerequisite as they mimic a transmem-
brane pore, whereas, in the case of the toroidal model, peptides are loosely arranged [64,65].
Despite the perturbation of the membrane seems to vary depending on the peptides, actually,
the mechanisms of action are not completely well-defined and they are partially overlap-
ping [66]. Moreover, all these models are based on the membrane perturbation but, then, the
killing effect is not always enough to provide antimicrobial activity [67].

Besides membrane disruption, recent studies showed how peptides could act on
other targets as well (Figure 1b) [68]. Some AMPs have shown their efficacy by binding
some components and receptors on the extracellular side of the membrane and wall, thus
destabilizing the permeability and/or activating intracellular signaling pathways that have,
as a response, the inhibition or the activation of several functions. An interesting example
is represented by the binding of Toll-like receptors and the consequential amplification
of the inflammatory response via NFkB cascade followed by activation of the immune
system towards microbiological pathogens [69,70]. Other antimicrobial peptides manage
to enter the cytosol through direct penetration, endocytosis (both micropinocytosis and
receptor-mediated) [71], or the exploit of delivery systems [72]. There, they can affect
different enzymes and intermediates involved in vital processes.

The inhibitors of the nucleic acid biosynthesis seem to have a high binding affinity
for both DNA and RNA because they share with nucleic acid-binding enzymes or sub-
strates, homologous fragments of their sequences; an interesting example is represented
by DNA-binding protein histone H2A [73]. Other mechanisms use the inhibition of the
enzymes involved in the DNA/RNA biosynthesis, like DNA topoisomerase I preventing
DNA relaxation [74], RNA polymerase blocking the transcription [75] and gyrase impair-
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ing the supercoiling of DNA. [76] As a result, DNA/RNA degradation is induced and
consequentially also cell death. There are several inhibitors of protein biosynthesis which
alter the transcription and the translation but also the correct folding and the degradation
of the protein. Usually, the AMPs that act on the protein biosynthesis target the ribosome
subunits [77] but some others can interfere with the incorporation of histidine, uridine
and thymidine [78,79], the amino acid synthesis pathways [80], the release factors on the
ribosome [81], the regulation of sigma factors [82], the nucleotide and coenzyme trans-
port [80] and the degradation of DNA-replication-associated proteins [83]. Some peptides
influence protein folding, in particular, DnaK, the major Hsp70 of the chaperone pathway
in Escherichia coli, which has been seen as an optimal target to prevent the refolding of
misfolded proteins [84]. Another approach is linked to the inhibition of matrix metallopro-
teases, essential enzymes in microbial cell growth and homeostasis, i.e., serine protease,
trypsin-like protease, elastase and chymotrypsins [85–87]. There are also inhibitors of cell
division that block DNA replication or the mechanisms essential for the repair of DNA
damages, then resulting in the block of the cell cycle, in the impairment of the chromosome
separation, in the failure of septation, in the alteration of mitochondrial activity and in a
substantial change in the cell morphology with clearly visible blebbing and elongation
towards a filamentous shape [88,89].

Cell wall synthesis is another suitable target. Some AMPs act on lipid II by sequestrat-
ing it from the functional site [90,91] or by binding D-Ala-D-Ala residues of its precursor
preventing the addition of N-acetylglucosamine and N-acetylmuramic acid in the structure,
hence the peptidoglycan elongation [92]. Other peptides have shown antimicrobial activity
by activating cell wall-associated lytic enzymes, for example, some AMPs binding teichoic
and teichuronic acids which otherwise are linked to amidases. The release of amidase
stimulates premature autolysin activity and, consequently, cell lysis.

Moreover, lipopolysaccharides (LPS) are components of the membrane as well but,
when released, are also well-known endotoxins able to raise an excessive and harmful pro-
inflammatory response. AMPs that bind and neutralize LPS avoid the excessive stimulation
of the immune system favoring a correct and balanced infection resolution [93].

