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Abstract

In epidemiology, gerontology, human development and the social sciences, age-period-

cohort (APC) models are used to study the variability in trajectories of change over time. A

well-known issue exists in simultaneously identifying age, period and birth cohort effects,

namely that the three characteristics comprise a perfectly collinear system. That is, since

age = period−cohort, only two of these effects are estimable at a time.

In this paper, we introduce an alternative framework for considering effects relating to

age, period and birth cohort. In particular, instead of directly modeling age in the presence of

period and cohort effects, we propose a risk modeling approach to characterize age-related

risk (i.e., a hybrid of multiple biological and sociological influences to evaluate phenomena

associated with growing older). The properties of this approach, termed risk-period-cohort

(RPC), are described in this paper and studied by simulations. We show that, except for

pathological circumstances where risk is uniquely determined by age, using such risk indi-

ces obviates the problem of collinearity. We also show that the size of the chronological age

effect in the risk prediction model associates with the correlation between a risk index and

chronological age and that the RPC approach can satisfactorily recover cohort and period

effects in most cases. We illustrate the advantages of RPC compared to traditional APC

analysis on 27496 individuals from NHANES survey data (2005–2016) to study the longitu-

dinal variability in depression screening over time. Our RPC method has broad implications

for examining processes of change over time in longitudinal studies.

Introduction

Age-Period-Cohort (APC) models are valuable for understanding phenomena that account for

variability over time in outcome trajectories. The purpose of APC models is primarily to

decompose data trends into age, period and cohort effects. Age effects have been described as

phenomena associated with growing older; period effects as general influences that vary
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through time or epochs; and cohort effects as phenomena associated with individuals born

around the same time (i.e., birth cohorts). APC models have been adopted in epidemiology to

study a wide variety of health outcomes, including breast cancer incidence [1], trends in blood

pressure and body mass index [2] and suicides [3]. APC models have been developed for indi-

vidual level data using hierarchical modeling approaches and time-to-event outcomes [4, 5].

APC effects have also been shown to differ by sex and race [4, 6], for example in rates of pre-

term delivery [7].

While many longitudinal studies have included age and period variables, APC studies have

demonstrated the advantages of evaluating differential cohort effects [4]. The influence of his-

toric events varies depending on the stage of life at which they are experienced; one can exam-

ine the influence of such historic events on subpopulations at different ages by following

cohorts over time [8]. For example, infectious disease epidemics of the 20th Century (e.g. hepa-

titis C and human immunodeficiency viruses) influenced lives and outcomes differently for

distinct birth cohorts. Similarly, technological and therapeutic innovations can have drastically

different influences on the lives of different cohorts in different epochs.

A major impediment to APC research, called the “identification problem”, exists in that

chronological age, period, and cohort effects are linearly dependent, since age = period—cohort
[4, 9]. In other words, given any two of these three characteristics one can calculate the third.

This identity in practice can be further clarified for this paper. Reference in the “identification

problem” is to single measures for chronological age, a given time period and birth cohort to

represent age, period and cohort, respectively.

Several solutions have been proposed to address the identifiability problem in the APC lit-

erature. Yang and Land (2013) [4] proposed the Hierarchical APC (HAPC) model to resolve

identifiability in APC using repeated measures data across individuals. The proposed mixed

effects modeling approach described in Yang and Land (2013) [4] includes fixed effects for lin-

ear and quadratic age and random effects for cohort and period.

In another proposed solution, constrained regression analysis, certain levels of categorical

age, period and/or cohort factors are assumed to have the same effect on the outcome [10].

The “intrinsic estimator” method also works by constraining parameters [4]. In the “APC-

characteristic” model, proxy variables (e.g., cohort size and/or percentage of cohort born out

of wedlock as opposed to individual cohorts) are substituted for at least one of the three vari-

ables [8]. Nonlinear transformation of one of the APC variables has also been proposed as a

solution for identifiability [4].

These proposed methods to address the “identifiability problem” rely on consequential

assumptions and require researchers to impose implicit constraints on the model parameters

that may fail to recover the underlying APC effects. Recent studies have shown these methods

can be sensitive to different model parameterizations [9, 11–15].

Further, prior frameworks for APC analysis assume that all individuals at a given age have

the same risk of outcome (say, mortality) when holding period and cohort fixed. However,

aging is a process that does not happen uniformly, linearly, or sometimes even monotonically,

over time. Health behaviors; functional status; comorbid illnesses; genetic and epigenetic

markers; environmental and neighborhood-level exposures; medication use and other effects

may introduce substantial heterogeneity in outcome risk for persons of a given chronological

age. Estimates of a”biological age” have been shown to be a better predictor of mortality than

chronological age [16].

