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There are currently no validated treatment biomarkers in psychiatry. Resting State

Functional Connectivity (RSFC) is a popular method for investigating the neural correlates

of mood disorders, but the breadth of the field makes it difficult to assess progress toward

treatment response biomarkers. In this review, we followed general PRISMA guidelines to

evaluate the evidence base for mood disorder treatment biomarkers across diagnoses,

brain network models, and treatment modalities. We hypothesized that no treatment

biomarker would be validated across these domains or with independent datasets.

Results are organized, interpreted, and discussed in the context of four popular analytic

techniques: (1) reference region (seed-based) analysis, (2) independent component

analysis, (3) graph theory analysis, and (4) other methods. Cortico-limbic connectivity

is implicated across studies, but there is no single biomarker that spans analyses or that

has been replicated in multiple independent datasets. We discuss RSFC limitations and

future directions in biomarker development.

Keywords: resting state functional connectivity, fMRI, depression, bipolar disorder, mood disorder, biomarker,

treatment response, neuroimaging

INTRODUCTION

Psychiatric disorders are currently defined by symptom clusters in the Diagnostic and Statistical
Manual of Mental Health Disorders, 5th Edition (DSM-5) (1). These clinical constructs are fairly
reliable (2–4), but they lack biological validity. Research Domain Criteria (RDoC) aims to address
this issue by providing a neuroscientific framework in which to study psychiatric symptoms
independent of DSM classifications (5–9). Attempts to create new clinical phenotypes by mapping
symptoms onto RDoC constructs have had limited success (10), highlighting the need to identify
biological substrates and biomarkers.

A biomarker is a “characteristic that is measured as an indicator of normal biological
processes, pathogenic processes, or responses to an exposure or intervention, including therapeutic
interventions” (11). As such, biomarkers can represent clinically relevant intermediate outcomes
or endpoints that are difficult to measure. Several branches of medicine have used biomarkers
to identify pathology in presymptomatic or asymptomatic individuals, elucidate treatment
mechanisms of action, predict or monitor treatment response, improve existing treatments, and
develop new treatments (12). There are currently no established biomarkers in psychiatry, a field
with few measurements besides scales for reported or observable symptoms.
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Neuroimaging is a critical tool for developing psychiatric
biomarkers (6). Traditional functional neuroimaging examines
the spatial and temporal characteristics of blood oxygen level-
dependent (BOLD) signal during alternating blocks of task and
rest. What happens during rest is essentially treated as noise, a
spontaneous signal drift to be subtracted from task block data.
Newer paradigms question this traditional perspective on signal
vs. noise, especially since task-based BOLD signal only accounts
for a fraction of overall neural metabolism (13). Connectivity
analyses of rest blocks has revealed spatial and temporal patterns
that effectively launched the field of resting state functional
connectivity (RSFC) (13, 14).

The ability of RSFC to identify known connections between
brain regions has been empirically validated (15–18). Functional
connectivity does not necessarily imply anatomical connectivity,
although this relationship can be useful to explore if present
(19–21). There are several advantages to RSFC vs. task-
based activation, including simpler data acquisition and greater
capacity to detect individual- and group-level differences (22).
Despite these advantages, RSFC is inherently noisier because
signal fluctuations are highly dynamic yet low in amplitude
(23). There are also issues such as scanner drift, motion artifact,
and limited signal-to-noise in ventral brain regions that are
prominent in but not unique to RSFC (24–29). These factors
make it challenging to measure intra- and inter-scan reliability
within or between studies. Furthermore, the wide variety of RSFC
analytic techniques complicates interpretation between studies.

The present study is a review of RSFC biomarkers of
treatment response in mood disorders, which are prevalent and
often debilitating conditions associated with chronic illnesses,
suicide, and all-cause premature death (30–40). There are
effective treatments for mood disorders, but at least one-
third of patients do not remit despite multiple treatment
trials (41, 42). Furthermore, little is known about treatment
mechanisms of action, making it difficult to select specific
treatments for specific symptom profiles or patients (5, 7, 9,
43–45). Several existing reviews have successfully highlighted
task-based and RSFC biomarkers of mood disorders (46–55).
We aim to expand this knowledge base by focusing on the
evidence for biomarkers of treatment response across diagnoses,
theoretical brain network models, and treatment modality. To
this end, our review is organized around the following primary
analytic techniques: (1) reference region (seed-based) analysis,
(2) independent component analysis (ICA), (3) graph theory
analysis, and (4) other methods. We hypothesized that there
will be no single treatment biomarker validated for mood
disorders across diagnoses, models, treatment modalities, and
independent datasets.

METHODS

We followed general Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines (56, 57)
in this review of TSFC biomarkers of treatment response
in mood disorders. HGK searched PubMed for studies
with various combinations of the following terms: “resting

state,” “functional connectivity,” “fMRI,” “treatment effects,”
“neuroimaging biomarkers,” “mood disorders,” “depression,” and
“bipolar disorder.” During the first quarter of 2020, HGK
identified candidate abstracts of studies reporting RSFC changes
following treatment as well as studies attempting to predict
treatment response based on RSFC. Studies meeting these
criteria were reviewed by JJT, HGK, and AA. Studies were
excluded if they were not written in English, if they did not
include treatment, or if they reported RSFC changes in healthy
participants. Results are organized by RSFC analysis method.
See Supplementary Material for a table summarizing the main
studies discussed in the text.