Recently, the AMPs inhibitory activity on biofilm has been reported. Biofilm, consisting
of an extracellular matrix of mainly polysaccharides, provides virulence, persistence and
drug resistance to the microbial community [94,95]. Anti-biofilm mechanisms, similar to
the membrane-targeting ones, are also very diverse and sequence dependent. A database
of biofilm-active peptides can be found online [http://www.baamps.it/, accessed on
10 November 2021]. AMPs could prevent biofilm formation by affecting cell attachment,
or could act on preformed biofilm by disrupting the quorum-sensing, dispersing the cells
within it, or affecting the expression of the related genes [96,97]. Destabilization of matrix
architecture impairing secretion or interaction between the matrix polymers has been
also hypothesized [98]. Another target is the stress-responder guanosine pentaphosphate
[(p)ppGpp] a major player for biofilm growth and environmental stress resistance [99].
Weakening of the biofilm increases the susceptibility of the pathogen to the AMPs or to
the conventional antibiotics, therefore, even a synergistic action could be appealing for
clinical purposes [100].

4. Antifungal Peptides

The concern generated by bacterial infections goes hand in hand with that of fungal
infections especially considering both the frequency and the rapidity their resistance de-
velops and spreads and the poor arsenal of available antifungal drugs. Fungal infections
become extremely threatening especially for certain categories represented by patients with
a compromised immune system due to pathological conditions, such as HIV/AIDS or
autoimmune diseases and to therapeutic outcomes like chemotherapy and organ transplan-
tation [101]. Among the fungal species Candida albicans, Aspergillus fumigatus, Cryptococcus
neoformans and Pneumocystis jirovecii are the main ones responsible for the majority of severe
mycoses [102] with 90% of reported deaths [103]. Among the emerging and reemerging

http://www.baamps.it/


Int. J. Mol. Sci. 2022, 23, 545 7 of 20

species, such as Histoplasma capsulatum and Fusarium spp., of note is Candida auris which is
considered by the Centre for Disease Control and Prevention (CDC) as an urgent global
threat for its multi-drug resistance [18,104].

The latest reports highlight also the need for efficient treatments that nowadays are
based only on three major classes of antifungal drugs: azoles, echinocandins and polyenes.
Of these classes, echinocandins originated from non-ribosomal AMPs synthetically op-
timized [101]. Fungi are eukaryotic organisms; hence, they share with mammalian cells
high similarities making it difficult to identify suitable targets while minimizing the risk
of adverse effects. Although toxicity is an important issue, synthetic modifications of
AMPs structures have extremely improved safety leaving just a few exceptions mainly
represented by erythrocyte hemolysis and nucleic acid damages [105–107]. As previously
seen for antibacterial AMPs, peptides with antifungal activity may present improved
affinity towards phospholipids of the fungal membrane (phosphatidylserine and phos-
phatidylethanolamine) suggesting a distinctive relation between structure and activity
(Figure 1a (C)) [108].

The three models used to describe the pore generated in bacterial membranes (carpet-
like, barrel-stave and toroidal) are applicable also for AMPs acting on fungal membranes.
Interestingly amphotericin B, the major representative of the polyene class of antifungal
drugs, behaves as barrel-stave-pore forming peptide [101]. Evidence has demonstrated
the existence of AMPs acting on the fungal membrane and on its components without
having always clear information about their mechanism of action. Often these peptides
affect the permeability of the membrane leading to ROS accumulation, oxidative stress
damages, ATP release and the activation of stress-response pathways as HOG and MAPK
cascade [109–111]. On the other hand, just a few AMPs have been revealed to interact
with membrane components like glucosylceramides and β-1,3-glucans or with enzymes
involved in the production of membrane components as the inositol phosphoryl ceramide
synthase which is essential for the sphingolipid biosynthesis [112–114]. Membrane-active
peptides have good potential and a broad-spectrum that sometimes includes both bacteria
and fungi, nevertheless, as some AMPs with exclusive antifungal properties exist, it is also
the case of antimicrobial peptides active against the cell wall (Figure 1b). The cell wall is an
external structure proper of fungi unique in its composition since rich in glucans, chitin and
mannan. The development of cell wall-active-AMPs grants high levels of safety with no or
minor toxicity for mammalian cells. Most of the AMPs interfere with the synthesis of the
wall components, such as β-1,3-glucan synthase fundamental enzyme for the production of
β-1,3-glucans hence for the maintenance of the structural integrity (echinocandins exert this
mechanism of action) and chitin synthase essential for chitin production [106]. Mannan and
its glyco—and proteo-conjugates are deeply involved in fungal virulence, biofilm formation
and adhesion to both biotic and abiotic surfaces included. Mannan-binding peptides
form ternary complexes with calcium able to disrupt the fungal structural integrity [115].
Other AMPs that have been investigated have identified in nucleic acids their targets, in
particular, several peptides bind and intercalate the DNA or inhibit the enzymes involved
in its synthesis and repair [74]. In certain cases, some antifungal AMPs altered consistently
the cell morphology and the organelle functions (in particular mitochondria, nucleus and
vacuole) and interact with intracellular proteins [116–119]. In addition to these modes of
action, it is important to mention the innovative use in the fungal world of the cations
hijacking strategy using an Aluminum and/or Iron chelator translocatable inside the fungal
cell through the siderophore iron transporter 1 (Sit1) [120].

