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ABSTRACT
Background: Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous
malignancy with varied outcomes. However, the fundamental mechanisms remain to
be fully defined.
Aim: We aimed to identify core differentially co-expressed hub genes and perturbed
pathways relevant to the pathogenesis and prognosis of DLBCL.
Methods: We retrieved the raw gene expression profile and clinical information of
GSE12453 from the Gene Expression Omnibus (GEO) database. We used integrated
bioinformatics analysis to identify differentially co-expressed genes.
The CIBERSORT analysis was also applied to predict tumor-infiltrating immune
cells (TIICs) in the GSE12453 dataset. We performed survival and ssGSEA
(single-sample Gene Set Enrichment Analysis) (for TIICs) analyses and validated the
hub genes using GEPIA2 and an independent GSE31312 dataset.
Results: We identified 46 differentially co-expressed hub genes in the GSE12453
dataset. Gene expression levels and survival analysis found 15 differentially
co-expressed core hub genes. The core genes prognostic values and expression levels
were further validated in the GEPIA2 database and GSE31312 dataset to be reliable
(p < 0.01). The core genes’main KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathway enrichments were Ribosome and Coronavirus disease-COVID-19. High
expressions of the 15 core hub genes had prognostic value in DLBCL. The core genes
showed significant predictive accuracy in distinguishing DLBCL cases from
non-tumor controls, with the area under the curve (AUC) ranging from 0.992 to
1.00. Finally, CIBERSORT analysis on GSE12453 revealed immune cells, including
activated memory CD4+ T cells and M0, M1, and M2-macrophages as the infiltrates
in the DLBCL microenvironment.
Conclusion:Our study found differentially co-expressed core hub genes and relevant
pathways involved in ribosome and COVID-19 disease that may be potential targets
for prognosis and novel therapeutic intervention in DLBCL.
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INTRODUCTION
Diffuse large B-cell lymphoma (DLBCL) is exceptionally heterogeneous and the most
common aggressive non-Hodgkin lymphoma (NHL) subtype in adults. It is increasingly
appreciated that its varied outcomes depend on the patients’ clinical and biological
features (Karube et al., 2018; Liu et al., 2019b; Luo et al., 2018; Naresh et al., 2011). Despite
several reports on the mechanism of DLBCL, its pathogenesis characterized by multiple
abnormalities at different molecular levels remains unresolved. Its development and
progression are multifaceted, comprising various signaling pathways and driver genes.
Despite improved clinical outcomes with current therapies, such as rituximab-
chemotherapy (R-CHOP), chimeric antigen receptor (CAR)-T cell, and advancement in
stem cell transplantation, over 40% of high-risk patients relapse or develop the primary
refractory disease. Mortality figures remain high (Karube et al., 2018; Luo et al., 2018).
Therefore, an in-depth understanding of disease biology could reveal novel biomarkers of
diagnostic and prognostic value. It will also facilitate the design of alternative personalized
therapeutic strategies for DLBCL.

Advances in gene profiling technologies, high-throughput data, and bioinformatics
databases make screening DLBCL for differentially co-expressed genes indispensable,
particularly when integrated with personalized genomic profile data (Lui et al., 2015; van
Dam et al., 2018). Recently, Liu et al. (2019a) identified eleven genes associated with
endometrial cancer progression and prognosis by comprehensive bioinformatics analysis.
Zhou et al. (2019) used CIBERSORT and other bioinformatics analyses for colon cancer.
They found that the tumor microenvironment (TME) was abundantly enriched with
M0 and M2 macrophages, activated memory CD4+ T cells, and other immune cells that
could play crucial roles as biomarkers (Zhou et al., 2019). However, few integrated
bioinformatics studies have compared the gene expression profile of DLBCL with
non-cancer controls.

Thus, we downloaded the Gene Expression Omnibus (GEO) raw dataset of GSE12453
and compared 11 DLBCL cases with 24 non-cancer controls (non-neoplastic B
lymphocytes isolated from blood or tonsils). We performed a series of screens and
analyses, including filtering off differentially expressed genes (DEGs), enrichment analysis,
and co-expression analysis to determine hub genes of clinical significance to DLBCL.
We identified 15 differentially co-expressed core hub genes associated with the prognosis
of DLBCL (RPS24, RPS21, RPL31, RPL30, RPS17, MRPS28, FAU, RPS25, RPL22L1,
NDUFA6, CXCL9, CCL4, MRPL33, HEBP1, and RPL11). The KEGG (Kyoto
Encyclopedia of Genes and Genomes) analysis associated most of the genes with Ribosome
and Coronavirus disease-COVID-19 pathways. Validation in the GEPIA2 database and
GSE31312 dataset revealed that the core genes had consistent expression levels and were
reliable. Receiver operating characteristic (ROC) curves plotted demonstrated that the core
genes could be potential diagnostic biomarkers. The identified genes could play critical
roles in diagnosis, prognosis, and help establish a foundation for developing or identifying
novel targeted therapies for DLBCL.
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MATERIALS AND METHODS
Data collection
We evaluated and downloaded the raw gene expression profiles from the National Center
for Biotechnology Information-Gene Expression Omnibus (NCBI-GEO) database (https://
www.ncbi.nlm.nih.gov/geo/). The series was based on GPL570 [HG-U133_Plus_2]
Affymetrix Human Genome U133 Plus 2.0 Array. GSE12453 (Brune et al., 2008) was used
to identify differentially expressed and co-expressed genes. It was also used to predict
tumor-infiltrating immune cells (TIICs). It contained 11 DLBCL cases and 25 normal
controls. The controls were non-neoplastic B lymphocytes isolated from healthy donors’
blood or tonsils from routine tonsillectomy patients. Similar expression profiles on the
selected GPL570 platform contained normal but reactive controls or non-human controls,
such as cell lines or limited controls, and were excluded. We used the GSE31312 (Visco
et al., 2012) with 498 DLBCL cases for survival analysis and identifying immune cells
infiltrating the TME.

