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Background: Although carotid sonographic features have been used as predictors of

recurrent stroke, few large-scale studies have explored the use of machine learning

analysis of carotid sonographic features for the prediction of recurrent stroke.

Methods: We retrospectively collected electronic medical records of enrolled patients

from the data warehouse of China Medical University Hospital, a tertiary medical center

in central Taiwan, from January 2012 to November 2018. We included patients who

underwent a documented carotid ultrasound within 30 days of experiencing an acute first

stroke during the study period. We classified these participants into two groups: those

with non-recurrent stroke (those who has not been diagnosed with acute stroke again

during the study period) and those with recurrent stoke (those who has been diagnosed

with acute stroke during the study period). A total of 1,235 carotid sonographic

parameters were analyzed. Data on the patients’ demographic characteristics and

comorbidities were also collected. Python 3.7 was used as the programming language,

and the scikit-learn toolkit was used to complete the derivation and verification of the

machine learning methods.

Results: In total, 2,411 patients were enrolled in this study, of whom 1,896

and 515 had non-recurrent and recurrent stroke, respectively. After extraction, 43

features of carotid sonography (36 carotid sonographic parameters and seven

transcranial color Doppler sonographic parameter) were analyzed. For predicting

recurrent stroke, CatBoost achieved the highest area under the curve (0.844,

CIs 95% 0.824–0.868), followed by the Light Gradient Boosting Machine (0.832,

CIs 95% 0.813–0.851), random forest (0.819, CIs 95% 0.802–0.846), support-

vector machine (0.759, CIs 95% 0.739–0.781), logistic regression (0.781, CIs

95% 0.764–0.800), and decision tree (0.735, CIs 95% 0.717–0.755) models.
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Conclusion: When using the CatBoost model, the top three features for predicting

recurrent stroke were determined to be the use of anticoagulation medications, the use

of NSAID medications, and the resistive index of the left subclavian artery. The CatBoost

model demonstrated efficiency and achieved optimal performance in the predictive

classification of non-recurrent and recurrent stroke.

Keywords: machine learning, carotid sonographic features, recurrent stroke, acute stroke, CatBoost model

INTRODUCTION

Stroke is the second most common cause of death and a leading
cause of disability worldwide (1). It is a heterogeneous syndrome
with two major types: ischemic, which accounts for ∼60–85% of
all cases, and hemorrhagic. The common pathogenesis of both
types involves atherosclerosis and hypertension (2, 3). Stroke
may lead to a wide range of complications including neurological
disorders, infections, mobility dysfunction, thromboembolism,
and emotional disorders (4). Among these complications,
recurrent stroke is considered the most catastrophic: patients
with recurrent stroke often become trapped in a vicious cycle and
experience rapid degradation of their functions (5, 6).

Studies have focused on the exploration and identification of
risk factors for recurrent stroke, including left atrial enlargement
(7); blood biomarkers (8, 9); elevated von Willebrand factor
levels (10); and clinical factors such as components of metabolic
syndrome (11), a history of coronary heart disease (12), frequent
rehabilitation (13), and plaque and perfusion being visible in
magnetic resonance imaging (MRI) (14–17). In addition to risk
factors, risk scores—including the total small vessel disease score
(18), simple point scores (19), the CHA2DS2VASc Score, the
Essen Stroke Risk Score, and the ABCD3 serial score (20–22)—
have been proposed for evaluating patients at risk of recurrent
stroke. In studies that have investigated the components of these
risk scores (18–22), imaging components have been reported
to be as important as clinical components. Regarding the
ABCD3 serial score, Kiyohara et al. discovered that adding
intracranial arterial stenosis could further improve the score’s
predictive value for recurrent stroke (22). Although computed
tomography and MRI are sensitive and accurate neuroimaging
tools, they are often expensive and dependent on practitioners’
interpretation skills, and their utilization rates vary widely (23,
24). Carotid Doppler sonography provides a low-cost, low-
risk, and highly portable alternative modality for evaluating the
vessels of patients with acute stroke (25). Although individual
components, such as significant stenosis (>60%) determined
by a patient’s internal carotid artery (ICA)/common carotid
artery (CCA) peak systolic velocity (PSV) ratio, have been
reported to be effective carotid Doppler sonographic indicators
(26), few large-scale studies have explored the use of machine
learning analysis of carotid sonographic features for predicting
recurrent stroke. We conducted a retrospective cohort study
involving the collection of clinical and Doppler parameters
and the application of machine learning models to differentiate
between recurrent and non-recurrent stroke. We employed
the CatBoost and Light Gradient Boosting Machine (LGBM)

machine learning algorithms, which are seldom employed in
medical studies. We also compared the performance of the
random forest, support vector machine (SVM), decision tree,
Logistic Regression, CatBoost, and LGBM algorithms.