Worthy of remark is the antibiofilm activity of some antifungal peptides. Biofilm is
a virulence factor that, similarly to bacteria, a community of fungal cells adopts to evade
the immune system. Moreover, it provides protection from antifungal drugs since the
extracellular matrix works as a penetration-delayer factor. The colonization of both biotic
and abiotic surfaces followed by biofilm formation represents a great risk especially in
nosocomial settings where the use of invasive devices is a normal practice. Biofilm is
associated with high morbidity and mortality rates and the development of AMPs with
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antibiofilm potential is urgently needed. Several antifungal peptides have been widely
characterized and, among their abilities, they managed to both inhibit the biofilm formation
and eradicate mature biofilm [121–125]. A negative point is the lack of precise information
about the mechanism that sometimes could be considered as a downstream consequence
attributable to the modes of action just described.

5. Antiviral Peptides

Viruses represent a major cause of human disease, and the emergence of viral drug
resistance and epidemics induce to search for new antivirals. Natural AMPs are an interesting
source of innovative antiviral agents, but more interestingly, antiviral peptides (AVPs) can be
designed and optimized to block critical steps of the viral life cycle (Figure 2) [126]. In 2014,
Kumar et al. described the AVP targeting about 60 medically significant viruses [127]. Usually,
AVPs exhibit antiviral effects by inhibiting the virus directly, but their inhibition sites and the
mechanism of action vary within the viral replication cycle.

Figure 2. AVPs targets in viral life cycle. Depending on the type of virus and on the mode of action
of the peptides, AVPs can block viral entry by binding with specific cellular receptors or interaction
with viral glycoproteins, which are involved in both entry and fusion process. They may also hinder
the fusion via physicochemical interaction with hydrophobic membrane–protein interfaces. AVPs
can act intracellularly as well by direct influence of viral nucleic acid synthesis or blocking viral
protein expression. Others modulate the antiviral immune system of the host cell by up-regulating
expression of interferons and cytokines.

Most viral pathogens are present in the Emerging Infectious Diseases/Pathogens list
of the US National Institute of Allergy and Infectious Diseases (NIAID), such as Small-
pox virus, viral hemorrhagic fever viruses (arenaviruses, bunyaviruses, flaviviruses and
filoviruses), and coronaviruses are membrane-enveloped viruses. Virus and host cell mem-
brane fusion is necessary for virus entry and biophysical as well as biochemical features of
the membrane fusion process can be common among enveloped viruses. Targeting these
conserved characteristics that are necessary for membrane fusion, is emerging as a new
tool for the development of broad-spectrum antivirals [128].
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Viral entry, which is the earliest phase of infection in the viral life cycle, is the fa-
vored target for AVPs. Most AVPs block viral entry by one of the next mechanisms: (1)
interaction with heparan sulfate, (2) blocking of cell-to-cell spread, (3) interaction with
specific cellular receptors, (4) interaction with viral glycoproteins, (5) membrane or viral
envelope interaction [129].

Viral surface glycoproteins are involved in both the entry and penetration process
and undergo conformational changes because of the interactions with the receptor pro-
teins. Most AVP inhibit enveloped viruses’ entry by physico-chemical interaction with
hydrophobic membrane–protein interfaces [130]. A few examples of peptide entry in-
hibitors are reported. Enfuvirtide is a peptide entry inhibitor for HIV that acts by blocking
the HR1 domain of the viral envelope glycoprotein 41; it was approved by the US Food
and Drug Administration (FDA) and the European Medicines Agency (EMA) for human
use in 2003 [131]. Another class of HIV entry inhibitors, termed anchor inhibitors, target
the fusion peptide [132].