We thus propose a practical approach that does not attempt to solve the identification prob-

lem, but rather employs a measure of age-related risk in place of chronological age. Age-related

risk is the accumulation of physiological, lifestyle, environmental, sociological and other con-

textualizing risks as a representation of how the process of aging is affecting an individual [17,
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18]. Our approach was inspired by internal risk modeling techniques used for evaluating het-

erogeneous treatment effects in randomized trials [19–22]. In the APC context, this new frame-

work obviates the identifiability problem by substituting the multidimensional risk index in

place of chronological age. We refer to the method as the risk-period-cohort (RPC) approach.

Implementing the RPC model involves using a multidimensional age-related risk index

that combines chronological age and other risk factors (e.g., via multiple regression or a

machine learning model) to describe the aging process with respect to an outcome of interest.

Assuming three basic assumptions are met (discussed in section 2), the risk index will not be

collinear with period or cohort, due to the inherent variability in the set of underlying risk fac-

tors. In theory, any suggested model for APC analysis that evaluates age-related risk along with

period and cohort effects can be used with this technique.

In brief, we are proposing an alternative qualitative framework for APC analysis; the exist-

ing approaches use a framework which includes an identification problem. The major advan-

tage of the risk-period-cohort (RPC) approach over all existing approaches is that (a) it does

not have an identification problem and (b) it is able to better capture phenomena related to

processes of change over the life course.

For illustration in outlining the RPC modeling approach, in section 2, we describe modifica-

tions to extend the Yang and Land’s HAPC framework [4] for our RPC approach for APC anal-

ysis. In section 3 we describe simulation studies to evaluate the (1) relationship between the size

of the chronological age effect in the risk model and the correlation between age-related risk

index and chronological age and (2) proficiency of the risk modeling approach, given a correctly

specified internal risk model, in recovering additional cohort and period effects. In section 4 we

use a health data example to illustrate the advantages of RPC over traditional APC analysis for

studying longitudinal variation in depression screening. We end with concluding remarks in

section 5. We consider some extensions of the RPC approach in the appendix (S1 File).

Methods

The risk-period-cohort model

The proposed RPC analytic method requires three primary assumptions:

1. Age-related risk is not linearly dependent with chronological age.

2. Chronological age and other risk factors, time periods and birth cohorts necessary to evalu-

ate these relationships are empirically represented in the data.

3. The risk model used to estimate age-related risk is correctly specified. If the risk model is

misspecified (e.g. omitted confounding risk factors, risk factors on inappropriate scales, or

lack of relevant interaction terms), then we may not be able to accurately estimate age-

related risk.

We now describe how RPC can be implemented using repeated measures data across indi-

viduals with modifications to extend the Yang and Land’s HAPC framework [4] (see Fig 1).

Let Y0
i be a continuous outcome of interest at baseline (hence the superscript) for i = 1,. . .,n

subjects in our study. Assume chronological age at baseline and Xi,a vector ofm baseline

covariates (X1i,X2i,. . .,Xmi)T, are risk factors for Y0
i that describe age-related risk for Y0

i . An

internal risk model with additive effects for chronological age and the set of risk factors Xi is

given by the following equation:

Y0

i ¼ mþ bChronological Agei þ αTXi þ εi ð1Þ
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This model describes how variability in the aging process can put a subject at higher or

lower risk for the outcome of interest at baseline. Risk in the case of a continuous outcome

refers to predicted values of the outcome for each subject based on a fitted risk equation (e.g.,

via multiple regression or a machine learning algorithm). While Eq (1) can be generalized to

other outcome types (e.g., binary, count and time-to-event outcome types, as described in

“Extensions of the Risk Modeling Approach” in the Supporting Information, S1 File) and

other age-related risk structures (e.g., complex parametric effects involving interactions, non-

linear effects, non-parametric structures, autocorrelated error terms, and/or stratification to

allow for heterogeneity across pre-defined groups), in this basic representation we include a

residual error term assumed to be independent and identically distributed with zero mean and

positive variance. The resulting multidimensional age-related risk index encapsulates predic-

tive information embedded in each subjects’ chronological age at baseline within the context

of effects associated with other relevant risk factors:

Riski ¼ Ŷ
0

i ¼ m̂ þ b̂Chronological Agei þ α̂TXi ð2Þ

We can thus obviate the identification problem in traditional APC analyses by substituting

the age-related risk dimension defined in (2) in place of chronological age (hence the RPC

model), as long as we satisfy our three basic assumptions. Assumption 1 leads to the necessary

condition for RPC that chronological age and age-related risk are not linearly dependent (per-

fectly collinear) or near linearly dependent (approaching collinearity as the sample size grows

infinitely larger). This criterion can be restated formally as an achievement of the requirement

that the absolute value of the correlation between chronological age and age-related risk