RESULTS

Reference Region (Seed-Based) Analysis
Reference region analysis, or seed-based analysis, involves
assessing the time series correlation between an a priori region
of interest (ROI) and all other voxels in the brain (17). Whole-
brain, voxel-wise functional connectivity maps of co-variance
with the seed region are usually generated from general linear
model analysis (58). Like many other FSFC analyses, seed-
based analysis assumes that temporal correlation between two
or more regions implies a functional connection between them,
potentially revealing a brain circuit or network (59). Reference
region analysis is considered univariate because voxelwise data
are regressed against the broader model in an independent
manner (58).

RSFC between two brain regions is typically bidirectional. The
following section is organized based on which ROI connectivity
was defined as the primary measure in each particular study.

Anterior Cingulate Cortex
The anterior cingulate cortex (ACC) is of particular interest in
mood disorders. It is typically divided into dorsal/pregenual
and rostral/subgenual regions based on cytoarchitecture,
connectivity, and putative function in healthy controls.

Dorsal/Pregenual Anterior Cingulate Cortex
The dorsal/pregenual region has been consistently implicated in
conflict resolution (60) and in several processes associated with
depression (18, 61, 62). RSFC between dorsal/pregenual ACC and
limbic regions such as amygdala, striatum, and medial thalamus
is decreased in depression (18), and this connectivity increases
after successful treatment with sertraline (63). Clinical symptom
improvement correlates with increased dorsal/pregenual ACC-
amygdala connectivity and decreased amygdala activation (64).
ACC connectivity changes have also been documented after
successful electroconvulsive therapy (ECT) for unipolar and
bipolar depression, with specific changes in connectivity to
orbitofrontal cortex, caudate, dorsolateral prefrontal cortex, and
posterior cingulate cortex (65).

The data on whether dorsal/pregenual connectivity can
predict treatment response are limited and mixed. One study
of late-life depression reported that decreased RSFC between
dorsal/pregenual ACC and other regions of the cognitive
control network predicted low remission rates after 12 weeks
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of escitalopram (61). In a different study, increased RSFC of
the dorsal/pregenual ACC to the cognitive control network
predicted non-response to 12 weeks of escitalopram, duloxetine,
or venlafaxine (62). These conflicting reports are difficult to
reconcile, and more data are needed.

Rostral/Subgenual Anterior Cingulate Cortex
The rostral/subgenual ACC, which encompasses Brodmann
area 25 and is also known as subcallosal ACC, has been
frequently implicated in the pathophysiology of major depression
(66, 67). Rostral/subgenual ACC is generally found to be
anticorrelated with the dorsal/pregenual ACC. In other words,
rostral/subgenual ACC RSFC to limbic regions is increased in
depression (68, 69).

Several studies have explored whether RSFC connectivity
of the rostral/subgenual ACC can predict treatment outcomes
across treatment modalities (70–78). One study found a positive
correlation between baseline RSFC of right rostral/subgenual
ACC to right dorsolateral prefrontal cortex (DLPFC) and
improvement in depressive symptoms following group cognitive-
behavioral therapy (74). A different study found a negative
correlation between depression improvement and baseline RSFC
between left rostral/subgenual ACC and the broader left ACC
after 8 weeks of monotherapy with bupropion, escitalopram, or
aripiprazole (70).

Some studies have used RSFC of rostral/subgenual ACC
to explain differential outcomes following cognitive behavioral
therapy vs. medication. In a study of 122 patients with
major depressive disorder, positive RSFC of rostral/subgenual
ACC with left anterior ventrolateral prefrontal cortex, insula,
dorsal midbrain, and left ventromedial prefrontal cortex was
associated with remission after CBT and non-response to
escitalopram or duloxetine monotherapy. Negative connectivity
was associated with the opposite response outcome. Regardless
of treatment modality, response was positively correlated with
rostral/subgenual ACC RSFC to right post-central gyrus and
negatively correlated with rostral/subgenual ACC RSFC to right
superior frontal gyrus. By contrast, remission was negatively
correlated with rostral/subgenual ACC RSFC to right precentral
gyrus and right posterior putamen (71).

RSFC of rostral/subgenual ACC has also been explored in
psychedelics and interventional psychiatry. Psilocybin was shown
to increase rostral/subgenual ACC RSFC with posterior cingulate
cortex and precuneous, but this effect was not correlated
with clinical improvement (79). By contrast, increased RSFC
between rostral/subgenual ACC and right lateral prefrontal
cortex was positively correlated with response to a single
ketamine infusion (78).