METHODS

Data Collection and Study Design
The electronic medical records of the enrolled subjects were
retrospectively collected from the data warehouse of China
Medical University Hospital (CMUH), a tertiary medical center
in central Taiwan, from January 2012 to November 2018.
The records contained longitudinal electronic demographic
information, laboratory data, International Classification of
Diseases (ICD) coding, records of medical procedures, and
medical imaging (including computed tomography, MRI,
ultrasounds, and nuclear imaging) for all inpatients and
outpatients of CMUH. Most treatments by CMUH, especially
those for catastrophic illnesses, were covered by Taiwan’s
National Health Insurance, and the medical payments were
thus under strict supervision by the National Health Insurance
Administration. This study was approved by the Research Ethics
Committee of CMUH (CMUH109-REC2-035).

Participants and Definitions
We included patients who were diagnosed with acute first stroke
and who received a documented carotid ultrasound within 30
days of the acute stroke during the study period. Initially, we
enrolled 10,822 patients. Patients who lacked a documented
report of their carotid sonography or who lacked complete
DICOM SR data for the carotid sonography were excluded.
Each patient’s carotid and transcranial color-coded sonographic
parameters were collected and examined. Carotid sonography
was performed on a GE Vivid 7 system (GE Healthcare,
Milwaukee, WI, USA) with a 3–10 MHZ linear array transducer
linear 9L probe.

The enrolled patients were classified into two groups: those
who experienced non-recurrent stroke (stroke once; those who
has not been diagnosed with acute stroke again) and those who
experienced recurrent stroke (those who has been diagnosed with
another acute stroke during study period; Figure 1).

In this study, acute stroke was defined according to the
National Health Insurance Administration’s definition
of catastrophic illness ICD-9 and ICD-10 codes for acute
stroke, including occlusion and stenosis, hemorrhagic strokes,
transient ischemic attacks (TIAs) and related syndromes,
stroke syndromes, and other cerebral vascular diseases
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FIGURE 1 | Flow chart.

(Supplementary Table 1). Comorbidities considered in this
study included hypertension, diabetes mellitus, hyperlipidemia,
end-stage renal disease, atrial fibrillation, heart failure, liver
cirrhosis, and cancer, which were also defined based on ICD
coding in the CMUH data warehouse.

The primary outcome of our study was recurrent stroke, and
we established a model for predicting a patient’s risk of recurrent
stroke after their first episode of acute stroke.

Data Preprocessing
Data preprocessing was required to ensure the performance of
our model. We applied feature extraction and data normalization
when preprocessing the collected clinical, demographic, and
sonographic variables.

Feature Extraction

To identify significant features, three types of feature extraction
were utilized in our study. First, we used Pearson correlation
coefficients to determine the strength of the linear relationships
between the carotid sonographic parameters and the clinical
variables. The carotid sonographic parameters with Pearson
correlation coefficients < 0.1 were not considered. Second, we
used least absolute shrinkage and selection operator (lasso)

regression, a shrinkage and variable selection method for
regression models, to eliminate less representative features
and select more representative features (27). Last, we used
the statistical significance to determine significant features,
which the carotid sonographic parameters with p-value < 0.05
were considered. Only the features selected using the Pearson
correlation, lasso regression methods and statistical significance
method were included in our training dataset.

Data Normalization

Because the units of the sonographic variables varied, data scaling
was required for normalization. We applied standard deviation
(SD) normalization, which is a method commonly used when a
dataset contains a few non-extreme outliers. We calculated the
mean and SD values of the training data and scaled the values to
ensure that the mean of all the values was 0 and the SD was 1. The
formula used to calculate the z-score was

Z =
x− µ

σ

where x is the original datum, µ is the mean, and σ is the SD.
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Data Balancing

The ratio of patients with non-recurrent stroke to those with
recurrent stroke was ∼3:1. Therefore, the number of fault
samples and the number of positive training samples were
imbalanced, and the algorithm tended to ignore small classes
and concentrate on the accurate classification of the large classes,
resulting in a weaker model with limited predictive ability. To
overcome the imbalanced nature of the data, we applied class
weight balancing and balanced bagging methods in our training
models. When class weight balancing methods are applied, if
the sample size of a category is high, then it is assigned a low
weight, and vice versa (28). Balanced bagging, which involves
bootstrapping or applying sampling techniques to the original
data n times with replacements to create training sets, also
improves a model’s classification accuracy and reduces data
imbalance (29).

