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Abstract
Weanalyzed 563,099 common (minor allele frequency,MAF≥0.01) and rare (MAF<0.01) genetic

variants annotated in ExAC and UniProt and 26,884 disease-causing variants from ClinVar and

UniProt occurring in the coding region of 17,975 human protein-coding genes. Three novel sets of

genes were identified: those enriched in rare variants (n= 32 genes), in common variants (n= 282

genes), and in disease-causing variants (n = 800 genes). Genes enriched in rare variants have

far greater similarities in terms of biological and network properties to genes enriched in disease-

causing variants, than to genes enriched in common variants. However, in half of the genes

enriched in rare variants (AOC2, MAMDC4, ANKHD1, CDC42BPB, SPAG5, TRRAP, TANC2, IQCH,

USP54, SRRM2,DOPEY2, andPITPNM1), no disease-causing variants have been identified inmajor,

publicly available databases. Thus, genetic variants in these genes are strong candidates for dis-

ease and their identification, as part of sequencing studies, should prompt further in vitro analyses.
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The achievement of personalized medicine, which is the prevention

and treatment of human disease by taking individual genetic vari-

ability into account, is one of the main goals of modern medicine.

Nevertheless, the interpretation of the large amount of genetic data

that next-generation sequencing technology is delivering remains one

of the major challenges preventing us from achieving this goal. This

is especially true for rare variants, which occur at a low frequency in

the population and account for a large proportion of genetic variations

identified in an individual's genome. Rare variants are likely to being

involved in the pathogenesis of oligogenic disorders, as well as repre-

sent the missing heritability of common conditions, such as diabetes

and cancer. Indeed, one is compelled to ask whether specific genes are

enriched in rare variants, similar towhat is observed in disease-causing

variants. And if so, what are the characteristics of genes enriched in

rare variants? These important questions remain unanswered.

The recent availability of large, publicly available databases of

genetic variations provides us with the unprecedented opportunity

to analyze the distribution of rare and common variants across our

genome. In this study, we combined information from the ExAC

database (Lek et al., 2016), with data from dbSNP (Sherry et al.,

2001), ClinVar (Landrum et al., 2016), and UniProt (UniProt Consor-

tium, 2015), to explore the distribution of rare and common variants
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in protein-coding genes and to compare the characteristics of genes

enriched in rare or common variants with those of genes enriched in

disease-causing variants. As the focus of our analysis was on short

variants occurring in the exome, we made the arbitrary decision to

not include variants annotated as “downstream gene,” “3′ UTR,” and

“5′ UTR” in the analysis.

We analyzed 563,099 genetic variants with no disease association

(481,277 rare variantsminor allele frequency [MAF]<0.01and81,822

common variants MAF ≥ 0.01) and 26,884 disease-causing variants

distributed across 17,975 protein-coding genes (the construction of

the dataset and the list of genes enriched in variants is presented in

the Supplementary Material). For variants not reported as disease-

causing, we required a global MAF, which was retrieved from ExAC or

dbSNP (if not present in ExAC). These variants were further classified

according to their reported global MAF in rare (MAF < 0.01) and

common (MAF ≥ 0.01). Disease-causing variants were distributed

across 2,631 protein-coding genes, whereas rare and common vari-

ants were distributed across 17,540 and 15,391 genes, respectively.

The hypergeometric test was used to assess whether rare, common,

or disease-causing variants occurred more often than expected in

certain genes (gene enrichment). The Benjamini–Hochberg correction

(Benjamini & Hochberg, 1995) was applied to adjust for multiple
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comparisons (see Supplementary Material). We found that 800 genes

were enriched in disease-causing variants (disease-EVset), 32 genes

in rare variants (rare-EVset), and 282 genes in common variants

(common-EVset), with no overlap between the three sets. Neverthe-

less, since the identification of the three sets was based on enrichment

of specific types of variants (rare, common, or disease-causing),

disease-causing variants could still be present in genes included in the

common-EVset and rare-EVset.

Genes involved in the pathogenesis of disease have been shown

to be under strong or moderate purifying selection (Collins, 2015;

Quintana-Murci, 2016). As the evidence of a gene's enrichment in

rare variants should reflect its selection constrains, we expected these

32 novel genes enriched in rare variants to be under selective pres-

sure. Indeed, all but three genes in the rare-EVset were predicted

to be under moderate purifying selection when assessed using the

McDonald–Kreitman neutrality index implemented in the Gene Dam-

age Index (GDI) server (Itan et al., 2015).