Study design and data pre-processing
The GSE12453 CEL file was pre-processed using the Affymetrix package (Gautier
et al., 2004) in R software (https://www.r-project.org/) version 4.0.2 (Team, 2019).
The procedures included background correction, log2 transformation, followed by quantile
normalization. We performed a standard quality assessment, including scaling factors
and NUSE plots, and hierarchical clustering to identify outliers. The study’s design
flowchart is shown in Fig S1.

Screening of differentially expressed genes (DEGs)
The DEGs between DLBCL cases and non-cancer controls were screened with R package
limma (https://www.bioconductor.org/), Release 3.11 (Ritchie et al., 2015). The cutoff
criteria were p < 0.05, |log2fold change (FC)| > 1.0. The pheatmap package was used to
generate hierarchical clustering, and ggplot2 (Wickham, 2016) was used to show the
volcano plot in R. We used the resulting data output tables that included gene ID, log2FC,
unadjusted and adjusted p-values in subsequent analyses.

Functional and pathway enrichment analysis
We investigated the functional roles and pathway signaling relevance of the DEGs.
The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis was performed using the R clusterprofiler (https://
bioconductor.org/), Release 3.12 (Yu et al., 2012). A p-value < 0.05 was considered
significantly enriched. The GO categories included biological process (BP), molecular
function (MF), and cellular component (CC).

Gene set enrichment analysis (GSEA)
We used the normalized expression dataset of GSE12453 for the GSEA (www.gsea-msigdb.
org/gsea/index.jsp), version 4.1.0. We followed the recommended protocol. This included
“gct” and “cls” file formats for the expression dataset and phenotype labels, respectively
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(Subramanian et al., 2005). Significant gene sets had a false discovery rate (FDR) <0.25
and a nominal p-value < 0.05.

Protein-protein interaction (PPI) network of DEGs and hub modules
selection
We applied the STRING database (https://string-db.org), version 11.0 (Szklarczyk et al.,
2019), to assess and map the identified DEGs into a human PPI network. Then, we
uploaded the resulting data output into Cytoscape software (https://cytoscape.org/),
version 3.8.2 (Shannon et al., 2003), and used MCODE with default parameters (Bader &
Hogue, 2003) and the Cytohubba (Chin et al., 2014) plug-ins to select significant modules
and top-ranked genes. Nodes and edges represented genes and their interactions.

Predicting tumor-infiltrating immune cells (TIICs)
We applied the Cibersort algorithm (Newman et al., 2019) in R to predict TIICs using the
normalized GSE12453 dataset, according to the CIBERSORT instructions. We used data
with a p-value < 0.05 for further analysis.

Co-expression network construction and identification of modules
related to DLBCL
We conducted gene co-expression analysis on the processed GSE12453 data using the
weighted correlation network analysis (WGCNA) (Langfelder & Horvath, 2008; Langfelder
& Horvath, 2012) in R (Team, 2019). We followed the standard protocols, including
quality control procedures. We performed a power β transformation on the computed
Pearson correlation matrix to ensure a scale-free topology. The minimum number of
module genes was set at 30. The WGCNA R package then generated a co-expression
network from the resulting adjacency matrix. We applied the dynamic Tree Cut package
(Team, 2019) to create the co-expression modules from the color-coded hierarchical
clustering dendrogram. We assessed clinical module-trait relationships with Pearson’s
correlation. Gene significance (GS) and module membership (MM) were also analyzed for
their correlation in modules. Statistically significant modules were defined as p < 0.05.

Identifying differentially co-expressed hub module genes
The hub genes were identified from the intersection between the DEGs and genes
significant in the WGCNA modules. We then analyzed the hub genes with the STRING
and Cytoscape databases. We further conducted functional and pathway analysis on the
hub genes to determine the relevant genes that impact DLBCL.

Validation and survival analysis of core hub genes
We validated the expression levels of the hub genes in the GEPIA2 (gepia2.cancer-pku.cn/
#index) database (Tang et al., 2019). We retrieved the pre-processed quantile
normalized series matrix file (GSE31312, Affymetrix HG-U133 Plus 2.0 GeneChips)
containing 498 de-novo adults DLBCL from the NCBI-GEO database. We used it for the
prognostic value analysis (overall survival (OS) and progression-free survival (PFS)).
We plotted Kaplan–Meier survival curves with ggplot2 in R. The genes with p-value < 0.05
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were selected as core hub genes. Also, receiver operating characteristic (ROC) curves
were plotted with the pROC R package (Team, 2019) to validate the diagnostic value of the
core genes. Then, the human protein atlas (proteinatlas.org/) was used to confirm their
protein expressions in some selected lymph node samples (Uhlen et al., 2017).