One of the most robust and convincing lines of research
investigating rostral/subgenual ACC is its relationship to
transcranial magnetic stimulation (TMS) response. Numerous
studies have used baseline rostral/subgenual ACC RSFC to
predict or optimize TMS response, although the network
itself varies slightly between studies. For example, DLPFC
regions (specifically within Brodmann Area 46) that are most
anticorrelated to rostral/subgenual ACC tend to be the most
effective TMS treatment targets (73). Other studies have

taken slight variations on this network, with one showing
that TMS responders had stronger baseline anticorrelation
between rostral/subgenual ACC and medial and left superior
frontal gyrus (specifically Brodmann Area 10) (77). A different
group reported that baseline rostral/subgenual ACC RSFC with
ventromedial prefrontal cortex, dorsomedial prefrontal cortex,
dorsal/pregenual ACC and posterior cingulate cortex predicted
TMS response (80). The role of the rostral/subgenual ACC
seems to be preserved even if the TMS target or patient
population changes. One study of patients with unipolar
or bipolar depression showed that response to dorsomedial
prefrontal cortex TMS was associated with positive RSFC
between rostral/subgenual ACC and DLPFC and negative
RSFC between rostral/subgenual ACC and insula, putamen,
parahippocampus, and amygdala (76). The rostral/subgenual
ACC RSFC also seems to be implicated in accelerated TMS
studies as well, with one study showing that responders
had stronger rostral/subgenual ACC correlation with medial
orbitofrontal cortex after treatment (77).

In the context of these TMS results, it is important to note that
there is some convergent evidence for rostral/subgenual ACC
across neuromodulation modalities. RSFC of rostral/subgenual
ACC has been used to predict ECT response (72), and BA 25
within this region is the primary target for deep brain stimulation
for treatment-resistant depression (81–87).

Orbitofrontal Cortex
Orbitofrontal cortex is often implicated in RSFC changes from
other seed regions, but there is not a robust literature for it as
a primary seed region in mood disorder treatment response. In
one study, increased RSFC between right medial orbitofrontal
cortex and left amygdala correlated with response to lithium
monotherapy in patients with bipolar disorder (75).

Dorsolateral Prefrontal Cortex
DLPFC, a large region spanning Brodmann Area 9 (BA9)
and 46 (BA46) (88–90), plays a critical role in higher-order
cognition and emotional processing. Numerous PET studies
have shown decreased blood flow and oxygen consumption in
depression (91), including some that specifically link cognitive
symptoms of depression to DLPFC dysfunction (92, 93). Studies
have predicted response to escitalopram and duloxetine with
RSFC of DLPFC to bilateral middle frontal and inferior parietal
regions (94).

As outlined earlier, a significant portion of recent seed-
based analyses of DLPFC RSFC are in the context of TMS.
Numerous studies have shown that DLPFC RSFC can correlate
with or predict TMS response. In one study, higher RSFC
between left DLPFC and striatum predicted TMS response (95).
Several regions have been shown to exhibit connectivity changes
after TMS response when DLPFC is the seed region, including
parahippocampus (80) and left caudate (96). More studies are
needed to clarify which downstream brain network nodes are
most critical to TMS response.
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Amygdala
As an integral node of the limbic system, amygdala has been
most consistently implicated in response to negative stimuli in
healthy controls. Several studies have identified altered amygdala
function in depression and mania (18, 75, 97, 98), which
likely inspired analyses of whether amygdala RSFC predicts or
correlates with treatment response across various modalities. In
early-life depression, increased baseline RSFC between amygdala,
left DLPFC, and left anterior insula predicted treatment response
to cognitive behavioral therapy (74). A similar strategy has
been used to examine response to medications, although results
are varied. In one study, increased baseline RSFC between
amygdala, right central parietal opercular cortex, and Heschl’s
gyrus predicted response to fluoxetine or sertraline monotherapy
in adolescents (99). Predictors of poor response to serotonergic
medication for depression have been identified as increased
baseline RSFC between amygdala, right precentral gyrus, and
left supplementary motor area in one study (99), and increased
baseline RSFC between amygdala and bilateral orbitofrontal
cortex in a different study (94). Yet another study found
that response to fluoxetine or sertraline was associated with
increased RSFC between amygdala and right middle and middle
frontal gyri, and decreased RSFC between amygdala and right
posterior cingulate/precuneus (100). Limited sample sizes and
methodological differences make it challenging to integrate these
findings across studies.

Only one study investigating the impact of second-generation
neuroleptic monotherapy on amygdala RSFC that met inclusion
criteria. In this study, response to quetiapine was correlated
with increased RSFC between left amygdala, superior and middle
occipital gyri, and bilateral mid-cingulate, and between right
amygdala and superior and middle occipital gyri and cuneus
(101). This study was conducted in patients with unipolar
depression and comorbid anxiety. Additionally, there was one
study identifying the effect of a mood stabilizer on amygdala
RSFC. In this study, increased RSFC between amygdala,
rostral/subgenual ACC, and ventromedial prefrontal cortex
correlated with improvements in depressive and hypomanic
symptoms after lithium monotherapy (75).

There are some interesting studies implicating amygdala
RSFC with response to real-time functional magnetic resonance
imaging neurofeedback in patients with depression who are
not taking medications (102, 103). One study demonstrated
that abnormal RSFC between amygdala and several regions
was reversed by real-time neurofeedback, with a specific
emphasis on hippocampus (103). A different study showed
that increased RSFC between amygdala and precuneus
was associated with clinical improvement after real-time
neurofeedback (102).

Amygdala RSFC does not appear to be thoroughly examined
in the context of neuromodulation studies, but one study showed
that patients with schizophrenia or major depressive disorder
both showed significant RSFC decreases between right amygdala,
right temporoparietal junction, medial prefrontal cortex, left
posterior insula, and right DLPFC, and increases between right
amygdala and hypothalamus after ECT. None of these changes
correlated with changes in symptom severity (104).