The mimetic peptide, DN59, which consists of the amino acids corresponding to the
amphipathic stem region of the dengue virus envelope glycoprotein was shown to interfere
with the normal infective process [133]. Peptides homologous to the surface glycoproteins of
HSV-1 and HSV-2 envelopes were demonstrated to be active against the herpes virus [134].
Peptide entry inhibitors were also used against other viruses, such as cytomegaloviruses,
influenza virus and coronaviruses [130]. ACE2-derived peptides were already used to
contrast SARS-CoV infection [135], and the approaches used to synthesize peptides against
coronaviruses in the past may be re-considered to design new peptides for inhibition of
SARS-CoV-2 infection on the documented evidence of efficacy against SARS-CoV, MERS-
CoV, SARS-related CoVs. For example, among these peptides, which had already been used
against SARS-CoV-1, 15 were selected against the receptor-binding domain (RBD) of the
spike protein of SARS-CoV-2 potentially able to inhibit the entry of SARS-CoV-2. Moreover,
peptides targeting domains in the S protein other than the RBD may also interfere with
viral entry [136]. The approaches followed for the development of peptides targeting
SARS-CoV-2 entry have been recently summarized by Schütz and colleagues [136].

AVPs with potential anti-SARS-CoV-2 activities could target the host as well. The
mouse β-defensins-4 derived P9, thanks to its polycationic property, prevents endosomal
acidification necessary for viral-host endosomal membrane fusion and consequent viral
uncoating and RNA release, resulting in inhibition of the virus [137].

More recently, a dual-functional cross-linking peptide 8P9R has been demonstrated to
inhibit both the endocytic pathway and the TMPRSS2-mediated pathway of SARS-CoV-2
hypothesizing its employment in effective cocktail therapy with repurposed drugs [138].
Otherwise, another target may be the ACE2 receptors instead of the viral S1 subunit [139].

Distinctively, other AVPs have been designed to modulate intracellular targets [129].
It is known that antimicrobial host defense peptides, such as PR39 and LL-37 can cross
lipid membranes, while others are found as precursors inside host cell vacuoles. Cellular
internalization of these peptides can stimulate gene/protein expression by blocking viral
protein expression, influencing viral nucleic acid synthesis, or stimulating host cell antiviral
defenses [128,140]. while others modulate the antiviral immune system of the host cell
by up-regulating the expression of interferons and cytokines [141]. For example, rhesus
theta-defensin 1 (RTD-1) is a cyclic antimicrobial peptide first identified in rhesus macaque
leukocytes, that was demonstrated to alter pulmonary infection outcome induced by SARS-
CoV in mice by potentiating cytokine responses [142,143].

Therefore, AVPs can be designed and optimized through a deep knowledge of the
structures of viral proteins and cellular targets. Host cell factors proteins or pathways
required by numerous viruses to complete their replication cycle are attractive targets for
broad-spectrum antivirals, included AVPs. Indeed, this strategy would offer a versatile
solution that could work against many viruses, including the emerging ones, offering a low
possibility of inducing drug resistance. However, the major concerns duly noted are the
cellular proteins function in the complex network of interactions as well as cytotoxicity.
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For this reason, many peptides are designed, as described previously, to act extracel-
lularly, i.e., to target early steps of viral replication, such as viral envelope glycoprotein
activation, receptor attachment, or fusion.

Although smaller than standard AVPs, reduced glutathione (GSH) deserves to be
cited as an effective antiviral against different viruses. GSH is a tripeptide, present in all
mammalian cells, constituted of the amino acid L-glutamate, L-cysteine, and glycine. Its
synthesis is catalyzed sequentially by γ-glutamylcysteine and GSH synthetase. Inside the
cells, 98% of glutathione is found in reduced form, and only 2% is oxidized (GSSG) or
joined with other molecules [144]. Glutathione (GSH) has a key role in cellular physiology
and metabolism [145]. Furthermore, in the last years, an imbalance in the GSH/GSSG
ratio has been described in several pathologies including viral infections [146]. It has been
widely demonstrated that intracellular redox status alterations, associated with depletion of
GSH are essential for the completion of the viral cycle. However, the mechanisms by which
viruses induce a decrease in intracellular GSH content are different and not completely
clear. Accordingly, GSH has been proposed as a potent antiviral acting with different
mechanisms depending on the type of virus. Recently, the role of GSH in determining
individual responsiveness to COVID-19 infection and the possibility of using GSH for the
treatment and prevention of COVID-19 illness has been also described [147].