Machine Learning Models
Six machine learning models were used in this study: random
forest, SVM, Logistic Regression, decision tree, CatBoost,
and LGBM.

Random forest, an ensemble learning technique, involves
the aggregation of a large number of decision trees (30). Each
individual tree in the random forest provides a class prediction
based on a given number mtry of randomly selected features
(31). Random forests produce less variance compared with single
decision trees and produce predictions more accurate than those
of any of the individual trees.

SVMs are linear supervised classifiers capable of performing
binary and multiclass classification on a dataset (32). In an
SVM, each data point is an n-dimensional vector. According
to the margin maximization principle, the SVM chooses the
most appropriate hyperplane to maximize the distance from the
hyperplane to the nearest data point on each side (33).

Logistic Regression, a linear regression model, converts the
log-odds of input variables to a predicted probability of outcome.

Decision trees, non-parametric supervised learning tools, are
treelike structures consisting of a root node, condition or leaf
nodes, and associated branches (34). The end of each branch
that does not split anymore represents a potential outcome. The
probability model with the maximum likelihood of attaining a
desirable outcome among the decision trees was considered the
most effective prediction model.

CatBoost is a gradient boosting framework that employs
oblivious decision trees as base predictors; it is an open-source
software library developed by Yandex (35). For each level of
each decision tree, decision rules containing feature indices
and threshold values are collected, which eventually form a
collection of disjoint subsets of feature vectors. The collections of
feature vectors function as a prediction model. CatBoost reduces
overfitting and improves the quality of a model (36).

LGBM is another gradient boosting algorithm and an
implementation of ensemble learning. LGBM uses a leaf-wise
algorithm to grow trees vertically; a leaf that most reduces the loss
is chosen to split (37). The main function of LGBM is to create
large gradients, which contribute more to information gain (38).

Statistical Analysis
Baseline sociodemographic and clinical characteristics are
displayed as the mean ± SD. Categorical variables are expressed
as absolute and percent frequencies.

The Python 3.7 software package and scikit-learn toolkit
were employed, and the defaults were applied for the training
of the random forest, SVM, LogisticRegression, decision tree,
CatBoost, and LGBM algorithms. We used the Gaussian radial
basis function as the kernel function in our SVM model, and
the regularization parameter (C) was 1.0. For the random forest
and decision tree algorithms, 10 decision trees were used. For the
Logistic Regression algorithm, we added a penalty term (known
as the L2 norm or L2 penalty) to the loss function. For the
CatBoost algorithm, 1,000 decision trees and six hidden layers
were used. For the LGBM, 100 decision trees and 31 hidden layers
were used.

We used the following evaluation metrics of sensitivity,
specificity, accuracy, and area under the receiver operating
characteristic curve (AUC) to evaluate the performance of the
machine learning algorithms in this study:

Sensitivity =
TP

(TP + FN)

Specificity =
TN

(TN + FP)
,

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
,

where TP denotes true positives; FP, false positives; TN, true
negatives; and FN, false negatives. Precision was denoted by
TP/(TP + FP), and recall was denoted by TP/(TP + FN).

We used stratified k-fold cross-validation to estimate the
accuracy of the models. The data were first stratified and then
split into k portions. In each k iteration, one portion was used
as the test set, and the remaining k – 1 portions were used as
training sets. Then, the model was fit to the training sets, and
the performance of the model on the test set was evaluated.
This procedure was repeated until each of the k subsets had
served as the validation set. The average of the k performance
measurements on the k validation sets was the cross-validated
performance (39). In this study, we used stratified 10-fold cross-
validation to estimate the accuracy, as generally recommended
(40). The Shap algorithm was used to measure the contribution
of features to predicting “non-recurrence” and “recurrence.”
Shapley Additive explanation proposed by Lundberg and Lee is
a method of explaining predictions based on the optimal Shapley
value of game theory (41).