Striatum
Striatum is thought to process several aspects of cognition
in healthy controls, from motor planning to motivation and
decision-making. In the context of mood disorders, psychomotor
slowing or agitation have been linked to striatal connectivity
changes (105). Nucleus accumbens, and ventral striatum more
broadly, has been implicated in reward processed. Whereas,
decreased RSFC has been linked to unipolar depression (106,
107), increased RSFC has been linked to bipolar disorder (108).
One study showed that first episode mania was associated with
decreased RSFC in the dorsal and caudal corticostriatal systems,
and increased RSFC in the ventral striatal systems. Moreover,
these baseline RSFC abnormalities predicted improvement in
patients receiving lithium or quetiapine (109).

Insula
Insula is the one of the primary regions in which interoceptive
information and emotional salience are processed (110, 111).
Most of the mood disorder studies that have attempted
to correlate insula RSFC to treatment response focus on
psychotherapy. In one study, RSFC between right insula and
right middle temporal gyrus predicted response to behavioral
activation treatment in medication-free patients with unipolar
depression (112). A similar study showed that successful
cognitive behavioral therapy increased RSFC between right
insula and left supragenual ACC in adolescents with unipolar
depression (113).

One study of transdiagnostic cognitive behavioral therapy
attempted to use baseline RSFC to predict improvement in
emotional regulation rather than clinical outcomes. Several
interesting results were generated by this study. At baseline,
neuroticism was negatively correlated with RSFC between right
dorsal anterior insula and inferior parietal lobule, and perception
of impaired affective control was positively correlated with RSFC
between ventral anterior insula and bilateral dorsal/pregenual
ACC. Greater improvements in emotional regulation were
predicted by decreased RSFC between right dorsal anterior
insula and right ventrolateral prefrontal cortex as well as by
increased RSFC between bilateral dorsal anterior insula and
bilateral amygdala (114).

Hippocampus
Hippocampus plays critical roles in memory, cognition, and
regulation of stress in healthy controls. It appears to be implicated
in several RSFC analyses as a downstream node rather than
the primary seed itself. One study showed that the increase
in RSFC of right hippocampus after electroconvulsive therapy
correlated with clinical improvement in elderly patients with
varying degrees of unipolar depression (115).

Brainstem Nuclei
Aminergic nuclei have been hypothesized to play a role
in mood disorders. One study found that patients treated
with selective serotonin reuptake inhibitors had increased
RSFC between dorsal raphe nucleus and precuneus, angular
gyrus, and bilateral cerebellum, increased RSFC between
locus coeruleus and occipital lobe, left precentral gyrus, and
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parahippocampal gyrus, and increased RSFC between ventral
tegmental area and precuneus, left inferior parietal lobule, and
bilateral middle/inferior temporal gyrus relative to patients
treated with a serotonin norepinephrine reuptake inhibitor.
By contrast, patients treated with a serotonin norepinephrine
reuptake inhibitor had increased RSFC between dorsal raphe
nucleus and right DLPFC, ventrolateral prefrontal cortex, and
bilateral superior temporal cortex, increased RSFC between locus
coeruleus and bilateral DLPFC, ventromedial prefrontal cortex,
inferior temporal gyrus, and bilateral cerebellum, and increased
RSFC between ventral tegmental area and left insula and bilateral
cerebellum relative to the group treated with selective serotonin
reuptake inhibitors (116).

In a separate study of young adults treated with selective
serotonin reuptake inhibitors for unipolar depression, RSFC
between ventral tegmental area and cuneus-occipital areas
correlated with symptom improvement (117).

Independent Component Analysis
Independent component analysis (ICA) is a statistical method
used to discover hidden factors (components, sources, or
features) in a set of measurements or observed data such that
the factors are maximally independent. The main advantage of
ICA is that it provides a data-driven means by which to measure
whole-brain connectivity with all components considered.

Despite its strengths, ICA has a number of disadvantages
and limitations. First, the process of identifying components and
selecting methods with which to run ICA (e.g., dual regression)
is subjective and variable. Second, inter-session reliability of
component strength has not been fully established, which limits
the degree to which ICA can reliably measure longitudinal
treatment effects. Third, the functional attribution of each ICA
component is indirectly assumed based on the brain regions
included the analysis. Moreover, the function of those brain
regions has been extrapolated from healthy controls in tasks that
may or may not have translational significance. For example, the
salience network is not consistently implicated across tasks that
claim to test salience. As such, the functional significance of ICA
components may change over time and between studies.

Several strategies have been proposed to address these
imitations. One strategy involves examining the correlation
between the time series extracted from each ICA component.
This analysis would presumably measure connectivity between
putative networks in a way that parallels seed-based analysis
(118, 119). Unfortunately, the neurophysiological significance of
the correlation between ICA components and the stability of
this correlation within and between scanning sessions remain
unclear, making it challenging to use these measures as treatment
biomarkers. A different strategy involves reporting hypotheses
and results in the form of ICA components even when the study
used seed-based analyses, or vice versa (80, 120, 121).

ICA of RSFC has revealed several components comprised of
correlated brain regions. These brain networks are named after
their putative function in healthy controls, which provides some
speculative basis for psychopathology (122, 123). In this review,
ICA component terminology will only be used for studies in
which an actual ICA analysis was conducted.