Unfortunately, GSH has a short half-life in blood plasma and hardly crosses the cell
membrane; for this reason, design strategies have emerged in the development of GSH
derivatives with improved permeability or small molecules able to release intracellularly
precursors for GSH synthesis [148]. Many papers have reported the efficacy of GSH and
pro-GSH molecules in inhibiting replication of several viruses and many reviews have
summarized the results achieved over the years [146,149–151].

In conclusion, AVPs, due to their ability to target various aspects of the viral lifecycle,
their low molecular weight and low toxicity, can be considered a potential resource to com-
bat emerging and re-emerging viral pathogens for which drug-resistance was developed or
specific therapies do not exist. Especially, in the light of recent fast-replicating viruses with
high rate of mutation frequency, novel candidates with multiple mechanisms of action or
synergistic effects are indeed highly desirable [152].

6. AMPs—Goods vs. Bads, and the Long Way towards Clinical Application

There are obvious, multiple advantages of AMPs over classical antibiotics. As pre-
viously describes, AMPs are easy to synthesize, thanks to recent advances in automated
protein synthesis, or can alternatively be produced in large quantities in heterologous
expression systems, either in microbial cells or in plants [153]. In addition, AMPs are
largely prone to chemical modification, aimed at overcoming inherent problems, such
as susceptibility to enzymatic degradation, chemical/physical instability and toxicity to
host cells, thus optimizing molecules’ features and smoothing their pathway towards
the clinics [154]. Broad-spectrum activity and rapid killing are other much-appreciated
characteristics. Finally, AMPs are increasingly seen as a promising therapeutic alternative
for treating biofilm-associated infections, one of the major threats in the field of bacterial
infections [155]. Similar to the fungal biofilm structure, bacteria as well usually acquire
significant resistance against conventional antibiotics and the immune system defenses,
thanks to the features of the biofilm itself, including the matrix of extracellular polymeric
substances produced by the same microorganisms. Of the several molecules that have
been already studied for their antibiofilm activity, dendrimeric AMPs seem particularly
promising, in particular by displaying the property to inhibit biofilm formation in host-
mimicking conditions [156,157].

A suitable instance of both the limitations to therapeutic use inherent to the nature
itself of AMPs and the ways to overcome these is offered by the recent study of Wang
Manchuriga and colleagues on temporins [158]. As many natural AMPs isolated from the
skin of anuran amphibians (frogs and toads), temporins display a potent antimicrobial
activity but this quality is often thwarted by elevated cytotoxicity, in particular against
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erythrocytes [159]. Working on temporin-GHa from Hylarana guentheri, Manchuriga and
colleagues designed several analogs of the naturally-occurring sequence, modifying the
type, position and number of charged residues. Some of the derived peptides displayed a
significant reduction of hemolytic activity with respect to parent peptide while retaining
potent antibacterial activity, but it was not possible to reduce cytotoxicity to zero without
compromising antibacterial activity, confirming that a delicate balance of charge and other
physico-chemical parameters (e.g., amphipathic and extension of hydrophobic surfaces) is
necessary to obtain a plausible therapeutic lead [158].

Other key criteria of AMPs that should always be studied in detail when consider-
ing these molecules for use in clinical settings are immunogenicity and pharmacodynam-
ics/pharmacodynamics properties. Proline-rich AMPs (PrAMPs) are a class of membrane-
permeable AMPs that have been identified more than 20 years ago in mammals and insects;
they have an intracellular mode of action, inhibiting protein synthesis leading to a bactericidal
outcome [160]. Apidaecin Api88 (18 aa) and oncocin Onc72 (19 aa)—PrAMPs based on natural
peptides isolated from milkweed bug Oncopeltus fasciatus—were shown to be nonimmuno-
genic in mice, unless conjugated to protein carriers, a fact attributed to the small size of these
molecules [161]. A pharmacokinetics analysis showed that Onc72 reached several organs
within 10 min and that the peptide’s concentrations in blood were well above the minimal
inhibitory concentrations for gram-negative key pathogens like K. pneumoniae [161]. More
recently, the long-lasting post-antibiotic effect (PAE)—an important criterion of antimicrobial
pharmacodynamics indicating the persistent growth of bacteria briefly exposed to antibiotics
independently of host defense mechanisms—of several PrAMPs was tested, revealing pro-
longed PAEs against several strains of E. coli, P. aeruginosa and K. pneumoniae for all tested
peptides but especially Api88, Api137, Bac7(1–60) and A3-APO [162]. “The PAEs presented
here provide an additional hypothesis besides immunomodulatory effects that can explain the
good in vivo efficacies of PrAMPs”, notwithstanding the fast clearance rate measured for some
of these peptides, authors discussed [162], “This again highlights that MIC values determined
for AMPs in vitro cannot be simply used to predict in vivo efficacies, as often assumed in
the literature. Instead, MIC values should be seen as one important criterion among other
parameters to be considered,” authors appropriately remarked [162].