Fig 1. A conceptual diagram for the risk-period-cohort (RPC) model using the hierarchical APC (HAPC) framework. Structural diagram of the HAPC model using

RPC analyses (not including a quadratic risk effect on the outcome). This diagram is adapted similarly from work by Bell and Jones (2014)[9]. Each period and cohort

will include the spectrum of individuals of different risk levels. However, this is cross-classified since each period does not include all cohort groups and vice versa.

https://doi.org/10.1371/journal.pone.0219399.g001
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approaches a number strictly less than one as our sample size grows infinitely larger:

lim
n!1
jcorðChronological Age;RiskÞj ! 1 � dn ð3Þ

where 0<δn�1 as n!1. By having to satisfy assumption 1 we have eliminated most of the

trivial cases (e.g., chronological age uniquely determines risk) where this correlation in (3) is

expected to approach one as our sample size grows larger (see simulation study 1).

We can then, alternately as an example, perform longitudinal RPC analyses with the

repeated measures outcome of interest by including age-related risk, period and cohort in the

proposed Hierarchical APC framework of Yang and Land [4] (see Fig 1):

Level� 1 within� subject model

Yijk ¼ ajk þ b1jkRiski þ εijk;

Level� 2 between� subject model

ajk ¼ Z0 þ t0j þ l0k

ð4Þ

for i = 1,. . .,njk individuals within the jth period for j =1,. . .,J time period and the kth cohort

for k = 1,. . .,K birth cohort. There is a Level-1 residual error term εijk. The Level-2 model

defines the group-level effect αjk as the sum of the intercept in the Level-1 model by an inter-

cept term η0 and random effects for each period τ0j and cohort λ0k. The period, cohort and

Level-1 residuals are each assumed to be independent and identically distributed with zero

mean and positive variance.

Stability of results using the RPC method

Above, we described three assumptions of RPC. Satisfying the three assumptions is imperative

for obtaining a credible solution (e.g. age-related risk heterogeneity in simulation study 2).

Further, if the correlation between chronological age and age-related risk is very high, say 0.97,

then serious multicollinearity exists between age-related risk, period and cohort effects that

could lead to less reliable results. We suggest that this correlation should be less than or equal

to 0.85 [23] to avoid modeling a multicollinear system of age-related risk, period and cohort

variables. We show that in practical scenarios similar to our simulation studies, this correlation

will most likely be less than or equal to 0.85 in satisfying assumption 1. If, on the other hand,

risk is relatively independent from chronological age (with a low absolute correlation between

risk and chronological age), then the effect of chronological age is small (assuming the risk

model has been internally derived). As a result, one might either want to remove age from the

model entirely or continue to use risk to describe the aging process, given phenomena related

to growing older in the research study is relatively independent of chronological age.

We also importantly note that assumption 3 for correct model specification should be inter-

preted in accordance with previous findings on internal risk modeling [19–22]. These findings

suggest that if an internal risk model performs well in comparison to existing external models

based on measures of predictive accuracy, then there might be clinical utility to the internal

risk model. While externally-derived risk models may reasonably be considered if they per-

form accurately for the sample at hand, internal risk models maximize internal risk perfor-

mance and for this reason we favor this approach.

In the APC literature in many APC models using repeated measures data across individu-

als, as mentioned, chronological age at baseline is often treated as a fixed effect while variables

representing time period and birth cohort are random effects [4]. As a result in the RPC

approach we create an age-related risk index using baseline measures to be used in place of

chronological age in a similar manner in such APC models. The proposed risk modeling
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approach is not specific to age, in that the modeler can employ the same technique to build

risk indexes that include period or cohort effects instead of age. Since age, period and cohort

effects vary from each other and outcomes of interest in systematic ways, it might be reason-

able in certain circumstances to consider risk models that have a different set of covariates in

creating each of the three risk indices. These indices can then be used in subsequent longitudi-

nal models in any way as fixed, random or mixed effects.

Predicted chronological age as age-related risk

Another way to conceptualize age-related risk is as a predicted chronological age after account-

ing for biological and sociological factors that influence the aging process. Predicted chrono-

logical age can be quantified by modeling baseline chronological age as a function of other risk

factors (e.g., using multivariable linear regression).

An advantage of using predicted chronological age is that it is calculated on a similar scale

as chronological age and as a result is a widely interpretable metric. A disadvantage is that one

might not want to conceptualize age-related risk in terms of predicted chronological age inde-

pendent of an outcome of interest. For example, in a longitudinal study of cardiovascular-

related events we might prefer to calculate a five-year age-related risk for a cardiovascular

event.