Default Mode Network
The default mode network is primarily comprised of the
medial prefrontal cortex, ACC, posterior cingulate cortex, and
angular gyrus. This intrinsic organizational structure shows high
connectivity during wakeful rest and low connectivity during
most goal-directed tasks, although there are some exceptions to
these generalizations (123–125).

The default mode network has been implicated in clinical
response across various treatment modalities, including
psychotherapy, medications, and neuromodulation. In one
study, responders to cognitive behavioral therapy or cognitive
processing therapy had significantly higher increases in default
mode network RSFC than non-responders (126).

Medication studies have shown varying results. In one
study, an intravenous infusion of citalopram was correlated
with positive RSFC between default mode network and left
precuneus and negative RSFC between default mode network
and amygdala in a group of patients with major depressive
disorder. Interestingly, healthy controls who received the
same infusion also had a positive correlation between default
mode network and amygdala relative to healthy controls
receiving a placebo infusion (127). In different studies, baseline
RSFC of default mode network with orbitofrontal cortex was
negatively correlated with improvement after 12 weeks of
duloxetine (128).

Neuromodulation studies show results that may be consistent
but are difficult to contextualize. In one TMS study, baseline
RSFC between default mode network and ventromedial
prefrontal cortex and ACC was more than 80% effective at
discriminating responders from non-responders (119). In
an ECT study, RSFC of default mode network to DLPFC
was normalized after ECT response in late-life depression,
and this increase in RSFC differentiated remitters from
non-remitters (129).

Salience Network
The salience network, which is primarily comprised of
insula and dorsal/pregenual ACC, is responsible for triaging
stimuli and integrating multimodal information in healthy
controls. As such, it is widely involved in communication,
socialization, and self-monitoring (130). The salience network
has most recently been implicated in TMS response.
One study showed that baseline RSFC in the salience
network was positively correlated with TMS treatment
response (119). This result was replicated in a different
study specifically examining early treatment response to
TMS (131).

Inter-Network Connectivity
There are relatively few ICA studies of how inter-network
connectivity may correlate with or predict treatment response
in mood disorders. One study showed that higher baseline RSFC
within the default mode network and between the default mode
network and the central executive network predicted response
to sertraline monotherapy in a relatively large sample of patients
with unipolar depression (121).
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Effective Connectivity
Effective connectivity is a means to infer causal or directional
influences between brain network nodes (132). There were
not many ICA studies examining treatment response in
mood disorders. In one study, baseline fronto-insular effective
connectivity was positively correlated with early response to
TMS (131).

Graph Theory Analysis
The application of graph theory to neuroimaging has yielded
unique insights into network-wide properties rather than the
strength of connectivity from a specific seed region (133). In
this approach, a connection or adjacency matrix is used to
summarize the nodes (brain regions) and edges (connections)
of a brain network. A number of measures can be used
to assess the matrix, including centrality (e.g., pageRank
centrality, subgraph Centrality) assortativity (e.g., resilience),
segregation (clustering coefficient, transitivity), and integration
(e.g., diffusion efficiency).

The main advantage of graph theory is that it can provide a
single variable for a network. As such, changes in that metric
can be used to assess how an intervention affects the network.
Despite this advantage, there are several limitations to consider
First, the availability of numerous metrics can lead to numerous
statistical analyses. Second, the stability of thesemetrics over time
has not been established. Third, the significance of these metrics
to putative function or clinical symptoms is unclear.

In this section, graph theory metrics are discussed in the
context of treatment response in mood disorders.

Centrality
There are only a few studies examining a whole brain centrality
measure in the context of mood disorder treatment. One study
used eigenvector centrality to identify network nodes that are
densely connected and sensitive to serotonergic medications. In
this study of late-life depression, patients who remitted with
venlafaxine showed significant RSFC increases between right
precentral gyrus in the central executive network and significant
decreases between right inferior frontal gyrus, supramarginal
gyrus, and default mode network. Moreover, remitters showed
significantly greater eigenvector centrality in bilateral inferior
frontal gyrus and medial frontal gyrus than non-remitters (134).
Using a slightly different metric, a study in patients with bipolar
disorder showed that lithium treatment normalized mania-
related connectome indices, reflected in part by significantly
decreased right amygdala clustering coefficient (135).

One study assessed several metrics, including a centrality
metric, to assess the effects of TMS on unipolar or bipolar
depression. In this study, successful adjunctive TMS to
dorsomedial prefrontal cortex resulted in significant increases
in betweenness centrality in the stimulation target as well as
in right amygdala, ventral striatum, and temporal pole. The
authors noted that responders and non-responders showed
opposing patterns of connectivity lateralization, and that patients
with preserved hedonic function may be more responsive to
dorsomedial TMS (136).

Assortativity
The study mentioned above that captured decreased right
amygdala clustering coefficient with lithium treatment in bipolar
disorder also assessed assortativity, which can be thought of
as the degree to which a network node connects to similar
nodes in a complex network. This study found that successful
lithium treatment increased assortativity in a mood regulation
network (135).

Global Brain Connectivity
One study leveraged the rapid-acting antidepressant effects of
ketamine infusions to assess functional dysconnectivity changes
in patients with major depression.

Responders to ketamine showed significant increases in
global brain connectivity with global signal regression in lateral
prefrontal cortex, caudate, and insula. The authors suggested that
ketamine normalizes the dysconnectivity between these regions
and the rest of the brain in major depressive disorder (137).