One of the aspects that are often quoted in support of the (potential) use of AMPs in
clinical practice is their low tendency to evoke antibiotic resistance. This tenet stems from
the fact that AMPs generally (but not always, as specified above) hit the lipid component
of the plasma membrane, a cellular component that is believed per se to be not easily
modifiable in its basic physicochemical features by microbial targets. Although the slower
emergence of resistance to AMPs with respect to conventional antibiotics is a reality,
however, experience and much work have clearly shown that the reassuring thought
that the complex phenomenon of resistance would not eventually thwart AMPs’ value, is
somewhat naïve and misleading. In fact, the long coevolution of microorganisms and AMPs
has spurred the development of several resistance mechanisms. These include sequestration
by bacterial enzymes, proteolytic degradation of peptides, efflux pumps to remove AMPs
from the periplasmic space, alteration of components of bacterial surface to reduce surface
attachment and permeability, down-regulation by immunomodulation [163–166].

The concept of coevolution and its effect on the rise of bacterial resistance to AMPs’
action is well explained by the example of Helicobacter pylori. Sabine Nuding and colleagues
tested the pattern of induction of gastric antimicrobial peptides by H. pylori as well as
its susceptibility to the same peptides [167]. Researchers found that the induction of
antimicrobial peptides, such as the inducible defensin HBD2 in the gastric mucosa by H.
pylori, did not enhance the killing capacity against H. pylori itself. On the other hand, the
expression levels of the constitutive defensin HBD1, inducible HBD3 and LL37, remained
unchanged. Tested H. Pylori strains proved resistant to HBD1, but susceptible to the
killing activities of HBD3 and LL37. “The combination of selective defensin induction and
resistance to others may enable Helicobacter to colonize the gastric mucus layer where it
can adhere to epithelial cells and induce inflammatory as well as malignant processes,”
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concluded the authors, that remarked the need for further studies aimed at understanding
the mechanisms regarding H. pylori selective antimicrobial resistance [168].

Despite the limitations briefly outlined above, that have hampered their development
in the classical drug discovery pipeline, AMPs are attracting continuous and ever-increasing
interest as new antimicrobials agents. Out of some ~3000 molecules that have been isolated
from different sources, just a handful have been the object of preclinical studies and further
proceeded to clinical trials [166]. A recent analysis of AMPs patents from 2015 through
2020 has confirmed a long-standing trend, i.e., the fact that AMPs earmarked for clinical
development are in vast majority analogs or derivatives of natural peptides, obtained
through a template-based strategy aimed at enhancing the activity and stability of natural
AMPs while reducing their toxicity [168].

Currently, just three AMPs have been approved by the U.S. Food and Drug Adminis-
tration (FDA) for therapeutic use, i.e., gramicidin, colistin and daptomycin. Gramicidin
has a long history. First isolated from Bacillus brevis over 70 years ago, gramicidin is active
against a range of Gram-positive and Gram-negative bacteria, although its severe toxic-
ity for human erythrocytes has a limited clinical indication to topical applications [169].
Polymyxin and colistin, which are cationic peptides in use for decades, have regained
interest lately, due to their strong activity against multi-drug resistant Gram-negative
pathogens. Their ability to bind the lipid A component of LPS makes them precious, the
last resource weapons to fight septic shock, notwithstanding their known nephrotoxicity.
Resistance has emerged, however, and is spreading at an alarming pace, putting the effec-
tiveness of these valuable therapeutics at risk [170,171]. Last but not least, daptomycin.
This membrane-active cyclic lipopeptide has received the green light from the FDA in 2003
to treat Gram-positive infections. It is believed that its mechanism of action differs from
that of other AMPs since daptomycin causes bacterial membrane depolarization rather than
membrane disruption and pore formation [172]. In recent years, resistance in Staphylococcus
aureus has been more and more frequently reported, and the search for substitutes that
might prolong the clinical use of this important antibiotic is actively underway [173].