Results

Overview of simulation studies of the RPC approach

We present two Monte Carlo (MC) simulation studies using R, version 3.4.2, in the RStudio

integrated development environment. In simulation study 1 we illustrate how the correlation

between chronological age and age-related risk varies according to the contribution of chrono-

logical age in the internal risk model. In simulation study 2, we assume that our risk model is

correctly specified (assumption 3) and recover the age effect within the context of the age-

related risk index. In that simulation, we also evaluate if we can additionally recover underly-

ing cohort and period effects using the RPC approach. We set our sample size n = 10 000 for

each MC replication in our simulation studies so that our results were robust and generalizable

for large sample behavior. See Table 1 for the details of how we generated random variables

and slope parameter patterns for these simulations.

Simulation study 1

We simulated a simplified risk prediction model for baseline health state with chronological

age and two additional risk factors, socioeconomic position (SEP) and physical activity level

and a residual error term assumed to follow a standard normal distribution:

Y0

i ¼ mþ bChronological Agei þ a1SEPi þ a2Activityi þ εi ð5Þ

In this simulation, the aging process in relation to subject-level variation in baseline health

state can be described as a function of chronological age, SEP and physical activity level. The

distribution of the variables considered in this model as shown in Table 1 was simulated for

what we considered practical purposes. We consider a study population with numerical chro-

nological ages from 30 to 80, a normally distributed SEP variable and a variable activity that is

non-normally distributed across the study population to consider a measure with skewness in

a real population. We can replace these variables without loss of generality since we will be

interested in the magnitude of the slopes in (5) (β,α1,α2) for these covariates, which in this set-

ting is controlled via the simulation conditions independent of the type of variable.

Risk-period-cohort approach for averting identification problems in longitudinal models
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We define an age-related risk index for the fitted value for the outcome, where

Riski ¼ Ŷ0

i
¼ m̂ þ b̂Chronological Agei þ â1SEPi þ â2Activityi ð6Þ

We varied the slopes in (5) (β,α1,α2) in simulating data to understand how the contribution

of the age effect can affect the correlation between chronological age and age-related risk.

Loosely, the magnitude of the chosen effects represent null (0.0), small (0.2), moderate (0.4

and 0.6), large (0.8) and very large (1.0) effects on a standardized coefficient scale.

We fit the corresponding risk prediction model for (5) using linear regression. Then, we

calculated the age-related risk index using (6). We calculated the size of the chronological age

effect as the proportionate chronological age effect in the risk prediction model using the esti-

mated parameters in (6):

Proportionate Chronological AgeEffect ¼
bb

bb þ ba1 þ ba2

ð7Þ

The overwhelming majority of the slope parameter patterns yielded useful age-related risk

indices, containing information regarding the extent to which chronological age determines

Table 1. Conditions, variables and parameters for simulation studies (N = 10 000, 1000 Monte Carlo replications

of each slope parameter pattern).

Simulation Study 1

Risk prediction model for baseline health state Y0
i : Y0

i ¼ mþ bChronological Agei þ a1SEPi þ a2Activityi þ εi,
i = 1,. . .,10000

Variable/Parameter Condition for Simulation

Intercept (μ) set to 0 without loss of generality

Chronological Age truncated normal distribution with mean 55, standard deviation 25, lower bounds 30, upper

bounds 80; rounded to the nearest integer

SEP standard normal distribution

Activity poisson distribution with parameter lambda set to one

Residual error term

(εi)
standard normal distribution

β, α1 and α2 Each drawn with replacement from the vector (0,0.2,0.4,0.6,0.8,1)T for 63 = 216 possible

parameter patterns

Additional Information for Simulation Study 2

APC model for current health state Yi (under assumption of no period effect): Yi = μ+βChronological
Agei+α1SEPi+α2Activityi+ΓCohorti+εi,

i = 1,. . .,10000

Variable/Parameter Condition for Simulation

Period truncated normal distribution with mean 1980 standard deviation 30, lower bounds 1950,

upper bounds 2010

Cohort Due to linear dependency we calculated for each individual i a birth cohort, Cohorti +

Periodi−Chronological Agei.
Γ Additionally drawn with replacement from the vector (0,0.2,0.4,0.6,0.8,1)T for 64 = 1296

possible parameter patterns

SEP = Socioeconomic Position; Activity = Physical Activity. We standardized all random variables (Chronological

Age, SEP, Activity and Cohort) for simulating the outcomes for baseline and current health state, so these variables

were all on a similar scale with the simulated slopes. The coefficients are based on a standardized scale and generally

the effects represent null (0.0), small (0.2), moderate (0.4 and 0.6), large (0.8) and very large (1.0) effects.