Connection Density
Connection density can be thought of as the number of observed
connections relative to the number of possible connections in a
graph or network. A few studies have examined this metric in
the context of mood disorders treatment. The study of patients
with bipolar disorder taking lithium that assessed clustering
coefficient and assortativity also examined connection density.
In this study, patients with bipolar disorder showed decreased
mean connectivity in a network of which the largest percentage
of differential links were with left posterior superior frontal
gyrus, a midbrain region consisting of the red nucleus, substantia
nigra, and ventral tegmental area, and right amygdala. Moreover,
decreases in mania ratings were correlated with the decreases in
in mean connectivity of this network (135).

A different study used network density and other measures
to test the hypothesis that patients with dysthymic disorder
have greater RSFC within the default mode network. At
baseline, patients with dysthymic disorder showed higher default
mode network RSFC than healthy participants, with specific
elevations noted between posterior cingulate cortex and medial
prefrontal cortex, bilateral lateral parietal lobes, and precuneus.
After 10 weeks of duloxetine, patients with dysthymic disorder
showed significantly reduced connectivity in many of these
same connections. This “normalizing” effect was most prominent
between posterior cingulate cortex, right lateral parietal cortex,
and right inferior temporal gyrus (138).

Other Methods
Aside from seed-based analysis, ICA, and graph theory analysis,
several other methods have been developed to examine
functional connectivity. A few examples that will not be covered
here include regional homogeneity analysis (59, 139) and
four-dimensional (spatiotemporal) consistency of local neural
activities (FOCA) (140). These methods are not frequently
used in treatment studies, and their functional significance and
stability over time have not yet been established.

Frontiers in Psychiatry | www.frontiersin.org 6 March 2021 | Volume 12 | Article 565136

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Taylor et al. Imaging Biomarkers of Mood Disorder

This section will briefly review coherence metrics,
fractional amplitude of low-frequency fluctuation (fALFF),
and machine learning.

Coherence Metrics
One study of patients with treatment-resistant depression
receiving bilateral electroconvulsive therapy created maps of
network coherence in each patient by using the mean time
series of the default mode network (defined by ICA) as a
regressor for each voxel within the default mode network. Maps
from responders were compared to maps from non-responders
and healthy controls using permutation testing. Patients with
depression showed significantly decreased network coherence in
precuneus and angular gyrus relative to healthy controls, and this
difference normalized in electroconvulsive therapy responders
but not non-responders. The authors interpreted this finding as
preliminary evidence that electroconvulsive therapy reconnects a
part of the default mode network to the broader network (141).

Fractional Amplitude of Low-Frequency Fluctuation
One of the primary goals of fALFF is to quantify the local,
low frequency signals that often gets averaged across larger
regions and frequency bands (59). This quantification is done by
conducting a Fourier transformation on the BOLD signal and
measuring power in ranges below 0.01Hz. Several studies have
employed fALFF to examine treatment effects of psychotherapy,
medication, and neuromodulation for mood disorders.

A psychotherapy study used fALFF and other analyses
to probe how cognitive remediation therapy changes
intrinsic neural activity in patients with major depression.
At baseline, patients with depression had reduced functional
network strength in bilateral prefrontal systems. Intrinsic
neural activity increased in right inferior frontal gyrus after
cognitive remediation therapy, and activity changes in several
areas including left inferior parietal lobule, left insula, left
precuneus, and right caudate were associated with cognitive
improvement (142).

A medication study used functional connectivity, effective
connectivity, and fALFF to argue that major depression is
associated with abnormal pulvinar oscillations and abnormal
causal interactions between pulvinar and several nodes of
default mode and posterior insular networks. They also show
provide data that duloxetine can ameliorate this pulvinar
pathophysiology (143).

A neuromodulation study used seed-based analysis and fALFF
to probe the neurobiological substrates of electroconvulsive
therapy response in unipolar or bipolar depression. At baseline,
BOLD signal fluctuations (fALFF) in subcallosal cingulate cortex
were significantly higher in patients with depression than they
were in healthy controls. Successful electroconvulsive therapy
significantly decreased these signal fluctuations (fALFF). Also,
baseline signal fluctuation (fALFF) abnormalities predicted
treatment response (144).

Machine Learning
Machine learning is a broad term that generally refers to the
process of finding patterns in large, high dimensional datasets by

training a computational model to predict unseen data. There are
several ways to use machine learning to study treatment effects
on brain networks. One study used a method called alternating
decision trees to build models that accurately predicted late-life
depression diagnosis and antidepressant treatment response with
∼87 and 89% accuracy, respectively. Amongst other measures,
these models included structural and functional connectivity.
Lower RSFC of dorsal default mode network was specifically
associated with positive treatment response (145).

A neuromodulation study leveraged RSFC and machine
learning techniques to explore biomarkers of individual response
to transcranial magnetic stimulation for depression. At baseline,
patients with depression had low signal in caudate, prefrontal
cortex, and thalamus. RSFC in default mode and affective
networks was associated with treatment response. Using
these findings, the authors successfully trained support vector
machines to predict individual treatment response with 85–95%
accuracy (146).

