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Abstract

This paper addresses whether the ecosystem service of animal production from grasslands depends upon plant functional
identity, plant functional diversity or if the resilience of production is a function of this diversity. Using the results of nine
grazing experiments the paper shows that productivity is highly dependent on one leaf trait, leaf dry matter content, as well
as rainfall. Animal (secondary) productivity is not dependent on plant functional diversity, but the variability in productivity
of grasslands is related to the functional diversity of leaf dry matter content. This and a range of independent studies have
shown that functional diversity is reduced at high levels of grassland productivity, so it appears that there is a trade-off
between productivity and the resilience of productivity in the face of environmental variation.
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Introduction

Many ecosystem services are directly dependent on ecosystem

processes that are in turn dependent upon the nature of the

vegetation present [1]. In order to manage ecosystems to maintain

the provision of ecosystem services for the long-term, we need to

understand how various characteristics of plant communities

contribute to controlling ecosystem processes. This approach has

been formalized into analyzing the relative contributions of abiotic

factors, plant traits and plant functional diversity to the rate of the

process in question [2]. Whilst many studies have shown the

dependence of processes such as primary productivity and

decomposition on plant traits [3–5], there has been less success

in identifying the positive role of functional diversity in controlling

ecosystem processes [6–8] with even negative relationships having

been found [9]. This has, perhaps, been hampered by the search

for suitable metrics of functional diversity [10].

Plant functional diversity could contribute to ecosystem

processes in two ways. Functional diversity could contribute

directly to the process rate [2], [11] (Hypothesis 1) or it could

contribute to the resilience of ecosystem service supply, in this case

animal production (Hypothesis 2) – where resilience is defined as

the capacity of a system to deliver services in the face of

disturbance [12], [13], or in other words, reduce the variability of

the process in question [14]. Resilience is necessary to sustain

desirable ecosystem states in variable environments and uncertain

futures [15]. However, as functional diversity is sensitive to land

use intensification [16] then understanding its contribution to

ecosystem services is a necessary step to enable the future long-

term provision of services.

Many studies use ecosystem processes as surrogates for

ecosystem services. This study instead, took a direct measure of

an ecosystem service - livestock productivity from grasslands -

measured as the density of livestock that can be stocked to achieve

a set vegetation height. The data were derived from nine long-

term grazing experiments [17] which had simultaneous measures

of grazing density and vegetation data. Using weather data and

trait data from databases, the influence of growing season weather,

plant traits (as their community weighted mean) and plant

functional diversity on production were tested. Functional diversity

was calculated for a suite of response traits [5] and for individual

leaf traits known to be linked to ecosystem function [18], [19].

There is no consensus on which measures of functional diversity

may drive ecosystem function/services. Many functional metrics

are highly correlated [18], so to minimize the number of variables

tested to reduce the risk of type one errors, only two orthogonal

metrics were calculated: Rao’s entropy (Q), which combines both

functional richness and divergence, and the functional evenness

(FEve) [20]. Two alternate hypotheses were tested: (1) that

functional diversity contributes directly to ecosystem service

delivery, and (2) that functional diversity confers resilience (the

capacity of the system to deliver the service in the face of changing

conditions) to ecosystem services through the presence of

alternative trait combinations that can exploit the variance in

environmental conditions.

Material and Methods

The results of nine previously published experiments investi-

gating the interactions between livestock grazing and the dynamics

of grass-dominated vegetation were assembled. These were the
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same as those analyzed in [17], except for one experiment (Bell

Hill, [21]) for which the management data were not complete.