https://doi.org/10.1371/journal.pone.0219399.t001
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Fig 2. Scatterplots of the correlation between age and risk vs. proportionate chronological age effect grouped by simulated beta value (0,0.2,0.4,0.6,0.8,1). Average

results over 1000 Monte Carlo (MC) replications of each of the 216 slope parameter patterns in which N = 10 000 for each MC replication. Results were robust over the

MC replications; the empirical standard errors were close to zero for the average correlation of age and risk across all slope parameter patterns and for proportionate age

effect with the exception of the trivial case where β = 0,α1 = 0,α2 = 0 (empirical standard error = 0.06). Proportionate age effect is defined using the formula (1.7). The

coefficients are based on a standardized scale and generally the effects represent null (0.0), small (0.2), moderate (0.4 and 0.6), large (0.8) and the largest possible (1.0)

effects.

https://doi.org/10.1371/journal.pone.0219399.g002
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age-related risk (within the context of other effects; see Fig 2). The simulation showed that the

correlation between chronological age and risk generally goes down or up according to contri-

bution of chronological age in the risk prediction model. Table 2 includes all cases where the

correlation between chronological age and age-risk were above the 0.85 threshold (29 cases).

We found that the correlation between chronological age and risk was above the 0.85 threshold

whenever the proportionate chronological age effect was greater than 0.60 (24/29 cases); the

proportionate chronological age effect was still quite large, between 0.55 and 0.59, for the other

five cases (see Table 2).

When chronological age correlated with the outcome only weakly, then the age-related risk

index was close to linear independence from chronological age (see Fig 2 when β = 0). How-

ever, the sole outlying point in Fig 2 for β = 0 (proportionate chronological age effect is incon-

gruent with the near zero correlation between chronological age and age-related risk due to

noise) is the trivial case where all slope parameters are zero, violating assumption 1.

Table 2. Simulated slope parameter patterns in which the average correlation between chronological age and age-related risk was greater than or equal to 0.85.

Chronological age
(β)

SEP
(α1)

ACTIVITY
(α2)

CORRELATION BETWEEN CHRONOLOGICAL AGE AND
AGE-RELATED RISK

PROPORTIONATE CHRONOLOGICAL AGE
EFFECT

0.2 0 0 1 1.01
0.4 0 0 1 1
0.6 0 0 1 1
0.8 0 0 1 1
1 0 0 1 1
1 0 0.2 0.98 0.83
1 0.2 0 0.98 0.83
0.8 0 0.2 0.97 0.8
0.8 0.2 0 0.97 0.8
1 0.2 0.2 0.96 0.71
0.6 0 0.2 0.95 0.75
0.6 0.2 0 0.95 0.75
0.8 0.2 0.2 0.94 0.67
1 0 0.4 0.93 0.71
1 0.4 0 0.93 0.71
1 0.2 0.4 0.91 0.62
1 0.4 0.2 0.91 0.62
0.6 0.2 0.2 0.9 0.6
0.4 0 0.2 0.89 0.67
0.4 0.2 0 0.89 0.67
0.8 0 0.4 0.89 0.67
0.8 0.4 0 0.89 0.67
0.8 0.2 0.4 0.87 0.57
0.8 0.4 0.2 0.87 0.57
1 0.4 0.4 0.87 0.56
1 0 0.6 0.86 0.62
1 0.6 0 0.86 0.63
1 0.2 0.6 0.85 0.56
1 0.6 0.2 0.85 0.56

Proportionate chronological age effect is defined using the formula (7). The coefficients are based on a standardized scale and generally the effects represent null (0.0),

small (0.2), moderate (0.4 and 0.6), large (0.8) and the largest possible (1.0) effects.

https://doi.org/10.1371/journal.pone.0219399.t002
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Simulation study 2

For simplicity, we assumed that current health state can be simulated in the same manner as

baseline health state from (5) with the exception that current health state also considers a

cohort variable:

Yi ¼ mþ bChronological Agei þ a1SEPi þ a2Activityi þ GCohorti þ εi ð8Þ

We fit the model for (8) using linear regression. We assumed no period effect in this model

in order to study the RPC model’s capacity for recovering null effects (in addition to values of

the parameter Γ). We also used the simulated data based on each slope parameter pattern to fit

respective RPC models, incorporating the age-related risk index from Eq (6):

Yi ¼ m
� þ b

�Riski þ G
�Cohorti þ L

�Periodi þ εi ð9Þ

Assuming we have recovered the age effect within the age-related risk index, if we could sat-

isfactorily recover the cohort and period effects using RPC, we would expect Γ−Γ� = 0 and Λ�

= 0. We flagged cases where the average absolute value of either of these two estimated values

over the MC replications of each slope parameter pattern was greater than a trivially small

effect size (0.01). In these cases, we might fail to precisely recover the simulated cohort effect

and falsely identify some possibility of a nonexistent period effect.