We used the pLi scores and dN/dS ratio (see Supplementary Mate-

rial) to characterize and compare genes in the three novel enriched

sets. Genes associated with disease have been shown to have a high

pLi score and a low dN/dS ratio, which indicate that they are under

selective pressure (Ge, Kwok, & Shieh, 2015; Lek et al., 2016). In

particular, loss-of-function (LoF) tolerant genes have been shown to

have a pLi score ≤ 0.1, whereas highly constrained genes a pLi ≥ 0.9.

We found that genes in the disease-EVset and rare-EVset had a

significantly higher pLi score (P < 0.0001 Kruskal–Wallis Rank Sum

test; Supp. Table S1) and lower dN/dS ratio (P < 0.0001) compared

with genes in the common-EVset. However, there was no difference

between genes in the disease-EVset versus rare-EVset (P = 0.21

for pLi scores and P = 0.52 for dN/dS ratio, Mann–Whitney test,

two tailed; Supp. Figure S1). Interestingly, 13 out of 32 genes from

the rare-EVset (TRRAP, WDFY3, KMT2C, HECTD4, CHD7, ANKHD1,

CDC42BPB, SRCAP, NOTCH1, BSN, TANC2, CELSR3, and PITPNM1)

had a pLi score ≥ 0.9, which is similar to the scores identified for

haploinsufficient genes associated with the most severe and early

onset phenotypes (Lek et al., 2016).

Genes involved in disease have well-established properties, such as

enrichment for essential genes (Dickinson et al., 2016) and centrality

in the protein interactome (Barrenas, Chavali, Holme, Mobini, & Ben-

son, 2009; Barabási, Gulbahce, & Loscalzo, 2011), which distinguish

them from nondisease-causing genes. The rare-EVset and common-

EVset, however, are novel sets of genes. We assessed whether these

two sets differ in their biological properties, and whether genes in the

rare-EVset share similar biological and network properties with genes

in the disease-EVset, as this could indicate that genes in the rare-EVset

also harbor deleterious genetic variants.

We first explored the disease-EVset, rare-EVset, and common-

EVset for enrichment in essential genes (Figure 1 and Supp.

Tables S2A–S2D). Genes were classified as essential when the

mouse ortholog was classified as essential, or if the gene was reported

in the Online GEne Essentiality (OGEE) database (Chen, Minguez,

Lercher, & Bork, 2012) (see Supplementary Material). Although we

found no significant difference in the frequency of gene essentiality

between the disease-EVset (511 essential genes, 64%) and the rare-

EVset (17 genes, 53%), essential genes were more likely to be present

in the rare-EVset compared with the common-EVset (30 genes, 11%,

P < 0.001). Similar results were obtained when genes in the three sets

were analyzed in terms of pathways and Gene Ontology (GO) terms,

as detailed in SupplementaryMaterial.

We examined the network properties of genes in the rare-EV and

common-EV sets and compared them with those of genes in the

disease-EVset, by mapping 279,904 non-redundant protein-protein

interaction data for 21,274 human genes extracted from BioGRID

(Chatr-Aryamontri et al., 2015). Interestingly, only 57% of the genes

in the common-EVset had at least one known interactor, compared

to 93% of genes in the disease-EVset and 97% of genes in the rare-

EVset (P < 0.001 for disease-EVset vs. common-EVset and P < 0.001

for rare-EVset vs. common-EVset). Genes in the disease-EVset and

rare-EVset were equally likely to participate in several interactions

(disease-EVset: median number of interactors 14, range 0–2,064; rare-

EVset: median number of interactors 21.5, range 0–234; P value 0.18).