Data were available for between 4 and 15 years depending on

experiment and consisted of vegetation records (point quadrat

data) and productivity data in terms of the number of days of

grazing required to keep the vegetation at a set height - this

equates to secondary production. Data were taken just from the

control (continuation of previous site management) treatments so

the data were not confounded by changing grazing intensities and

were converted to livestock units (LU) ha21 yr21 to account for the

different species of grazers in the different experiments [22]. The

data are available from the author. Trait data were assembled

from standard sources [23], [24] but were restricted to the main

response traits in grassland vegetation [5] (Table 1). Data for

numeric traits were usually averaged from many entries in the

databases; mean values for each species were calculated by a

weighted mean of all the entries, where the weight was represented

by the replication used to produce each entry. Using trait

information sourced from databases meant that species values

were fixed both within and between sites, so changes in the values

of numeric traits between years depends upon changes in

abundance only. The trait and vegetation data were used to

calculate the following functional diversity measures for the full set

of response traits and for the two individual leaf traits SLA and

LDMC: community weighted mean (CWM), and two orthogonal

measures of functional diversity - functional evenness (FEve) and

Rao’s Q [16]. The two vegetative regeneration attributes were

each given a weight of 0.5 to ensure the overall weight of this trait

was the same as for the others. Weather data were assembled from

the UKCP09 5 km65 km gridded data available for each month

[25]. For each site the growing season’s mean temperature and

total rainfall were calculated for the period May to September, as

this was the period over which the grazing ran for all experiments.

Assuming that productivity is a function of plant response traits

and weather (Hypothesis 0), the analysis was set up to address the

following hypotheses: (1) that functional diversity can help explain

the variation in productivity, and (2) that functional diversity is

correlated to the resilience of site productivity. Hypothesis 0

corresponds to following stages 1 and 2 of (2) and then linking

them together as it is already understood that productivity is

frequently dependent on both weather [26] and on the functional

characteristics of the vegetation [4]. Hypothesis 1 follows their

steps 3 and 5: identifying possible functional diversity measures

related to productivity and then the most parsimonious model of

productivity from the combination of trait, weather and functional

diversity previously identified as correlated to the ecosystem

process of interest.

Developing the models through simplification from a full model

was not possible due to the number of potential alternatives.

Instead, Hypothesis 0 was addressed by finding the combination of

weather and traits that best explained the productivity of the

vegetation starting from a fixed model of the best response trait

(this was highly correlated to the other significant response traits

0.554 to 0.946, and fitting them subsequently to the best leaf trait

did not offer significant explanatory power) and all the climate

variables [27], [28]. A squared term was added for yearly rainfall

as a result of data exploration. Leaf dry matter content (Fig. 1b)

showed an exponential decay. This was transformed using a non-

standard transformation (e20.01704LDMC), determined by fitting a

non-linear regression using nls in R, after initial parameter

estimation using SSaymp [29]. The random model was simplified

first [28], starting from date|plot +1|experiment/block/plot, by

Table 1. Traits used in the analysis with source and coding information.

Traits Coding Attributes

Bud height (life-form) (*) 0 Geophyte, Therophyte

0.333 Hemicryptophyte

0.667 Chamaephyte

1 Phanerophyte

log Canopy height (m) ({) continuous

Canopy structure(*) 0 Rosette

0.5 Hemirosette

1 Erosulate

Flowering - start (month) (*) 1–12

Leaf Dry Matter Content (mg g21) ({) continuous

log Leaf size (mm2) ({) continuous

1Leafing period - summer green(*) 0 Evergreen

1 Summer green

Life-span(*) 0 Annual

0.5 Biennial

1 Perennial

Specific Leaf Area (mm2 mg21) ({) continuous

Vegetative spread - rhizome(*) 0 Not rhizomatous

1 Rhizomatous

Vegetative spread - stolon(*) 0 Not stoloniferous

1 Stoloniferous

Sources of data: *BiolFlor [33], {LEDA [32].
doi:10.1371/journal.pone.0101876.t001
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comparing the impact of term removal on AIC. The eventual

random model used was 1|experiment/plot. The fixed model was

then simplified by comparing likelihood ratios and AIC values

from progressive removal of terms. Models were fitted using the

nmle package [30] in R (R Development Core Team 2010) using

maximum likelihood for fixed model comparisons, and residual

maximum likelihood for random model comparisons and final

estimations of model parameters. Finally, any temporal autocor-

relation of the final model was assessed using the ACF function

[29]. There was no significant temporal autocorrelation; produc-

tivity was not dependent upon the previous growing season’s

weather.