RESULTS

Patient Population and Demographics
A total of 2,411 patients were enrolled in this study. Of these,
1,896 were classified into the non-recurrent stroke cohort, and
515 were classified into the recurrent stroke cohort (Figure 1).
The mean ages of the non-recurrent stroke and recurrent stroke
cohorts were 66.18 ± 12.67 years (range: 24–98 years) and
67.63± 13.14 years (range: 27–96 years), respectively. Regarding
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gender, 61.66 and 62.14% of the patients in the non-recurrent
stroke and recurrent stroke cohorts, respectively, were men.
Strokes involving occlusion and stenosis were the most common
and accounted for 75.84 and 80.19% of patients’ strokes in the
non-recurrent stroke and recurrent stroke cohorts, respectively.
TIAs and related conditions were the second most common
stroke type, accounting for 8.81 and 6.80% of the patients’
strokes in the non-recurrent stroke and recurrent stroke cohorts,
respectively. The prevalence of each comorbidity was higher
among patients in the recurrent stroke cohort than among
patients with non-recurrent stroke: of the patients with recurrent
stroke, 72.04% had hypertension, 45.24% had diabetes mellitus,
27.96% had hyperlipidemia, 4.08% had end-stage renal disease,
8.54% had atrial fibrillation, 12.43% had heart failure, 8.35%
had cancer, and 36.50% had a body mass index (BMI) > 25.
Furthermore, 57.12 and 74.76% of the patients in the non-
recurrent stroke and recurrent stroke cohorts, respectively, took
dihydropyridine derivatives; 91.67 and 97.09% of patients in the
non-recurrent stroke and recurrent stroke cohorts, respectively
took antiplatelet medications; and 62.29 and 73.98% of the
patients in the non-recurrent stroke and recurrent stroke cohorts,
respectively, had taken HMG-COA inhibitors (Table 1).

Selected Features
The algorithms identified 36 carotid sonographic parameters
and seven transcranial color-coded sonographic parameter as
features. Supplementary Table 2 summarizes the results of the
feature selection process of sonographic parameters; bold type
denotes the selected features. In addition, 18 clinical variables,
namely age, gender, stroke type, hypertension, diabetes mellitus,
hyperlipidemia, end-stage renal disease, atrial fibrillation, heart
failure, liver cirrhosis, cancer, and types of medications, were
identified as features. In total, this study involved the analysis of
65 features.

Performance of Models in Predicting
Non-recurrent and Recurrent Stroke
Table 2 listed the predictive performance of the random forest,
SVM, LogisticRegression, decision tree, CatBoost, and LGBM
models. The best AUC achieved was 0.844 (0.824–0.868) by
the CatBoost model with no balancing method, exceeding
the AUC of 0.818 (0.797–0.843) achieved by the CatBoost
model with class weight balancing and the AUC of 0.829
(0.814–0.849) achieved by the CatBoost model with balanced
bagging. The random forest model (AUC = 0.819, 0.802–
0.846), CatBoost model (AUC= 0.844, 0.824–0.868), and LGBM
model (AUC = 0.832, 0.813–0.851) resulted in higher AUCs
without balancing methods than when class weight balancing or
balanced bagging were employed. The Logistic Regression model
(AUC = 0.781, 0.764–0.800) and decision tree model (AUC
= 0.735, 0.717–0.755) resulted in higher AUCs with balanced
bagging methods than when either of non-balancing or class
weight balancing methods were employed. Figure 2 illustrates
the receiver operating characteristic curve of the random forest,

TABLE 1 | Clinical characteristics in 2,411 study patients.

Non-recurrent

stroke (%)

Recurrent

stroke (%)

p-value

Study patients N = 1,896 N = 515

Men 1,169 (61.66%) 320 (62.14%) 0.843

Age 66.18 ± 12.67

(24–98)

67.63 ± 13.14

(27–96)

<0.05

Stroke type

Occlusion and stenosis 1,438 (75.84%) 413 (80.19%) <0.05

Hemorrhage 144 (7.59%) 30 (5.83%) 0.169

TIA and related syndrome 167 (8.81%) 35 (6.80%) 0.144

Stroke syndrome 51 (2.69%) 8 (1.55%) 0.139

Others cerebral vascular

disease

96 (5.06%) 29 (5.63%) 0.606

Comorbidity

Hypertension 1,227 (64.72%) 371 (72.04%) <0.05

Diabetes mellitus 682 (35.97%) 233 (45.24%) <0.001

Hyperlipidemia 503 (26.53%) 144 (27.96%) 0.516

End stage renal disease 10 (0.53%) 21 (4.08%) <0.0001

Atrial fibrillation 81 (4.27%) 44 (8.54%) <0.001

Heart failure 123 (6.49%) 64 (12.43%) <0.0001

Liver cirrhosis 36 (1.90%) 7 (1.36%) 0.412

Cancer 113 (5.96%) 43 (8.35%) 0.051

BMI > 25 675 (35.60%) 188 (36.50%) 0.862

Medicine after first stroke

Angiotensin II receptor

blockers (ARBs)