Moreover, genes in the common-EVset were less likely to participate

in several interactions, compared with genes in the disease-EVset or

rare-EVset (common-EVset number of interactors: median 1, range

0–317; Benjamini–Hochberg adjustedP value<0.05 for rare-EVset vs.

common-EVset and for disease-EVset vs. common-EVset). Surprisingly,

when we examined the first-degree neighbors (direct interaction part-

ners), we found that the three sets of enriched genes were part of a

highly connected network. Out of a total of 1,115 enriched genes, 682

(565 in the disease-EVset, 23 in the rare-EVset, and 94 in the common-

EVset) were adjacent nodes in the gene network comprising of a 682

nodes and 1863 edges. A greater number of genes from the rare-EVset

(23 of 32) rather than common-EVset (94 of 282) were part of this

highly connected network (P < 0.001). This further supports our find-

ing that genes enriched in rare variants (rare-EVset) are biologically

different compared to genes enriched in common variants (common-

EVset) and similar to genes enriched in disease-causing variants, sug-

gesting that the vast majority of genes from the rare-EVset could also

be involved in the pathogenesis of disease.

One of the limitations of our study is that we only included in our

analysis short variants occurring in the exome and did not include vari-

ants, such as those occurring in 3′UTR and 5′ UTR. Moreover, com-

pared with the pLi score, which identified over 3000 LoF intolerant

genes, our strategy appears to have a lower discovery rate, which may

reflect a lower sensitivity. Furthermore, we acknowledge that some

databases used for our analyses, such as the protein interactions and

pathways databases, may be biased toward proteins that, because

of their involvement in disease, have been studied more extensively.

Nevertheless, the consistency of our results, which also include data

from less biased sources, such as GO, OGEE, and the mouse database,

strongly supports the notion that genes enriched in rare-variants share

similar biological properties with genes enriched in disease-causing

variants. We therefore expected all, or the majority, of the 32 genes

enriched in rare-variants to be annotated as causing disease. Surpris-

ingly, only 16 (50%) of these genes were reported as involved in the

pathogenesis of disease in the three major databases of genetic vari-

ants (ClinVar, OMIM, and UniProt). Indeed, the suggestion that the

rare-EVset may have several disease-associated genes is consistent
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F IGURE 1 Essential genes. Number (percentage) of essential genes in: (A) the set of all human protein-coding genes reported in UniProt, (B)
genes enriched in common variants (common-EVset), (C) genes enriched in rare variants (rare-EVset), and (D) genes enriched in disease-causing
variants (disease-EVset). Genes are classified as essential if the mouse ortholog of the human gene produces a lethal phenotype (essential in MGI
database) or if the gene is reported in theOGEE database (essential in OGEE)

with the fact that the rare-EVset had significantly more genes with

genetic variants known to cause disease compared to the common-

EVset (P<0.001).Weexamined theGWASCatalog (releaseNovember

2016), which reports associations for 19,849 genes and 1,591 pheno-

types. We found that an additional four genes (HECTD4, BSN, WDR6,

and SGSM3) enriched in rare variants were annotated as significantly

associated with disease (GWAS P ≤ 5 × 10−8). When we examined the

common-EVset, an additional 56 out of 282 geneswere reported asso-

ciatedwith disease, which confirmed that the rare-EVset is enriched in

genes causing or associated with disease compared with the common-

EVset: 20 (62.5%) genes in total causing or with an association to dis-

ease in the rare-EVset versus 91 (32.3%) genes in the common-EVset,

P< 0.001 (Supp. Table S3).

In the 12 remaining genes in the rare-EVset, no known involvement

in diseasewas found,when thepresenceof large deletions andduplica-

tions (>50 kb) was excluded, by interrogating ClinVar, UniProt, OMIM,

andGWAS catalog. To further explore the presence of pathogenic vari-

ants in these genes, we also interrogated the HGMD database (Supp.

Table S4). Four genes (AOC2, ANKHD1, IQCH, and DOPEY2) were not

found in the HGMD database; four genes (CDC42BPB, TRRAP, TANC2,

and USP54) had variants of uncertain clinical significance annotated;

the remaining four genes (MAMDC4, SPAG5, SRRM2, and PITPNM1)

were present in HGMD, but no variants data were reported in the

publicly available version. Since this version does not include the most

recently deposited entries, we interrogated the DECIPHER database

for known pathogenic genetic variants. DECIPHER is used by the clin-

ical and genetics community and clinician scientists involved in the

100KGenomesProject to share phenotypic and genotypic data. It con-

tains up-to-date, highly curated information. Although copy number

gain and loss were reported in these genes, no variants were anno-

tated, with the exception of one frameshift variant of “uncertain” clini-

cal significance in SRRM2.