Having identified the best model for Hypothesis 0, further

models to test Hypothesis 1 were built with forward selection on

the same random model. The possible additional fixed effects were

the two overall measures of functional diversity calculated from the

response traits in Table 1 and the two measures calculated for the

identified trait in Hypothesis 0; LDMC. Parameter additions were

tested through likelihood ratios from models identified with

maximum likelihood, and residual maximum likelihood used for

final estimations of model parameters [28]. In addition, the mean

across years of the functional diversity measures and productivity

per plot were correlated to see if long-term grazing patterns

impacted functional diversity (using a linear mixed model with a

random model of 1|experiment).

Hypothesis (2) was addressed by taking the absolute values of

the raw residuals from the combined trait and climate model from

Hypothesis 0 and testing to see if there was a relationship between

them and the functional diversity measures tested in Hypothesis

(1). This, in effect, tested whether functional diversity was

correlated to the divergence from expectation, with the expecta-

tion that the higher the functional diversity the lower the

divergence – which can be seen as a measure of resilience. The

random model was the same as for the other two hypotheses.

However, as this analysis used the output of a previous analysis,

the degrees of freedom were revised downwards by one reflect the

number of previously fitted parameters and hence prevent an

overly liberal test [31].

Results

There was a weak curvilinear relationship between animal

productivity and growing season rainfall indicating limitations at

both high and low rainfall (Table 2, Fig. 1a). There was no

significant relationship with temperature. Leaf Dry Matter

Content (LDMC) was the most successful leaf trait predictor of

production (Fig. 1b), though some other non-leaf traits were also

well correlated including life-form and vegetative spread (Table

S1). The relationship was a clear exponential decay, with very low

animal productivity at high values of LDMC. SLA did not have a

Figure 1. Productivity relationships. Fitted relationships between
(A) rainfall (mm) and (B) leaf dry matter content (LDMC, mg g21) and
production (LU ha21 yr21).
doi:10.1371/journal.pone.0101876.g001

Table 2. Model parameters, parameter probabilities and model fits for the best models containing weather variables, trait
variables and the combined models of traits and weather.

Parameter sources Fitted relationship df p-value

Weather only 0.229 88 0.370

+0.00234YearRain ,0.001

21.4761026Rain2 0.003

Trait only 0.240 81 0.179

+84.806e20.0170LDMC ,0.001

Trait + weather 20.687 80 ,0.001

+95.3162e20.0170LDMC ,0.001

+0.0018YearRain ,0.001

LDMC leaf dry matter content, YearRain rainfall (mm) during the growing season – 1 May to 30 September.
doi:10.1371/journal.pone.0101876.t002
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significant relationship with productivity. The best climate and

trait model was a combination of LDMC and a linear term for

rainfall; the relationship with rainfall was positive suggesting

drought limitation of productivity (Table 2; Table S2).

This combined weather and trait model was taken as the

baseline for judging how functional diversity affects production.

However, none of the four possible, additional predictors (overall

and LDMC measures of FEve and Rao’s Q) could be added to this

model based on the presence of significant additional terms

(Hypothesis 1, p from 0.078 to 0.709, Table S3), though two

measures, overall Rao’s Q and LDMC FEve, gave a small

reduction in AIC. Despite the functional diversity measures not

improving the model from Hypothesis 0, there were clear

relationships between mean productivity and mean overall Rao’s

Q (p = 0.005, Fig. 2a) and with mean LDMC Rao’s Q (p = 0.017,

Fig. 2b).