The concern caused by AMPs resistance is clearly transmitted by a very recent clinical
trial aimed at evaluating the efficacy of oral colistin-neomycin in preventing multidrug-
resistant Enterobacterales (MDR-E) infections in solid organ transplant recipients. In the
trial’s frame, a 14-day regimen of oral colistin and neomycin did not reduce MDR-E infec-
tions, and four liver-recipients developed colistin resistance [174]. A study of the molecular
mechanisms of colistin resistance in environmental isolates of Acinetobacter baumannii, re-
covered from hospital wastewater and wastewater treatment plant, has shown that all
isolates had increased levels of eptA mRNA and decreased levels of lpxA and lpxD mRNA;
the eptA gene, in particular, could indicate its main role in colistin resistance through lipid
A modification [175]. Authors hypothesized that when untreated hospital wastewater is
released into the urban sewage, it might contain colistin-susceptible A. baumannii, and
that resistance might emerge in wastewater itself following exposure to pollutants, such
as cationic surfactants, and subsequently spread in the environment [175]. Looking at the
bright side, things can always improve. Recent work has shown that kynomycin, a new
daptomycin analog, was endowed with enhanced activity against both methicillin-resistant
S. aureus and vancomycin-resistant Enterococcus, with improved pharmacokinetics and
lower cytotoxicity than daptomycin [176]. Freshly acquired data suggest that physico-
chemical features like Ca2+ binding and Ca2+-mediated oligomerization could explain
kynomycin’s enhanced antibacterial activity [177].

Even a hasty glance at the AMPs pipeline conveys the level of difficulty at bringing
these molecules to the market, either for topical or systemic treatment [166,178]. After many
failures, however, a couple of promising candidates loom on the horizon, at least for some
therapeutic indications. Polyphor is developing the synthetic lipopeptide murepavadin, a
member of a novel class of antibiotics that combine high-affinity binding to both LPS and
outer membrane proteins, resulting in high specificity towards Gram-negative bacteria and
effective bactericidal activity. Murepavadin, in particular, targets the lipopolysaccharide
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transport protein D (LptD), an outer membrane protein on Pseudomonas aeruginosa, leading
to cell death. Phase 3 clinical trials investigating the safety and efficacy of intravenous
murepavadin have been prematurely stopped due to a rise of creatinine concentration in the
serum of patients treated with the AMP, indicating renal failures [179,180]. Despite these
disappointing results, Polyphor plans to continue the development of inhaled murepavadin
to treat chronic P. aeruginosa infections associated with cystic fibrosis. Exeporfinium chlo-
ride (XF-73), a derivative of AMP concept containing two cationic ammoniums and one
porphyrin core, is currently the main protagonist of the anti-infectives program at Des-
tiny Pharma [181]. XF-73 is a membrane-active antibiotic, particularly potent against
Gram-positive bacteria, including MRSA. A phase 2 trial of XF-73 for the prevention of
post-surgical staphylococcal nasal infections is ongoing. An in vitro study of bacterial
resistance that compared XF-73 to standard antibiotics currently in use did not demonstrate
the emergence of any resistance to XF-73 even after 55 repeat exposures [182].

7. Conclusions

The challenging research for new antimicrobial entities is still ongoing but not without
difficulties. New species of bacteria, fungi and viruses are emerging, and the most alarming
fact is their intrinsic and sometimes multi-drug resistance to first-line drugs. These aspects
together with the fast and global spread of resistance through horizontal transfer represent
a serious threat for global health. An innovative approach involves the use of compounds
inspired by nature and subsequently optimized to reach suitable features, i.e., low toxicity
and strong activity. The result of this process is represented by synthetic peptides. Their
broad mechanisms of action and the unlikely resistance that they generate, are important
advantages and perhaps the key point for a shift towards new antimicrobial synthetic
peptides-based treatments for the near future.
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