We used the ssGSEA (single-sample Gene Set Enrichment Analysis) package
(Subramanian et al., 2005) in R on the GSE31312 dataset to investigate immune-associated
core hub genes in the TME.

In addition, we also employed the GEPIA2 and Oncomine (Rhodes et al., 2004)
databases to determine the expression levels and relevance of the core hub genes in other
tumors.

RESULTS
Differentially expressed genes (DEGs)
According to standard protocols, one poor quality control sample (GSM312887) was
excluded from the GSE12453 dataset after pre-processing. We identified 1,260 DEGs
between the 11 DLBCL and 24 non-tumor controls. They comprised 1,014 up-regulated
and 246 down-regulated genes (p < 0.05 and |log2FC| > 1). The gene list, Affymetrix
probe ID, and log FC are shown in (Excel S1). The expression patterns of the DEGs are
shown in Fig. 1. Figure 1A shows the volcano plot of all expressed genes. The DLBCL
cases showed a distinctive gene expression profiling. As shown in Fig. 1B, the heatmap of
the top 169 DEGs with |log2FC| > 2 suggested that the identified DEGs expression levels
could differentiate DLBCL from non-tumor samples. We utilized the CytoHubba
application in Cytoscape, employing five calculation methods: the Maximal Clique
Centrality (MCC), Maximum Neighborhood Component (MNC), Degree, Edge
Percolation Component (EPC), and EcCentricity to rank the top 250 DEGs.
The genes from the five methods were intersected using the Venn diagram software
(http://bioinformatics.psb.ugent.be/webtools/Venn/). Most of the intersecting genes
(Fig. 1C) were associated with significant and valuable pathways such as the proteasome,
spliceosome, and viral protein interaction with cytokine and cytokine receptor (Fig. S2).
Intersecting genes are common genes with a high degree of interconnection and are more
likely to represent key candidate genes with important biological regulatory functions.

Functional and pathway analysis
We applied the enrichGO or enrichKEGG function of the clusterProfiler package (Yu
et al., 2012) in R to investigate the biological functions of all the DEGs (p < 0.05). The GO
and KEGG pathway analysis results are shown in Fig. 2. In GO analysis, the DEGs were
primarily enriched in ATP synthesis coupled electron transport and mitochondria ATP
synthesis coupled electron transport for biological processes (BP). Their cellular
components (CC) were mainly related to the mitochondria protein complex, mitochondria
inner membrane, etc. Their molecular functions (MF) consisted of structural constituents
of ribosomes and NADH dehydrogenase activity (Fig. 2A). The KEGG pathway
analysis showed significant enrichment in ribosome and oxidative phosphorylation
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(Fig. 2B). Strikingly, the DEGs involved in the KEGG pathway and GO enrichment
analysis were mainly upregulated genes, with few down-regulated genes.

Further analysis showed that the down-regulated genes were enriched in B cell
activation (adjust p-value = 0.003) for GO-BP; our data showed no other significant GO
and KEGG enrichment for the down-regulated genes. The GO and KEGG enrichment
analysis for the upregulated genes was similar to the analysis we performed earlier.
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Figure 1 Statistics for the differentially expressed genes. (A) Volcano plot highlighting significant genes in DLBCL and non-tumor tissues. UP
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The GO and KEGG analysis classifies genes into functional categories to help understand
their functions and regulatory pathways. Hence, with additional investigations, the genes
in these pathways might throw more light on the pathogenesis of DLBCL.

Gene Set Enrichment Analysis (GSEA) of DLBCL expression dataset
(GSE12453)
We performed a GSEA analysis to compare the DLBCL and non-tumor controls’
expression profiles to understand better the biological functions of the relevant genes
discovered. We analyzed all the qualified genes in the GSE12453 expression dataset.
The KEGG output from the GSEA was similar to our previous pathway analysis and
confirmed our earlier results. The Hallmark gene sets showed immune and metabolic-
related signaling predominance, including estrogen response late, epithelial-mesenchymal
transition, and UV response up (Table S1). Interestingly, genes defining late response
to estrogen, epithelial-mesenchymal transition (such as in fibrosis and metastasis), and
genes upregulated in response to ultraviolet (UV) radiation have not been fully elucidated
in DLBCL. However, evidence suggests these genes have essential roles in oncogenesis.
These findings provide evidence that can drive future research with therapeutic
implications.

Predicting tumor-infiltrating immune cells (TIICs)
Our GO, KEGG, and GSEA analyses showed that the DEGs were enriched in some
immune-related biological functions. Immune cell infiltration into tumors plays an
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essential role in tumorigenesis and metastasis. So, we applied the CIBERSORT
algorithm to the GSE12453 dataset to predict immune cells infiltrating the TME. Among
the immune subsets analyzed, activated memory CD4+ T cells, CD8+ T cells, and M0, M1,
and M2 macrophages were the most represented cell fractions within the DLBCL
microenvironment (Figs. 3A, 3B). The correlations among the TIICs ranged from high to
negligible (Fig. S3). Regulatory T cells (Tregs) showed a moderate negative correlation
with activated memory CD4+ T cells. However, M0 macrophages had a high positive
correlation with activated memory CD4+ T cells and M1 macrophages. The varied
infiltrating immune cell types could be reflective of the complexity and the unusual
behavior of DLBCL. Uncommitted macrophages (M0) can polarize into the M1
(considered tumoricidal) and M2 (pro-tumorigenic) to show paradox effects on tumor
prognosis (Dancsok et al., 2020). Memory B cells and activated dendritic cells were the
most represented fractions in the non-tumor controls (Fig. 3A). The findings suggest that
TIICs may be closely associated with clinical outcomes. Future studies, including their
correlation to DLBCL disease stages, will be meaningful, particularly for immunotherapy.