We found that the RPC approach estimates accurately both the simulated cohort and period

effects using our criteria for 1266 of the 1296 (98%) slope parameter patterns we tested. The 30

cases where period and cohort effects were not precisely estimated in the RPC model (see

Table 3) consisted of all the trivial cases where chronological age was the only significant risk

factor in the internal risk model (β>0,α1 = 0,α2=0). The bias grew with the size of the chrono-

logical age parameter β. Therefore, in imposing the assumption of age-related risk heterogene-

ity (assumption 1) we would be able to recover all additional cohort and period effects using

RPC in our simulated nontrivial test cases.

Real-world application of the RPC approach to model changes in

depression screening outcomes from 2005–2016

We performed both traditional APC and RPC analysis on an illustrative example to demon-

strate the potential consequences of not being able to estimate all levels of age, period and

cohort effects in real settings.

The National Health and Nutrition Examination Survey (NHANES) is a program of the

National Center for Health Statistics that began in 1960. The objective of the NHANES is to

assess the health and nutritional status of individuals in the United States. The NHANES is a

cross-sectional collection of surveys and other health examination data for a nationally repre-

sentative sample of the resident, civilian, non-institutionalized U.S. population with approxi-

mately 5,000 individuals sampled each year [24, 25].

The inclusion criteria for our illustrative example was having a recorded Patient Health

Questionnaire (PHQ)-9 total score [26] from one of six time periods (2005–2006, 2007–2008,

2009–2010, 2011–2012, 2013–2014, 2015–2016) Among the 31191 individuals meeting these

criteria, the median chronological age was 47, 51.5% were female, 46.9% were non-Hispanic

White, and 64.2% had no comorbidities. The median PHQ-9 total score was 2, and 8.7% of

individuals screened positive for depressive symptoms (PHQ-9 total score� 10).

We created an age-related risk index using predicted chronological age. The internal risk

model for chronological age included sex, number of comorbidities (ranging from 0 to 11),

race/ethnicity (Hispanic, Non-Hispanic White, Non-Hispanic Black and Other Race), ratio of
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family income to poverty level, and social support (year = married or living with partner, no =

widowed, divorced, separated or never married) as predictor variables. We performed listwise

deletion on missing values on the covariates for 27496 complete cases. In our risk model, all var-

iables were statistically significant (p< 0.05) and the model R-squared and adjusted R-squared

were both 0.23. The correlation between age-related risk and chronological age was 0.48, thus

fitting well within our conditions for this correlation as described in simulation study 1.

In a traditional APC approach, we regressed the PHQ-9 total score on chronological age,

time period and birth cohort. In the RPC approach we regressed PHQ-9 total score on age-

related risk, time period and birth cohort. For approximating a birth cohort for each individ-

ual, we used the even year in each two-year range (2006, 2008, 2010, 2012, 2014, 2016) as the

time period. We categorized both time period and birth cohort. We then grouped together

birth cohorts every five years for our regression modeling. Due to the skewness of the PHQ-9

in our study population, we used a logarithmic + 1 transformation on this outcome.

The APC approach was only able to estimate time period and birth cohort because we cate-

gorized birth cohort by five-year ranges and removed levels that would make it linearly

Table 3. Problematic slope parameter patterns in simulation study 2.

Chronological Age

β
SEP

α1

Activity α2 Cohort Γ Cohort Effect

Difference

RPC Period Effect

0.2 0 0 0 0.29 0.23

0.2 0 0 0.2 0.31 0.24

0.2 0 0 0.4 0.30 0.23

0.2 0 0 0.6 0.20 0.15

0.2 0 0 0.8 0.32 0.25

0.2 0 0 1 0.30 0.23

0.4 0 0 0 0.51 0.40

0.4 0 0 0.2 0.63 0.48

0.4 0 0 0.4 0.61 0.47

0.4 0 0 0.6 0.66 0.51

0.4 0 0 0.8 0.66 0.51

0.4 0 0 1 0.61 0.46

0.6 0 0 0 0.96 0.74

0.6 0 0 0.2 0.89 0.68

0.6 0 0 0.4 0.92 0.71

0.6 0 0 0.6 0.99 0.76

0.6 0 0 0.8 0.93 0.71

0.6 0 0 1 0.92 0.70

0.8 0 0 0 1.35 1.03

0.8 0 0 0.2 1.25 0.96

0.8 0 0 0.4 1.27 0.97

0.8 0 0 0.6 1.16 0.89

0.8 0 0 0.8 1.34 1.03

0.8 0 0 1 1.17 0.90

1 0 0 0 1.71 1.32

1 0 0 0.2 1.88 1.45

1 0 0 0.4 1.65 1.27

1 0 0 0.6 1.51 1.16

1 0 0 0.8 1.52 1.16

1 0 0 1 1.40 1.08

https://doi.org/10.1371/journal.pone.0219399.t003
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dependent with chronological age and time period; nonetheless there was evidence of variance

inflation (i.e., larger standard errors) for period and cohort effects within the APC model rela-

tive to those estimated in the RPC model (see Table 4). The RPC model additionally resulted

in improved model fit statistics (R2 and adjusted R2) relative to the APC model.