The alternative approach of analyzing for correlates of the

absolute residuals from the trait and weather model (Hypothesis 2)

showed that functional diversity, as Rao’s Q of LDMC, was

negatively correlated to the size of the residuals (Fig. 3); variability

is reduced at high functional diversity. However, the strength of

the relationship was relatively weak (p = 0.042), though significant

(Table 3). Neither metric of overall functional diversity were

helpful in explaining the residuals (p = 0.459, 0.869 respectively),

nor was functional evenness of LDMC (p = 0.983).

Discussion

A single leaf trait, community weighted LDMC, proved to be a

robust predictor of ecosystem productivity. The choice of LDMC

over SLA as a measure of productivity is in contrast to many

studies [4], [32], but aligns with some [18], [33]. LDMC is a good

measure of investment in leaf structural tissue and its inverse is

hence a good measure of digestibility [34]. Substituting LDMC by

other traits such as leaf nitrogen content could be even more

effective. However, the availability of this data was not as complete

as for LDMC for this analysis. Identifying good predictors of

ecosystem processes and services, such as here, provides the

opportunity to map ecosystem services based on vegetation

information [1], for instance to highlight areas of high value,

and to analyze the trade-offs in service supply that would occur as

a result of land use change [35]. As LDMC appears sensitive to

average rainfall at both a specific [36] and community level [37],

the small additional explanatory power that rainfall makes to a

model fitted with LDMC alone is as expected. Rainfall here

explained inter-annual variation in production whilst LDMC is

explained by the climate (as well as soil) driven variation.

Functional diversity was not helpful in explaining the produc-

tivity of the grasslands analyzed. Thus this study does not add

evidence either way to the role of functional diversity in

contributing to productivity [7], [38] or restricting it [9]. The

marginally significant negative relationships (Table S2) were,

however, more in line with the latter – as with an increase in the

variance of traits present there has to be an increase in the absolute

distances between species traits present and the to the optimum

trait value for those specific conditions of site and weather

combined. In line with other studies [39], [40], functional diversity

was reduced at high land use intensity, as was the functional

diversity of leaf dry matter content. However, here there was

evidence that functional diversity, as the richness/divergence

measure Rao’s Q of LDMC, was correlated to the size of the

residuals from the model containing LDMC and rainfall. At high

functional diversity the grasslands appeared to be more statistically

Figure 2. Productivity:functional diversity relationships. Fitted
relationships between plot mean production ((LU ha21 yr21) and (A)
mean plot Rao’s Q and (B) mean plot LDMC Rao’s Q.
doi:10.1371/journal.pone.0101876.g002

Figure 3. Resilience and functional diversity. The response of the
absolute residual after fitting LDMC and rainfall to the Rao’s Q of LDMC.
Details of model fit and parameters are in Table 2. Details of the LDMC
and rainfall model are given in Table 1.
doi:10.1371/journal.pone.0101876.g003
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predictable in their productivity, suggesting a higher resilience to

environmental variability. This may explain the patterns seen in

other studies where species diversity was correlated to resilience in

production [41]; species diversity was likely a surrogate for

functional diversity. However, meta-analysis has shown that the

stability of service delivery varies between the type of stressor, and

the pattern shown here in response to weather may not be similar

in response to other disturbances [42] The relationship identified

here was relatively weak, but it was present after accounting for the

fitting of LDMC and rainfall, and a range of other factors will have

contributed to the unexplained variation, including intra-annual

variability in the weather.

From the data analyzed here it appears that functional diversity,

a key component of biodiversity, is contributing to the sustain-

ability of grassland production systems through increased

resilience and predictability of outputs. Managing for high

production may result in reduced the statistical predictability of

production [43] as well as reducing biodiversity [44], [45].

Consequently, there appears to be a trade-off between productivity

and resilience of production that is mediated via the functional

diversity and functional identity of the plant community. This is in

addition to the well-known impact of increase agricultural

production on biodiversity.
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