Protein-protein interaction (PPI) network and hub modules
establishment
We constructed the PPI network of all DEGs using the STRING database’s multiple
proteins function to determine genes likely to perform biological functions together.
The highest confidence of 0.9 was set with unconnected nodes taken out. As shown in
Fig. 4A, it yielded 609 nodes and 8,583 edges. These genes were highly inter-connected
than expected (PPI enrichment p-value < 1.0e−16). We observed six important clusters
with a k-score > 10 when we analyzed the tab-separated values (tsv) file with Cytoscape’s
MCODE. The largest cluster (#1) had the highest score of 33.17 (Fig. 4B); it mainly
comprised Ribosome genes (FDR = 3.49e−83) in KEGG analysis. Cluster 2 (Fig. 4C) was
enriched in genes associated with oxidative phosphorylation (FDR, 7.23e−56) and
Parkinson’s disease (FDR, 2.62e−55). Cluster three (Fig. 4D) genes were mainly involved in
chemokine signaling (FDR, 1.06e−22). We identified 109 highly connected DEGs
(Excel S1) from these top three clusters. These DEGs could play essential roles in DLBCL,
so they were selected for further hub gene screening.

In this study, the down-regulated DEGs were not part of the constructed PPI, so we
determined their relevance in DLBCL. We ranked the top 60 DEGs (30 up-and 30
down-regulated) by log2FC and analyzed them in the STRING database (Fig. S4A).
The only down-regulated DEG in the network built was identified upregulated when
verified in the GEPIA2 database. To further investigate the down-regulated DEGs’
functional relatedness, a PPI was constructed for all the down-regulated DEGs (Fig. S4B).
We found that the down-regulated genes were enriched in B cell activation for GO-BP,
shown in (Fig. S4C). Finally, we used the degree method of the CytoHubba application to
predict the top 250 important genes (Fig. 4E). Genes with a high degree of centrality are
vital since they have many direct interacting gene partners. If confirmed, these critical
findings could improve the general understanding and the potential causes of variation in
the clinical prognosis of DLBCL.

Charwudzi et al. (2021), PeerJ, DOI 10.7717/peerj.12394 8/29

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12453
http://dx.doi.org/10.7717/peerj.12394/supp-3
http://dx.doi.org/10.7717/peerj.12394/supp-13
http://dx.doi.org/10.7717/peerj.12394
https://peerj.com/


Figure 3 The prediction of tumor-infiltrating immune cells (TIICs) using the GSE12453 dataset.Violin plot comparing the proportions of TIICs
between non-tumor controls (in blue ) and DLBCL (in red). The x and y axes represent TIICs and their relative percentages, respectively. There was
no T cell CD4 memory resting. (B) Bar plots for 24 non-tumor controls and 11 DLBCL samples (x-axis) and the percentages of immune cell subsets
(y-axis). Full-size DOI: 10.7717/peerj.12394/fig-3
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Figure 4 The protein-protein interaction (PPI) networks using the STRING and Cytoscape databases. (A) The PPI network for the 109 highly
connected DEGs; confidence score, 0.9. (B) Cluster one consisted of 61 nodes, 995 edges with the highest k-score of 33.17. (C) Cluster two had 28
nodes, 359 edges, and a k-score of 26.59. (D) Cluster three had 20 nodes, 190 edges, and a k-score of 20.00. (E) The top 250 ranked DEGs.

Full-size DOI: 10.7717/peerj.12394/fig-4
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Weighted gene co-expression network (WGCNA) analysis
To identify co-expression modules that could share similar biological functions or
regulatory mechanisms with clinical relevance to DLBCL, we applied the WGCNA
package (Langfelder & Horvath, 2008; Langfelder & Horvath, 2012) in R (Team, 2019).
The GSE12453 dataset we processed was used. We carried out quality control procedures,
including inspecting good genes and sample hierarchical clustering to detect potential
outliers, but no obvious outliers were found (Fig. 5A). The 35 samples yielded two main
clusters. We applied the WGCNA on the top 25% of the 21,654 expressed genes ranked
by the largest variance. To satisfy a scale-free network topology, we choose the
soft-threshold power β of eight with R2 = 0.86 (Figs. 5B, 5C). Hierarchical clustering and
the dynamic tree-cutting yielded 18 modules of co-expressed genes (Fig. 5D). Finally, we
visualized the top 1,000 significantly expressed genes with a heatmap (Fig. 5E); they
represent interesting genes for further analysis.