These 12 genes are compelling candidates for harboring short vari-

ants causing or increasing the risk of disease. LoF score, which indi-

cates the tolerance of a gene to nonsense, splice acceptor, and splice

donor variants caused by single nucleotide changes (Lek et al., 2016)

was available in the ExAC database for 11 out 12 genes. Four of the

12 genes (ANKHD1, CDC42BPB, TRRAP, and TANC2) were reported as

extremely LoF intolerant (pLi score = 1.00; Supp. Table S5). Indeed,

with the exclusion of USP54, which had no amino acid substitutions,

a large percentage of missense variants in each gene was predicted

damaging by SIFT (Kumar, Henikoff, &Ng, 2009) (median: 48.8%, range

38.8%–73.4%), PolyPhen-2 (Adzhubei et al., 2010) (median: 49.1%,

range 33.3%–57.5%), and MSC-corrected CADD scores (Itan et al.,

2016) (median: 51.6% range 11.3%–59.4%; Supp. Table S6). Moreover,

the median CADD C-scores (Kircher et al., 2014) for the 12 genes

ranged from 13.9 to 23.4 for missense variants and from 36.1 to 45.0

for nonsense variants (Supp. Figure S2).Of notice, themedianC-scores

for nonsense variants in our 12 genes enriched in rare variants were

similar to the median values observed in genes harboring disease-

causing variants or variants associated with complex traits (Kircher

et al., 2014).

In order to describe these 12 genes at population level, we

extracted population allele frequencies from the GenomeAggregation

Database (gnomAD). We observed that 27%–45% of variants for each

gene (median 40%) were not population specific (Supp. Figure S3).

All common variants (MAF ≥ 0.01) were not population specific, as

they were observed in at least two populations. Overall, a higher

proportion of common variants was observed for all genes in the

Ashkenazi Jewish and Finnish populations compared to the other



368 ALHUZIMI ET AL.

F IGURE 2 First-degree neighbors for TRRAP, AOC2, SRRM2, and SPAG5. Only first-degree neighbors with known disease-causing variants are
displayed.TRRAP,AOC2, SRRM2, and SPAG5 arepresentedasblack circles.Diseases are classified according to the10th revisionof the International
Statistical Classification of Diseases and Related Health Problems (ICD-10)

populations (Supp. Figure S4). When investigating the differences in

allele frequencies among different populations, we observed a change

from rare to common in 278 variants across different populations.

Of note, one start loss (rs145549199) and 17 missense variants

(rs61758138, rs536168385, rs35833794, rs34351794, rs34625494,

rs117132686, rs142091518, rs143714922, rs186097368,

rs140559332, rs202115673, rs376290390, rs143024358,

rs117133016, rs114899013, rs138495768, and rs114848780)

located in ANKHD1, AOC2, DOPEY2,MAMDC4, SPAG5, and SRRM2 are

predicted damaging by SIFT, PolyPhen-2, and CADD (Supp. Table S7).

These variants could be important candidates when exploring causes

for differences in disease predisposition in different populations.

In order to explore whether these 12 genes enriched in rare vari-

ants are closely related to each other, we looked for enrichment in

pathways, GO terms or protein domains. However, no enrichment was

found. Moreover, when the human gene connectome (Itan et al., 2013)

was applied, these geneswere not in close proximity (median small bio-

logical distance 16.4, range 10–44; Supp. Table S8).

Most of the 12 novel genes enriched in rare variants were pre-

dicted “intolerant” to genetic variations by several gene-level met-

rics (Supp. Table S9). In particular, the RVIS matrix (Petrovski, Wang,

Heinzen, Allen, & Goldstein, 2013) showed that, with the exception of

USP54 and MAMDC4, all other genes had a negative RVIS score sug-

gestive of genic intolerance. Moreover, over one half of these genes

(ANKHD1, CDC42BPB, PITPNM1, SRRM2, TRRAP, TANC2, andDOPEY2)

were in the top 10% percentile for the most intolerant human genes.