753 (39.72%) 287 (55.73%) <0.0001

Dihydropyridine derivatives 1,083 (57.12%) 385 (74.76%) <0.0001

Anti-coagulant 665 (35.07%) 353 (68.54%) <0.0001

Anti-platelet 1,738 (91.67%) 500 (97.09%) <0.0001

HMG-COA inhibitors 1,181 (62.29%) 381 (73.98%) <0.0001

NSAID 761 (40.14%) 312 (60.58%) <0.0001

*Values are expressed as the mean ± SD.

HTN, hypertention; DM, diabetes mellitus; ESRD, end stage renal disease.

SVM, Logistic Regression, decision tree, CatBoost, and LGBM
models in combination with the various data balancing methods.

Based on the models’ calculated accuracy, the CatBoost
model without a balancing method exhibited the optimal
performance in predicting the patients’ risk of recurrent stroke
(accuracy = 0.844), followed by the LGBM without balancing
methods (accuracy= 0.832), the LGBMmodel without balancing
methods (accuracy = 0.839), and the CatBoost model with class
weight balancing (Accuracy = 0.829). Regarding specificity, the
random forest with no balancing methods achieved the highest
specificity (1.000).

The performance of each training model, as judged by
sensitivity, was inadequate without the application of balancing
methods. After data balancing using the class weight or
balanced bagging methods, the sensitivity of random forest,
Logistic Regression, decision tree, CatBoost, and LGBM models
increased; the decision tree model with class weight balancing
achieved a sensitivity of 0.617.

Since CatBoost model performed best among these models,
we also compare the carotid sonographic features, clinical
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TABLE 2 | Comparison of the predictive performance for six models (cross-validated data).

Model Method Sensitivity Specificity Accuracy AUC

(CIs 95%) (CIs 95%) (CIs 95%) (CIs 95%)

RF - 0.070 (0.049–0.091) 1.000 (1.000–1.000) 0.801 (0.797–0.805) 0.819 (0.802–0.846)

SVM - 0.216 (0.184–0.247) 0.973 (0.968–0.978) 0.811 (0.805–0.818) 0.759 (0.739–0.781)

LR - 0.305 (0.256–0.353) 0.958 (0.948–0.969) 0.819 (0.809–0.829) 0.774 (0.759–0.793)

DT - 0.155 (0.116–0.194) 0.997 (0.994–1.000) 0.817 (0.811–0.824) 0.688 (0.686–0.733)

CatBoost - 0.441 (0.394–0.488) 0.994 (0.990–0.998) 0.876 (0.867–0.885) 0.844 (0.824–0.868)

LGBM - 0.421 (0.381–0.461) 0.982 (0.977–0.987) 0.862 (0.855–0.870) 0.832 (0.813–0.851)

RF Class weight 0.678 (0.632–0.722) 0.762 (0.742–0.782) 0.744 (0.726–0.762) 0.787 (0.766–0.818)

SVM Class weight 0.060 (0.038–0.082) 0.996 (0.993–0.999) 0.796 (0.791–0.801) 0.647 (0.617–0.683)

LR Class weight 0.678 (0.636–0.720) 0.735 (0.707–0.763) 0.723 (0.703–0.743) 0.779 (0.762–0.798)

DT Class weight 0.717 (0.664–0.769) 0.624 (0.606–0.641) 0.644 (0.627–0.661) 0.684 (0.674–0.726)

CatBoost Class weight 0.522 (0.484–0.560) 0.928 (0.912–0.943) 0.841 (0.832–0.851) 0.829 (0.814–0.849)

LGBM Class weight 0.493 (0.467–0.519) 0.954 (0.943–0.965) 0.856 (0.845–0.866) 0.825 (0.808–0.843)

RF Balanced bagging 0.604 (0.558–0.649) 0.814 (0.790–0.838) 0.769 (0.751–0.788) 0.796 (0.770–0.823)