To investigate the molecular mechanisms of the traits, we correlated each Module
Eigengenes (ME) to disease status (DLBCL and non-tumor controls). The results are
shown in Fig. 6. The ME turquoise and green (Figs. 6A, 6B) containing 292 and 72 genes,
respectively, strongly correlated with DLBCL. ME dark magenta with five genes had the
strongest negative correlation. The cut-off was set at gene significance (GS) value >0.8,
and absolute Module Membership (MM) value >0.7. Besides, the GS versus MM plots
for these three modules were highly correlated (Fig. 6C), reflecting their high association
with DLBCL. We selected these three clinically significant modules with the 369 high
connectivity genes (gene list shown in Excel S1) for further analysis. The highly connected
genes are often the most important (central) elements of the respective modules and tend
to play key roles in the biological processes. The ME genes are listed in Excel S1.
Altogether, these co-expressed genes might provide new clues to understand the biology of
DLBCL in the future.

PPI and functional enrichment analysis of the WGCNA relevant
modules
The 369 high connectivity genes from the three relevant modules were filtered in the
STRING database followed by the Cytoscape; the network yielded a PPI with 195 nodes
and 1,579 edges. The PPI and gene list are detailed in Fig. S5 and Excel S1. These 195 genes
were considered functionally important. As presented in (Fig. 7), functional annotation
revealed that these genes were involved in viral transcription and viral gene expression in
the BP category. In KEGG analysis, the genes were primarily enriched in ribosome,
coronavirus disease-COVID-19, and oxidative phosphorylation. The identified pathways
were roughly consistent with that of the DEGs. These processes and signaling pathways
are usually disrupted in cancer and could provide an insight into the pathogenesis of
DLBCL.

Identification of hub genes and pathways
Eventually, we identified 46 important differentially co-expressed genes by the Venn
diagram software, as shown in (Fig. 8A). These 46 genes were common between the DEGs
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Figure 5 Construction of gene co-expression network. (A) Sample clustering to detect outliers, no obvious outliers found. (B and C) Determi-
nation of soft-threshold power. When β is set at eight, the log-log plot of the network connectivity distribution produces a straight line.
(D) Hierarchical clustering dendrograms (top modules). Each color band (bottom) represents a color-coded module that contains a group of highly
connected genes. The Dynamic Tree Cut identified 18 modules. (E) A heatmap showing the topological overlap matrix (TOM) among the top 1,000
genes selected from all genes. The color intensity indicates the correlation strength between pairs of modules: the left side (gene dendrogram) and the
top side (module assignment). Full-size DOI: 10.7717/peerj.12394/fig-5
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and WGCNA hub module genes and were regarded as hub genes. We re-analyzed the
46 genes with the STRING and Cytoscape databases, and the PPI is shown in (Fig. 8B).
Their GO and KEGG enrichments in the R software (Table 1) were similar to the other
analyses. The KEGG common genes in the ribosome, COVID-19, and oxidative
phosphorylation pathways are shown in Table 2. The above pathway genes play essential
roles in metabolic reprogramming and tumor-promoting inflammation of cancer and
warrant further studies.

Figure 6 Identifying modules of clinical relevance from the GSE12453 dataset. (A) Module trait relationship showing correlation coefficients
between module eigengenes (row) and disease status (column), with the corresponding p-values in brackets. The degree of correlation is based on a
color legend: red, strong positive and blue, strong negative correlation. (B) Heatmap plot of the adjacencies in the eigengene network, including the
relationship with DLBCL trait. The top panel is the hierarchical clustering dendrogram of the eigengenes. The bottom panel shows the eigengene
adjacency. (C) Scatter plots of gene significance (GS) versus module membership (MM) for the DLBCL related modules (turquoise, green and dark
magenta, respectively). Full-size DOI: 10.7717/peerj.12394/fig-6
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Validation of expressions and prognostic analysis of core hub genes
We applied GEPIA2 to validate the reliability and authenticity of the 46 hub genes in the
cancer genome atlas (TCGA) dataset. We identified 44 prognostic genes with higher
expression (consistent with that in the GSE12453 dataset) in DLBCL tissues than the
non-tumor control tissues (p < 0.01) (Fig. 9) (15 genes shown) and (Excel S1).
Kaplan–Meier survival analysis on the GSE31312 showed 15 of these genes (p < 0.05)
correlated with patient outcomes (Fig. 10 & Table S2). Except for RPL11, the patients
with high expressions had significantly shorter 5-year OS and PFS, suggesting these genes
are potential oncogenes and have a role in DLBCL development and/or progression.
The 15 genes (Fig. 11A) were considered as the core hub genes. Moreover, ROC curve
analysis for their diagnostic potentials obtained AUCs ranging from 0.992 to 1.00,
indicating optimal performance to accurately differentiate DLBCL from non-tumor
control cases (Fig. S6). Also, immunohistochemistry data from the human protein atlas
(HPA) database demonstrated the protein expressions of some of the genes in some lymph
node samples with cytoplasmic/membranous localization (Fig. S7, four genes shown); data
were retrieved from https://www.proteinatlas. The genes included RPS21, MRPS28,
RPL31, and RPL30. As expected, they would be involved in metabolic pathways such as
glycolysis and processes including signal transduction and cell division.