Age-related risk was significantly associated with depression screening in the RPC model,

while chronological age was not significantly associated with depression screening in the tradi-

tional APC model. Point estimates for period effects in the two models were relatively similar,

although the RPC model showed a significantly positive association between time periods for

2013–2014 and 2015–2016 (reference level 2005–2006) with PHQ-9 total score while the tradi-

tional APC model did not. The birth cohort point estimates were in a similar direction

between the two models. However, the traditional APC model had lower point estimates (for

the most part) and larger standard errors and did not have a significant birth cohort effect. Of

note in the RPC model, there was a strong birth cohort trend beginning in 1946–1950 associ-

ated with an increase in depression scores. This positive association grows in magnitude across

younger birth cohorts.

Table 4. Application of the RPC approach and a traditional APC approach on NHANES survey data to evaluate time-varying trends in depression screening from

2005–2016 (N = 27496).

RPC Traditional APC

R2 = 0.046;

Adjusted R2 = 0.046

R2 = 0.008;

Adjusted R2 = 0.007

Estimate SE p Estimate SE p

(Intercept) -0.426 0.070 <0.001 0.614 0.326 0.060

Chronological Age — — — 0.003 0.004 0.460

Age-related Risk 0.023 0.001 <0.001 — — —

Period (Reference 2005–2006)

2007–2008 0.109 0.018 <0.001 0.113 0.020 <0.001

2009–2010 0.095 0.018 <0.001 0.099 0.024 <0.001

2011–2012 0.029 0.019 0.125 0.026 0.030 0.386

2013–2014 0.053 0.019 0.004 0.064 0.035 0.070

2015–2016 0.053 0.019 0.006 0.068 0.043 0.108

Cohort (Reference 1921)

1926–1930 -0.111 0.068 0.101 -0.106 0.073 0.147

1931–1935 0.018 0.065 0.776 0.044 0.078 0.567

1936–1940 0.025 0.064 0.695 0.031 0.087 0.721

1941–1945 0.056 0.064 0.382 0.050 0.102 0.624

1946–1950 0.166 0.063 0.009 0.149 0.117 0.201

1951–1955 0.280 0.063 <0.001 0.241 0.133 0.070

1956–1960 0.289 0.063 <0.001 0.239 0.150 0.110

1961–1965 0.341 0.063 <0.001 0.262 0.167 0.118

1966–1970 0.328 0.063 <0.001 0.236 0.186 0.203

1971–1975 0.315 0.063 <0.001 0.221 0.203 0.276

1976–1980 0.374 0.063 <0.001 0.271 0.222 0.222

1981–1985 0.367 0.063 <0.001 0.255 0.240 0.288

1986–1990 0.457 0.063 <0.001 0.334 0.258 0.196

1991–1996 0.500 0.068 <0.001 0.372 0.277 0.180

Abbreviations: RPC = risk-period-cohort; APC = age-period-cohort; SE = standard error; p = p-value. In an alternative specification, we categorized every level of birth

cohort and thus had to leave out a level in order to resolve the identifiability problem. The substantive results and conclusions for this alternative specification regarding

age, period and cohort effects were similar however as the traditional APC approach presented in Table 4.

https://doi.org/10.1371/journal.pone.0219399.t004
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In Fig 3 we graphically depict the relationship between PHQ-9 total score and birth

cohort grouped by quintiles of age-related risk. The figures shows, with considerable variability

across age-related risk groups, an increase in the average PHQ-9 total score in moving across

the x axis to younger birth cohorts. The increasing slope is most prominent for individuals in

the fifth quintile (highest age-related risk) before data becomes more sparse in later birth

cohorts.