SVM Balanced bagging 0.474 (0.432–0.516) 0.675 (0.636–0.714) 0.632 (0.602–0.662) 0.588 (0.563–0.620)

LR Balanced bagging 0.687 (0.640–0.734) 0.736 (0.706–0.765) 0.725 (0.707–0.744) 0.781 (0.764–0.800)

DT Balanced bagging 0.497 (0.463–0.531) 0.829 (0.815–0.842) 0.758 (0.752–0.764) 0.735 (0.717–0.755)

CatBoost Balanced bagging 0.606 (0.555–0.656) 0.845 (0.823–0.867) 0.794 (0.780–0.808) 0.818 (0.797–0.843)

LGBM Balanced bagging 0.592 (0.559–0.625) 0.851 (0.835–0.866) 0.796 (0.786–0.805) 0.811 (0.793–0.833)

characteristics and combination between non-recurrent stroke
and recurrent-stroke in CatBoostt model. Figure 3 showed AUC
of combination was 0.837, AUC of carotid sonographic features
was 0.809, and AUC of clinical parameters was 0.723.

Top 10 Significant Features Correlated With
Recurrent Stroke in the CatBoost Model
In this study, the CatBoost model with no balancing methods
exhibited the best and the most stable performance, with an
AUC of 0.844 (0.824–0.868), an accuracy of 0.876 (0.867–0.885),
a sensitivity of 0.441 (0.394–0.488, no balancing method), and
a specificity of 0.994 (0.990–0.998). We further analyzed the
details of the CatBoost algorithm. The confusion matrix of the
CatBoost model indicated that the numbers of patients with
true positive and true negative results were 227 and 1,885,
respectively, in our cross validated data set (Table 3). We also
explored significant features identified by the CatBoost model
for optimally predicting recurrent stroke. The top 10 most
significant features were the use of anticoagulation medications,
the use of NSAID medications, the resistive index (RI) of the
left subclavian artery, the use of dihydropyridine derivatives
medications, the use of ARBs medications, the use of HMG-
COAi medications, the PI of the left subclavian artery, the PI
of the left vertebral artery, the use of anti-platelet medications,
and the PSV (peak systolic velocity) of the left proximal internal
carotid artery (Figure 4).

DISCUSSION

In this study, we adopted machine learning algorithms to analyze
potential clinical and sonographic risk factors for recurrent
stroke among patients with acute stroke. We first evaluated

the patients’ carotid sonographic parameters using a large-
scale CatBoost model and identified key features associated
with an increased risk of recurrent stroke, including the use
of anticoagulation medications, the use of NSAID medications,
the resistive index (RI) of the left subclavian artery, the use
of dihydropyridine derivatives medications, the use of ARBs
medications, the use of HMG-COAi medications, the PI of the
left subclavian artery, the PI of the left vertebral artery, the use
of antiplatelet medications, and the PSV (peak systolic velocity)
of the left proximal internal carotid artery. The CatBoost model
demonstrated efficiency and achieved optimal performance in
predicting non-recurrent and recurrent stroke on the basis of
carotid Doppler sonographic parameters.

The significant correlation between the use of anticoagulation
medications and recurrent stroke is reasonable because
patients who have already experienced a stroke commonly use
anticoagulation medications, especially those who had stroke of
embolic events (42). Besides, our findings might also imply that
cardiac or cryptogenic embolism would play a role in recurrent
stroke (43, 44). Among the top 10 features correlated with
recurrent stroke, four were carotid ultrasonographic parameters
that require further investigation. Patients’ vessel diameter;
plaque; PSV; PI; RI; and end-diastolic velocity (EDV) of the
left and right external carotid artery, internal carotid artery,
subclavian artery, basilar artery, CCA, and vertebral artery are
components commonly examined in standard carotid Doppler
sonographic exams (45). However, most previous research has
focused on the effects on stroke risk exerted by specific carotid
sonographic features such as occlusion of the middle cerebral
artery (MCA) (46); high-intensity signals of symptomatic arteries
(47), carotid arteries, M1 segments of the MCA (48), and P2
segments of posterior cerebral arteries (PCAs) (48); the presence
of carotid plaque (48, 49); ICA/CCA PSV ratios (50); decreased
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FIGURE 2 | ROC curves of combinations of different data balancing methods and machine learning algorithms. (A) No data balancing. (B) After class weight. (C)

balanced bagging.