The core hub genes’ functional annotation was mainly associated with Ribosome and
Coronavirus disease-COVID-19 (Figs. 11B, 11C; Table 3). To assess the tumorigenic
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Figure 7 Top 10 enrichment results of the 195 WGCNA (weighted correlation network analysis) genes. (A) Gene Ontology (GO) functional
analysis. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Full-size DOI: 10.7717/peerj.12394/fig-7

Charwudzi et al. (2021), PeerJ, DOI 10.7717/peerj.12394 14/29

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12453
http://dx.doi.org/10.7717/peerj.12394/supp-13
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31312
http://dx.doi.org/10.7717/peerj.12394/supp-11
http://dx.doi.org/10.7717/peerj.12394/supp-7
https://www.proteinatlas
http://dx.doi.org/10.7717/peerj.12394/fig-7
http://dx.doi.org/10.7717/peerj.12394
https://peerj.com/


potentials of the COVID-19 genes regarding immune cells infiltrating the TME, the
ssGSEA analysis was applied (GSE31312). As shown in Fig. S8, seven out of the nine
COVID-19 pathway genes negatively correlated with mast cells, five with immature
dendritic cell (iDC), and three genes negatively correlated with plasmacytoid DC. RPL30,
RPL31, RPS25, and FAU positively correlated with tumor-infiltrating lymphocytes
(TIL) and macrophages. RPL30, RPL31 correlated with Tregs. These infiltrating immune
cells may be involved in regulating tumor proliferation, dormancy, and drug resistance.

Finally, we determined whether the core genes were upregulated in other tumors.
The GEPIA2 database revealed that all the 15 core genes were upregulated in thymoma
(THYM), and 11 genes were upregulated in testicular germ cell tumors (TGCT). Notably,
RPL30 and FAU genes were consistently upregulated in all six different cancer types
identified (Table S3). In the Oncomine database, some of the core genes were upregulated

Figure 8 Differentially co-expressed hub genes. (A) Venn diagram indicating the 46 common genes. (B) Protein-protein interaction (PPI) network
of the 46 hub genes (STRING and Cytoscape databases). Full-size DOI: 10.7717/peerj.12394/fig-8

Charwudzi et al. (2021), PeerJ, DOI 10.7717/peerj.12394 15/29

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31312
http://dx.doi.org/10.7717/peerj.12394/supp-8
http://dx.doi.org/10.7717/peerj.12394/supp-12
http://dx.doi.org/10.7717/peerj.12394/fig-8
http://dx.doi.org/10.7717/peerj.12394
https://peerj.com/


in various lymphoma datasets and other cancers, including Sarcoma (Fig. S9). The results
suggest that the upregulation of these 15 hub genes may not be limited to DLBCL.

DISCUSSION
Diffuse large B-cell lymphoma (DLBCL) remains a significant clinical challenge; over 30%
of patients are not cured (Pasqualucci & Dalla-Favera, 2018; Yi et al., 2020). So far, no
functional assays capable of screening exit, so effective management is required once
diagnosed. Hence, identifying unique gene signatures and regulatory pathways related to
its pathogenesis and prognosis is meaningful. Here, we examined the gene expression

Table 1 Gene Ontology and KEGG pathway analysis of the 46 differentially co-expressed genes.

Term Description Count p. adjust

Biological process

GO:0006614 SRP-dependent cotranslational protein targeting to membrane 16 1.29E−22

GO:0019083 Viral transcription 18 1.29E−22

GO:0006613 Cotranslational protein targeting to membrane 16 1.29E−22

GO:0019080 Viral gene expression 18 2.85E−22

GO:0045047 Protein targeting to ER 16 2.98E−22

GO:0000184 Nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 16 3.30E−22

GO:0072599 Establishment of protein localization to endoplasmic reticulum 16 3.74E−22

GO:0070972 Protein localization to endoplasmic reticulum 16 7.45E−21

Cellular component

GO:0044391 Ribosomal subunit 25 2.39E−37

GO:0005840 Ribosome 25 1.45E−33

GO:0022626 Cytosolic ribosome 18 3.96E−28

GO:0015934 Large ribosomal subunit 17 1.54E−25

GO:0044445 Cytosolic part 18 6.76E−22

GO:0098798 Mitochondrial protein complex 17 8.16E−20

GO:0005743 Mitochondrial inner membrane 19 2.01E−18

GO:0022625 Cytosolic large ribosomal subunit 11 1.14E−17

Molecular function

GO:0003735 Structural constituent of ribosome 24 1.15E−33

GO:0003954 NADH dehydrogenase activity 9 3.12E−14

GO:0008137 NADH dehydrogenase (ubiquinone) activity 9 3.12E−14

GO:0050136 NADH dehydrogenase (quinone) activity 9 3.12E−14

GO:0016655 Oxidoreductase activity, acting on NAD(P)H, quinone or similar compound as acceptor 9 3.26E−13

GO:0016651 Oxidoreductase activity, acting on NAD(P)H 9 6.05E−11

GO:0008009 Chemokine activity 6 2.25E−08

KEGG pathway

hsa03010 Ribosome 24 4.36E−29

hsa05171 Coronavirus disease-COVID-19 21 2.35E−20

hsa00190 Oxidative phosphorylation 11 9.15E−10

Note:
The selection of terms enriched in the categories was based on the most significant adjusted p-value (p. adjust). Count: the number of genes enriched in each term or
pathway.
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profile of GSE12453 to find dysregulated common core hub genes and pathways to
help further understand DLBCL pathogenesis and provide potential biomarkers.