Fig 3. Relationship between PHQ-9 total score and birth cohort by quintiles of age-related risk using local regression smoothing (N = 27496). Shaded region in

each plot represents a 95% Confidence Interval.

https://doi.org/10.1371/journal.pone.0219399.g003
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We re-ran the APC model including the explanatory variables used in the risk model as

covariates. The model fit improved substantially (R2 and adjusted R2 both equal to 0.12). How-

ever, the standard errors in general were still larger than in the RPC model. In this model one

still needs to force a constraint in order to estimate the age, period and cohort effects due to

linear dependency. The major difference in the results from this APC analysis (incorporating

covariates) in comparison to the traditional APC model reported in Table 4 was that a signifi-

cant (p-value ranging from 0.01 to 0.05) birth cohort effect was detected between 1951 and

1970. This effect was then no longer significant for the post-1970 birth cohorts.

For further confirmation by comparison to a mixed effects approach, we re-ran both the

RPC and APC model using a multilevel framework. In the RPC multilevel model we included

a fixed effect for risk and in the APC multilevel model we included fixed effects for chronologi-

cal age and quadratic chronological age. Both models included random effects for period and

cohort. The mixed effects results paralleled the results for the fixed effects regression models:

the RPC model detected a significant positive age-related risk effect and positive cohort effect

from 1951 onward, while the APC model did not detect an age or cohort effect.

Future work for evaluating RPC effects in a longitudinal study of

cardiovascular-related events

Our real data application with the NHANES survey data used different waves of cross-sectional

data. Thus, we were not able to evaluate age, period and period effects on the same individuals

across time. In a future study we will evaluate age-related risk, period and cohort effects for

cardiovascular-related events using repeated measures data across individuals. A possible

hypothesis would be that meaningful RPC effects would be observed because older birth

cohorts were at higher risk for cardiovascular outcomes, including mortality, in the 1980s

compared to today due to higher prevalence of smoking and the advent of a variety of effective

clinical and medical interventions since the 1980s (e.g. statins) [27].

Conclusions

Age-period-cohort (APC) models have been proposed as a longitudinal modeling solution

that can decompose data trends for time-varying events into age, period and cohort effects.

However, due to the identification problem, researchers have been hamstrung by challenges in

recovering underlying APC effects arising from the inherent collinearity of these factors. Prior

longitudinal studies suffer from a potentially critical limitation of understanding the full range

of longitudinal variation when not properly examining all age, period and cohort effects [9,

11–15, 27–29]. Our risk-period-cohort (RPC) method provides a straightforward way to

understand such longitudinal variation by obviating the identification problem.

Our RPC approach essentially transforms chronological age into a multidimensional hybrid

measure to describe age-related risk. Further, the RPC approach allows for contextualizing APC

effects in relation to clinical outcomes and other risk factors while addressing different sources of

subject heterogeneity. As such, we believe that the RPC framework can be usefully applied for

many epidemiological studies of human development and gerontology involving large observa-

tional data sources, in that it allows for examining sources of variation over broad time durations.

Our first simulation study revealed that in most of our tested cases, the age-related risk index

provided for reasonable levels of multicollinearity among risk, period and cohort effects. The risk

index also informs the researcher about the size of the chronological age effect in contributing to

age-related risk. In using the RPC approach, as revealed in our simulation study 1, it is important

to check (1) the correlation between the age-related risk index and chronological age and (2) the

size of the chronological age effect (i.e. proportionate chronological age effect) in the risk
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prediction model. In practice, model adjustments in line with theory and prior empirical evidence

might be considered to optimize these two indices before performing subsequent longitudinal

RPC analyses. Although we anticipate that the values of these two indices should generally be

below acceptable thresholds described above, investigators might employ remedial measures

when the indices are above those thresholds (e.g., inclusion of additional clinically relevant risk

factors for age-related risk in the risk prediction model when such factors are available).

Existing methods that attempt to resolve the identification problem may fail to recover

underlying APC effects due to variance inflation resulting from multicollinearity of these fac-

tors. Our second simulation study showed in our test cases, given that the internal risk model

is correctly specified and recovers the age effect within the age-related risk index, that the RPC

approach was able to additionally recover both the simulated cohort and period effects in all

nontrivial cases. These simulation studies showed the necessity of the assumption 1 of age-

related risk heterogeneity. The simulation results showed that the RPC model should be useful

for many applied problems. However, there are other scenarios encountered in practice not

covered in our simulation studies that will need to be studied further.

Our real data application of the RPC approach on the NHANES survey data illustrated the

advantages of being able to recover all levels of APC effects without making constraints to

resolve the identifiability problem. Smaller standard errors were observed in the RPC model as

compared to a traditional APC model under different specifications. Of primary concern was

that the traditional APC model may have missed substantively important longitudinal varia-

tion in depression screening between 2005–2016. The RPC model found a significant age effect

and a cohort effect beginning around 1946–1950 and continuing across subsequent birth

cohorts that was absent from the traditional APC models.

In this paper we have described the RPC approach for obviating identifiability in APC mod-

els with broad implications for accounting for time-varying events that impact longitudinal

studies. In future studies we will seek to apply this approach using longitudinal data from

national cohorts and from electronic health records. Such future work is needed to examine

the empirical value of the RPC approach using repeated measures data on individuals.
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