poststenotic PSV (51); and poststenotic arterial narrowing
(51). To the best of our knowledge, this is the first study to
involve the large-scale investigation of all carotid sonographic
parameters. The correlation powers of the PI and RI of certain
carotid arteries with recurrent stroke were greater than indices
of carotid arteries stenosis, including PSV and percentage of
stenosis, in our machine learning models. The degree of a
patient’s stenosis could be determined by their intima thickening
and residual diameter/total diameter in grayscale ultrasound and

PSV, ICA/CCA PSV, and ICA EDV in color Doppler ultrasound
(52–54). Each patient’s PI was calculated using the formula PI
= (PSV – EDV)/MV, and the RI was calculated using RI =

PSV – EDV/PSV (55). Previous studies have demonstrated that
stroke risk is positively correlated with degree of stenosis in
patients with symptomatic carotid stenosis (56). However, in
the present study, we observed that the PI and RI of individual
subclavian, vertebral, and internal carotid arteries were more
positively correlated with recurrent stroke than stenosis was.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 7 January 2022 | Volume 9 | Article 804410

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Lin et al. Machine Learning Models for Recurrent Stroke

FIGURE 3 | CatBoost model for different settings: clinical data, sonographic

data, and combination of clinical and sonographic data for recurrent stroke

prediction.

These study results provide valuable clinical information because
each carotid sonography was performed within 30 days of the
respective patient’s acute stroke (46). Our findings are consistent
with those of Barnett et al. that ∼20 and 45% of strokes in the
symptomatic and asymptomatic carotid arteries with 70–99%
stenosis, respectively, are unrelated to carotid stenosis (57).
Because the complex machine learning algorithms employed
in this study are black boxes, the variables explored should be
interpreted as powerful indicators for differential diagnosis but
not as casual factors (58). Furthermore, this study employed a
cohort design; whether the PI and RI of individual subclavian,
vertebral, and internal carotid arteries can be used to predict
recurrent stroke must be investigated in future studies.

Regarding the machine learning algorithms, we believe we
are the first to adopt the CatBoost model in the risk assessment
of patients with acute stroke, and our study demonstrated that
the CatBoost model exhibited high performance in predicting
recurrent stroke. CatBoost is a powerful machine learning
algorithm suitable for datasets with many categorical variables
(59). CatBoost is commonly utilized in the fields of business
(60), financial assessments (61), Medicare fraud detection
(62), environmental science (63, 64), and public science (36).
According to our review of the literature, in the field of medicine,
the random forest model has retained a competitive edge and
is often superior in the prediction and classification of medical
conditions compared with traditional logistic regressionmethods
and machine learning methods such as neural networks, SVMs,
and decision trees (65–68). In our study, the CatBoost model
outperformed the random forest model in classifying non-
recurrent and recurrent stroke. Although its performance in

TABLE 3 | Confusion matrix for the CatBoost without balancing method

prediction.

Predicted

No Yes

True No 1,885 11

Yes 288 227

other hospital settings has not been explored, our results indicate
that CatBoost may be considered when selectingmachine leaning
models to apply for treating acute stoke or elsewhere in the
medical field.

This study has several limitations. First, it is a single-
center-based retrospective study, and external validation would
be required to determine machine learning models’ suitability
for the risk assessment of other patients with acute stroke.
Second, this was a retrospective cohort study and carotid
ultrasonographic features were collected in the first time of
stroke. Thus, the top 10 features identified in the study should
be interpreted as predicative or classification factors rather than
as casual factors. Further large-scale prospective cohort studies
are necessary to investigate the predictive value of these features.
Third, due to incomplete carotid Doppler sonography and
missing values, only ∼22% of 10,822 patients with acute stroke
were enrolled in the study. Possible enrollment bias and baseline
bias may have influenced the results. Fourth, information
regarding the infarct areas of the patients was unavailable in
the database employed in the study. Therefore, although we
have reported four significant sonographic parameters related
to brain vessels, whether the individual vessels overlapped with
infarct areas or same infarct territory of high-risk artery were
not analyzed in this study. Finally, in this study, further analysis
about using TOAST classification for cerebral ischemic cases or
dual antiplatelet agents among the recurrent event group have
not been performed.

In conclusion, this study revealed that the CatBoost model is
efficient and achieved optimal performance in predicting non-
recurrent and recurrent stroke. The flow parameters of the
carotid ultrasound, PI and RI, are more useful in differentiating
between non-recurrent and recurrent stroke compared with
other carotid ultrasonographic parameters.
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