Machine learning has also been used to assess and predict
individual response to electroconvulsive therapy. In one study,
RSFC and multivariate pattern analysis identified a network
centered in dorsomedial prefrontal cortex (including DLPFC,
orbitofrontal cortex, and posterior cingulate cortex) that was 85%
sensitive and 85% specific for individual response. A different
network centered in the ACC (including DLPFC, sensorimotor
cortex, parahippocampal gyrus, and midbrain) showed 80%
sensitivity and 75% specific for individual response (147). A
different study largely corroborated these results. In this study,
a radial support vector machine was trained using arterial
spin labeling and BOLD signal RSFC before electroconvulsive
therapy for depression. The model predicted non-responders
and responders with 74 and 64% accuracy, respectively, using
connectivity strength among frontoparietal networks (including
DLPFC), motor and temporal networks (near electroconvulsive
therapy electrodes), and rostral/subgenual ACC (148).

DISCUSSION

Summary
There are several reviews of task-based and RSFC biomarkers
of mood disorders (46–55), but few evaluate evidence across
diagnoses, models, and treatment modalities. In this review,
we examined biomarker data categorized by analytic technique:
(1) reference region (seed-based) analysis, (2) ICA, (3) graph
theory analysis, and (4) other methods. This review supports
our a priori hypothesis that there is no single mood disorder
RSFC treatment biomarker validated across diagnoses, models,
treatment modalities, and independent datasets.

Reference Region (Seed-Based) Analysis:

ACC, DLPFC, and Amygdala
Reference region (seed-based) analyses appear to be the most
commonly used technique to assess RSFC biomarkers of
treatment response in mood disorders. In some ways, it is the
simplest and most direct way of discovering brain networks
functionally connected to an a priori ROI (58, 149). Within this
disproportionately large sample, ACC emerged as the region with
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the most consistent evidence across studies. This emergence has
face validity given the well-established role of ACC as a nexus of
cognitive (dorsal) and affective (ventral) processing (150–153).
There are several lines of convergent evidence that Brodmann
area 25 within the ACC plays a particularly critical role in
mood regulation, driven in part by invasive and non-invasive
neuromodulation. In TMS studies, stimulating DLPFC regions
more functionally connected to Brodmann area 25 appears
to enhance response (73, 154). This technique is emerging as
the preferred targeting method in clinical trials (155, 156).
Brodmann area 25 is also the most frequent target for deep
brain stimulation, a controversial intervention for refractory
depression with intriguing but mixed results (81–87). ACC also
has unique cytoarchitecture (e.g., spindle cells or von Economo
neurons) that could theoretically explain its role in mood
disorders, but current imaging modalities have limited capacity
to investigate this premise (157).

The other region that appears to emerge most consistently
from reference region analyses is amygdala, which has structural
and functional connections to prefrontal cortex, anterior
cingulate, and other regions implicated in mood regulation.
The role of amygdala has been identified previously (158, 159),
but the current review emphasis its importance across diverse
treatment modalities and contextualizes its role as both primary
seed region and downstream network node for other seed
regions. Interestingly, relatively few neuromodulation studies
have focused on amygdala as a primary seed region.

Independent Component Analysis: Default

Mode Network
ICA appears to be the next most frequently used analysis
technique for treatment biomarkers in mood disorders. This
multivariate analysis avoids some of the biases and restrictions
inherent to univariate reference region analysis (58, 160). Default
mode network emerged as the construct with the most evidence
across studies, which again implicates ACC as a critical node.
It is difficult to evaluate default mode network as a biomarker
of treatment response because it is so broadly implicated across
tasks, non-tasks, and patient populations. Whereas, some studies
report on connectivity exclusively within the default mode
network, others reported on connectivity differences between
individual nodes of the network and other network nodes that are
not considered part of the network. There is also the possibility of
the entire network correlating with another identified network,
but this possibility raises several statistical and methodological
challenges. It is also important to note that default mode network
lacks specificity for mood disorders, further raising questions
about how best to characterize it as a biomarker (161, 162).

Machine Learning Analysis: Too Few

Studies
There was no single region or network that emerged from graph
theory analyses or other analyses, although these studies generally
invoked individual network nodes identified with other analyses.
A few machine learning studies were compelling in generating
models with high predictive sensitivity and specificity, but these

studies were in limited sample sizes and were not tested in
independent datasets. They also typically lack causal evidence in
the form of brain lesions or brain stimulation.

A Speculative Integration of Results
Despite the lack of consistent biomarker across diagnoses,
models, treatment modalities, and independent datasets, the
current results generally corroborate existing literature on the
brain circuitry implicated in mood disorders. The DLPFC
and ACC are frequently shown to be critical hubs in a
network that mediates depressive symptoms. DLPFC lesions
and blood flow changes correlated with depression motivated
the earliest TMS studies (163, 164), and lesions with functional
connectivity to this region are associated with depression
(165). One of the main regions connected to DLPFC is
Broadman area 25 (24) of the anterior cingulate cortex. Several
studies have shown that activity in this region correlates with
depressive symptoms (91, 166). From an explanatory model
perspective, BA25 shows structural and functional connectivity
to regions that could theoretically mediate depressive symptoms
beyond low mood or sadness. Connections to medial and
dorsolateral prefrontal cortex, orbitofrontal cortex, anterior, and
posterior cingulate, amygdala, and hippocampus could mediate
affective and executive symptoms, and connections to insula,
hypothalamus, and monoaminergic brainstem nuclei could
mediate neurovegetative symptoms (167). This theoretical model
would encompass many of the regions and networks identified in
this review.