Similar results were obtained when using the “functional indispens-

ability” score (Khurana, Fu, Chen, & Gerstein, 2013), which is calcu-

lated based on a gene's functional and evolutionary properties. High

functional indispensability scores were indeed present for ANKHD1,

CDC42BPB, PITPNM1, SRRM2, TRRAP, and AOC2. Furthermore, TRRAP

and PITPNM1 were among the top excessively constrained genes of

the human genome, when assessed using the DNE gene-level method

(Samocha et al., 2014). Interestingly, when the GDI scores were used,

all 12 genes showed a “medium” GDI prediction score, thus placing

them in-between the set of genes associated with embryo-lethal dis-

orders (low GDI score) and the set of genes that are unlikely to cause

monogenic disorders (high GDI score) (Itan et al., 2015). Moreover,

with the exception ofMAMDC4 and ANKHD1, all genes were predicted

to be under moderate purifying selection when assessed using the

McDonald–Kreitman neutrality index implemented in the GDI server

(Itan et al., 2015).

Among the 12 genes within the rare-EVset, CDC42BPB, DOPEY2,

and IQCH are reported in the GWAS Catalog with a P value between

5 × 10−6 and 5 × 10−8 and are associated with B cell lymphoma,

schizophrenia, and age on onset of menarche, respectively. Next, we

interrogated the DisGeNET database (Piñero et al., 2017), which also

includes disease associations predicted using mouse and rat genome

databases and text-mining-derived associations with Mendelian,

complex, and environmental diseases. An association with disease

was reported for 10 out of 12 genes. Among these, SRRM2 was a

candidate gene for amyotrophic lateral sclerosis, AOC2 for diabetes

mellitus and PITPNM1 for schizophrenia. When we examined the

first-degree neighbors of these 12 genes enriched in rare variants but

with no known disease-causing genetic variants, several first-degree

interactors of SRRM2, SPAG5, AOC2, and TRRAP were disease causing

(Figure 2). This makes these four genes strong candidates for harbor-

ing disease-causing genetic variants, based on the widely accepted

guilty-to-associationprinciple. Indeed, a role forTRRAP as anoncogene

has been proposed, with a recurrent somatic mutation (p.Ser722Phe)
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identified in six out of 167 patients with melanoma (Wei et al., 2011).

The pLi score for TRRAP is 1.00 (pLi scores for all 12 genes are reported

in Supp. Table S5). Moreover, our analysis of first-degree neighbors

suggests that TRRAP, SRRM2, and SPAG5 could be pleiotropic genes

involved in the pathogenesis of several disorders. Within the protein

network, all these genes have first-degree neighbors involved in

neoplasms, congenital, and neurological disorders. These classes

of diseases have all been shown to be enriched in disease-causing

pleiotropic genes (Ittisoponpisan, Alhuzimi, Sternberg, &David, 2017).

Rare variants are likely contributors to the phenotypic variations

observed in the population and to the increased risk of disease and

may represent the missing heritability. However, GWAS studies still

lack the statistical power to identify rare variants, and imputation ref-

erence panels fail to tag them (Bomba,Walter, & Soranzo, 2017).Other

methods, such as the burden test and targeted-region sequencing are,

thus, often used to identify associations between rare variants and dis-

ease (Lee, Abecasis, Boehnke, & Lin, 2014). We identified a novel set

of genes, which have biological properties similar to those of disease-

causing genes and are enriched in rare variants. Such knowledge could

be added to currently available tests and algorithms to boost their

power to detect disease associations. It has, indeed, been shown that

the power to detect association increases when only variants pre-

dicted deleterious are used (Bomba, Walter, & Soranzo, 2017). Simi-

larly, taking into account the biological properties of genes harboring

rare variants could help boost the power to detectmeaningful associa-

tions, as well as aid in the interpretation of the results of on-going and

future sequencing studies.

In conclusion, we identified two novel sets of genes, enriched

in either rare or common variants. We showed that genes in the

rare-EVset are biologically different to genes in the common-EVset

and share biological and network properties with genes enriched in

disease-causing variants. To date, only half of the genes in the rare-

EVset have genetic variants associated with human disease. Never-

theless, the remaining genes from the rare-EVset are also strong can-

didates for disease, as suggested by the concordant results obtained

from several well-established tools, which showed that the majority

of these genes are under purifying selection and are predicted “intol-

erant” to genetic variations. Rare genetic variants identified in these

genes aspart of sequencing studies shouldprompt further in vitro anal-

yses, as they may be involved in the pathogenesis of oligogenic condi-

tions and in themissing heritability of complex disorders.
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