Integrated bioinformatics analysis, gene expression levels, and survival analysis
identified 15 differentially co-expressed core hub genes linked to DLBCL pathogenesis.
The genes included RPS24, RPS21, RPL31, RPL30, RPS17, MRPS28, FAU, RPS25,
RPL22L1, NDUFA6, CXCL9, CCL4, MRPL33, HEBP1, and RPL11. Their primary KEGG
enrichment was ribosome and coronavirus disease-COVID-19, which was in line with
the other analyses. The construction of ROC curves yielded very high AUC values
suggesting the genes could accurately distinguish between DLBCL and non-tumor control
cases and might be potential biomarkers. In addition, experimentally derived data from the
HPA by IHC indicated the protein expression of some of the genes in some lymph
node samples. RPS21, MRPS28, RPL31, and RPL30 showed relatively higher protein
expressions in some DLBCL and other malignant lymphoma tissues than the averaged
expressions in normal tissues, though not significant. The HPA database sample size was

Table 2 List of the hub genes involved in the three KEGG pathways.

S/N 24 differentially co-expressed
(DCE) ribosome genes

21 DCE coronavirus
disease-COVID-19

11 differentially co-expressed
oxidative phosphorylation genes

1 MRPS18A RPL10L UQCRQ

2 RPL10L RPL24 NDUFB1

3 MRPL17 RPS17 NDUFB2

4 RPL24 CXCL10 NDUFB3

5 RPS17 RPL30 NDUFS6

6 RPL30 RPS18 NDUFA1

7 RPS18 C3 NDUFA3

8 RPS19 RPS19 NDUFA11

9 RPL29 RPL29 NDUFB9

10 RPL31 RPL31 NDUFA6

11 RPL36 RPL36 UQCR11

12 MRPL33 RPS21

13 RPS21 FAU

14 MRPL21 RPS24

15 FAU RPL14

16 RPS24 RPS25

17 RPL14 RPL22L1

18 RPS25 RPL11

19 RPL22L1 RPL35

20 RPL35 RPL12

21 MRPL14 RPS7

22 RPL11

23 RPL12

24 RPS7

Note:
DCE, differentially co-expressed.
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limited; however, the HPA experimental findings can be extended to DLBCL and other
lymphomas, thus providing a valuable basis for medical and biological research.

Lastly, most of the core genes were upregulated in different cancer types. Cancer is a
complex disease, so the genes might have similar or different prognostic roles in these
tumors. The overall survival data from GEPIA2 demonstrated that low levels of FAU,
RPS17, and RPS 24 were significantly associated with shorter survival, while high CCL4
was significantly associated with shorter survival in thymoma patients. Nonetheless, the
genes’ potential biological and clinical relevance is not restricted to only DLBCL.

Figure 9 The expressions of the hub genes in the GEPIA2 database. �(p < 0.01). The data were retrieved from the GEPIA2 database (http://gepia2.
cancer-pku.cn/#index). Full-size DOI: 10.7717/peerj.12394/fig-9
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These genes could be prognostic markers and therapeutic targets across different tumor
types, particularly for patients with multiple coexisting tumors.

Little is known experimentally about the roles of most of the core genes proteins in
DLBCL. However, dysregulated ribosomal proteins have been reported to play various
critical roles in other tumors (Wang et al., 2015). Among our ribosome genes,
over-expressed RPS21 promoted prostate cancer (PCa) cell proliferation, migration, and
invasion, inhibited PCa cell apoptosis, and was suggested as a promising biomarker, with a
potential application in diagnosis or treatment (Liang et al., 2019). The 8q-mapped

Figure 10 The Kaplan–Meier estimates for the overall survival (OS) of the 15 core hub genes in GSE31312 (p < 0.05).
Full-size DOI: 10.7717/peerj.12394/fig-10
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RPL30 gene was associated with adverse outcomes in Medulloblastoma patients (De
Bortoli et al., 2006). RPS24 significantly promoted colorectal cancer (CRC) cells’
proliferation rate and increased CRC risk in patients (Zou et al., 2020). The knockdown of
RPS24 inhibited cell proliferation and cell migration in human CRC cell lines and was
recommended as a biomarker (Wang et al., 2015). A study also implicated MRPS28 in the
molecular pathogenesis of bladder cancer (Liu et al., 2021).
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The coronavirus disease-COVID-19 and viral transcription enrichments agree with
recent studies implicating various viruses (Gandhi et al., 2020) (Fedoriw et al., 2020) in the
development and progression of DLBCL subtypes. Most DLBCL patients have an
underlying immune dysfunction and can easily get viral infections. Viruses such as
COVID 19 could manipulate the function of the COVID 19 related genes in the TME.
Besides, the Gene Cards database (https://www.genecards.org/) demonstrated all the covid
19 pathway genes (RPS24, RPS21, RPL31, RPL30, RPS17, FAU, RPS25, RPL22L1, RPL11)
are related to viral mRNA translation (Stelzer et al., 2016). Additionally, the DAVID
database (Protein interactions) associated five COVID 19 genes (RPL30, RPS17, RPS24,
RPS25, and FAU) with HIV interactions (Huang, Sherman & Lempicki, 2009).