One of several topics that needs to be further explored is
the convergence and divergence between unipolar depression,
bipolar depression, and mania. Presumably there is a region
or network of regions that serves as a central regulator of
mood, maintaining the balance between depression and mania
as opposite ends of a mood spectrum, but more information is
needed. There has been some recent progress in understanding
mania as a state, although symptom specificity remains a
challenge. For example, lesions associated with mania show a
specific connectivity pattern that includes right orbitofrontal
cortex, right inferior temporal gyrus, and right frontal pole
(168). Future studies will continue to refine understanding of
how mood is regulated throughout structurally or functionally
connected brain networks.

Limitations
There are several limitations that should be considered when
interpreting the present results. First, the studies summarized in
this review were heterogeneous in terms of patient populations,
imaging acquisition quality or duration, analytic methods, and
inter-scan reliability. It is beyond the scope of this review to
outline these differences in fine detail, but nevertheless it is
important to acknowledge that direct comparisons of potential
biomarkers between heterogeneous studies should be done with
caution. Second, the frequency with which a node or network is
mentioned does not necessarily imply replication. For example,
ACC could appear to be the region with the most evidence
because the greatest number of studies chose it as a reference
region or studied it in the context of the default mode network in
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ICA studies. The inverse problem applies to graphmetric studies,
which were fewer in number and thus difficult to contextualize.
Third, this review does not address RSFC signal-to-noise or
inter-scan reliability. RSFC is a dynamic measure, and studies
could be using short scans that do not capture enough data
(169). The dynamic nature of RSFC is particularly problematic
for treatment effect studies that reply on repeated scans over
time. There are ways to address these issues at the individual
experiment level (170), but it is difficult to assess them in a review.
Fourth, it is difficult to assess study design and implementation,
particularly in terms of blind integrity and appropriate use of
control participants. There are other limitations of this review,
to say nothing of the construct validity of “mood disorders” as
a category, but those previously discussed are some of the most
basic ones to consider when interpreting the present results.

In order to evaluate candidate biomarkers, classification
analyses should be run to assess the sensitivity and specificity
in distinguishing responders from non-responders. This analysis
should subsequently be validated in an independent dataset. A
few studies have taken this approach, but the field at large is far
from a validated RSFC biomarker of treatment response in mood
disorders (118, 145, 146). It may also be the case that a single
biomarker is unlikely to be successful because mood disorder are
dynamic, heterogeneous, and multifactorial (171–173).

Future Directions
Several strategies have been proposed to advance the study of
candidate RSFC biomarkers and neuroimaging more broadly
(174). One strategy focuses on individual- rather than group-level
analyses, which could theoretically advance precision medicine
in psychiatry as outlined by RDoC (5). This approach likely
requires robust and repeated sampling from individuals over
time, presenting both logistical and statistical challenges (174,
175). A seemingly opposite approach is to invest in larger
samples that presumably enhance the power of data-driven
analyses. This approach is evidenced by mega-analyses, mega-
analyses, and a multitude of multi-site clinical projects such
as Establishing Moderators and Biosignatures of Antidepressant
Response in Clinical Care (EMBARC), International Study to
Predict Optimized Treatment in Depression (iSPOT-D), The
Predictors of Remission in Depression and Individual and
Combined Treatment (PReDICT), Response to LithiumNetwork
(R-LiNK), and others (176, 177). Larger datasets may increase
statistical power, but they also potentially compound noise
and variables.

A third approach involves transdiagnostic studies,
which presumably avoids the assumptions of searching for
neurobiological correlates of symptom clusters that lack

biological validity. Examples of this approach typically focus on
the “p factor” of general psychopathology, with the long-term
strategy of potentially reverse engineering clinical constructs
based on brain networks rather than symptom clusters (178–
180). This long-term strategy has a number of challenges
and is particularly difficult to implement with respect to
treatment response.

A fourth strategy is to study focal brain lesions or brain
stimulation to assess causality in networks that are potential
biomarkers (181, 182). Distinguishing correlation from causation
is challenging in traditional neuroimaging studies because
network changes may be a cause of, an effect of, or an adaptation
to a mood disorder or its treatment (21, 181). A computational
technique called network mapping leverages the statistical power
of the human connectome (183) to map atrophy coordinates,
lesions, or stimulation sites to whole-brain networks rather than
single brain regions (21). This technique has been used to
identify new neuromodulation treatment targets, and to optimize
existing neuromodulation treatment targets for neuropsychiatric
conditions (154, 184). Network mapping is powerful, but it also
has several limitations as a retrospective meta-analytic technique
using normative connectome data to examine symptoms caused
by lesions. It is also challenging to assess causality with lesions
because brain disorders, like most disorders in medicine, have
biopsychosocial aspects to them.

CONCLUSIONS

Many disparate findings have been reported for RSFC biomarkers
of treatment response in mood disorders. These findings are
complicated by small sample sizes, potential biases, and study
heterogeneity. As such, no single biomarker has been identified
or validated across diagnoses, models, or treatment modalities.
Despite these current limitations, there are several future
direction that could facilitate the identification of treatment
response biomarkers in mood disorders.
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