Recently, hematological malignancies (HM) patients were reported to have a more
severe COVID-19 trajectory than patients with solid organ tumors (Lee et al., 2020).
A significant number of the COVID 19 related genes were upregulated in various
lymphomas and some multiple myeloma datasets (Fig. S9). Most of our COVID-19
pathway genes showed some correlations with immune infiltrates such as TIL and
macrophages. An anti-viral immune response can have protective effects with improved
survival in coronavirus infection, but excessive inflammation can be harmful (“cytokine
storm”). High pro-inflammatory macrophage (M1) and low CD8+ T cells were observed in
the microenvironment of severe/critical COVID-19 patients (Liao et al., 2020). Higher
expression of CXCL9 in COVID-19 patients than healthy controls and higher levels of
CCL4 in severe COVID-19 patients were also found (Liao et al., 2020). These are partly
consistent with our data and previous knowledge on various cancers (Brune et al.,
2008; Chang et al., 2013; De la Fuente López et al., 2018). Not much is known about
COVID-19 and most cancers, including DLBCL pathogenesis. However, it is tempting to
speculate that COVID-19 infection, together with the COVID-19 related genes, could
increase macrophage polarization to M1 (hyper-inflammatory response) to worsen
prognosis (He et al., 2020; Passamonti et al., 2020; Shah et al., 2020). But, the mechanism is
unclear, and limited data on the topic did not permit detailed discussion. However,
extensive genome-related studies are required to verify this association between COVID 19
and DLBCL; these genes could provide a basis to identify effective preventive and
therapeutic strategies.

Clinical implication analysis in the GEPIA2 database showed that the core hub genes
were significantly overexpressed in DLBCL. The high expressions of 14 (93%) were

Table 3 List of the core hub genes involved in the three KEGG pathways.

KEGG pathway Number
of genes

List of genes p. adjust

hsa03010: Ribosome 10 RPS24/RPS21/RPL31/RPL30/RPS17/FAU/RPS25/RPL22L1/MRPL33/RPL11 3.12E-14

hsa05171: Coronavirus disease-COVID-19 9 RPS24/RPS21/RPL31/RPL30/RPS17/FAU/RPS25/RPL22L1/RPL11 6.89E-11

hsa04061: Viral protein interaction with
cytokine and cytokine receptor

2 CXCL9/CCL4 0.0552
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negatively associated with prognostic outcomes (worse OS and PFS times).
These emphasize their potential role as oncogenes and could be utilized as prognostic
indicators for DLBCL. The high expression of RPL11 might be associated with a favorable
clinical outcome (Kawahata et al., 2020; Kayama et al., 2017). They offer unique
opportunities for further investigation.

In addition to the ribosome (translation), the 46 hub genes were significantly
represented in oxidative phosphorylation (OxPhos) and mitochondria inner membrane.
Growing evidence suggests cancer is primarily a mitochondrial metabolic disease that
exhibits altered energy production and dysregulated metabolic crosstalk (Yin et al.,
2019; Norberg et al., 2017). Their inhibition has demonstrated anti-cancer efficacy
(Martínez-Reyes et al., 2020; Norberg et al., 2017). Thus, with further studies, these
metabolic genes could be rational targets, especially for the metabolically coupled and
OxPhos-DLBCL subsets, and help understand the metabolic differences in DLBCL.

The few bioinformatics analyses on DLBCL focused on the subtypes (Huang, Liu &
Shen, 2019; Zhou et al., 2020) or clinical features (Xiao, Wang & Bai, 2020). However, some
dysregulated genes specific to DLBCL versus non-tumor controls cannot distinguish the
subtypes (Huang, Liu & Shen, 2019). Moreover, most related studies that focused on
DLBCL and non-cancer controls were based on DEGs (Huang, Liu & Shen, 2019; Luo
et al., 2018) and discovered entirely different core hub genes. However, the complexity of
DLBCL and the emergence of novel targeted therapies warrants more predictive
personalized biomarkers for precision medicine. To our knowledge, no integrated
bioinformatics analysis on DLBCL and non-tumor controls has so far been reported on
the common core hub genes found and immune cells associations. Thus, our finding is
novel.

One potential limitation of this study is the lack of experimental validation. However,
this analysis provides a theoretical basis for our future work, which will focus on
experimental verification. Second, an individual study with limited DLBCL cases was used,
but the hub genes, pathways, and immune cells infiltrate identified are relevant to the
pathogenesis of DLBCL and cannot be ignored. However, our results should be interpreted
with caution.

CONCLUSIONS
We used the integrated bioinformatics method to highlight the critical roles of
differentially co-expressed core hub genes and relevant pathways in DLBCL. We identified
some immune-related core hub genes linked to DLBCL pathogenesis. The core genes’
main KEGG pathway enrichments were Ribosome and Coronavirus disease-COVID-19.
Their verification in GEPIA2 showed they were reliable. Nevertheless, most of the core
genes were upregulated in different cancer types and hold potential biological and clinical
relevance in cancers. Thus, the identified genes could be potential targets for prognosis
and therapeutic intervention in DLBCL and may provide insight into the pathogenetic
mechanisms in DLBCL.
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