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Abstract: Traditional Chinese herbal medicine (TCHM) plays an essential role in the international
pharmaceutical industry due to its rich resources and unique curative properties. The flowers, stems,
and leaves of Fritillaria contain a wide range of phytochemical compounds, including flavonoids, es-
sential oils, saponins, and alkaloids, which may be useful for medicinal purposes. Fritillaria thunbergii
Miq. Bulbs are commonly used in traditional Chinese medicine as expectorants and antitussives. In
this paper, a feasibility study is presented that examines the use of hyperspectral imaging integrated
with convolutional neural networks (CNN) to distinguish twelve (12) Fritillaria varieties (n = 360).
The performance of support vector machines (SVM) and partial least squares-discriminant analysis
(PLS-DA) was compared with that of convolutional neural network (CNN). Principal component
analysis (PCA) was used to assess the presence of cluster trends in the spectral data. To optimize the
performance of the models, cross-validation was used. Among all the discriminant models, CNN was
the most accurate with 98.88%, 88.89% in training and test sets, followed by PLS-DA and SVM with
92.59%, 81.94% and 99.65%, 79.17%, respectively. The results obtained in the present study revealed
that application of HSI in conjunction with the deep learning technique can be used for classification
of Fritillaria thunbergii varieties rapidly and non-destructively.

Keywords: convolutional neural network; flavonoids; essential oils; saponins; alkaloids; traditional
Chinese herbal medicine; Fritillaria thunbergii

1. Introduction

The Fritillaria genus consists of several species, all of which have been domesticated
in China since 3500 BC. There are three major species within this genus: Fritillaria thunbergii
(Zhebeimu), Fritillaria chuanbeiiensis (Pingbeimu), and Fritillaria ussuriensis (Chuan-
beimu). As well as being a valuable herb, it is also one of the most important economic
crops for herb growers. It is estimated that Fritillaria is planted on over 6000 hectares in
China. Besides producing over 20,000 tons per year, it also provides farmers with an income
of CNY 700 million every year [1]. It has been mentioned in the earliest Chinese herbal
monograph “Shen Nong’s Herbal Classic” as a remedy for coughing. In the 2010 version,
it remains the same. The Chinese Health Law [2002] No. 51 recognizes all three types of
Fritillaria as edible due to their non-toxic nature [2]. Fritillaria is considered to promote
lung dispersal, dissolve phlegm, relieve coughing, detoxicate, and dissolve lumps and
masses in the chest [1].

Hyperspectral imaging has been incorporated into several research fields using remote
sensing. Basically, it involves splitting the electromagnetic spectrum into several bands,
thereby providing sufficient spectral resolution while covering a wide range of wavelengths
(in this case, hundreds of bands). A hyperspectral image represents the spectrum as a
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series of images, each representing a narrow band of light, rather than depicting it in two
dimensions [3,4].

In addition, this method is non-destructive, rapid, and exhibits a high spectral res-
olution, thus enabling accurate identification of a variety of chemical compounds. The
high spectral resolution allows one to identify unique absorption features in minerals as a
result of the interaction between radiation and their crystalline structure [5]. Hyperspectral
imaging allows the observation of a variety of wavelengths, including ultraviolet (UV),
visible and near-infrared (Vis-NIR), shortwave infrared (SWIR), and longwave infrared
(LWIR). Traditional Chinese medicine can be evaluated using hyperspectral imaging [6].
In recent years, spectroscopic techniques and spectral imaging have been widely used to
identify agricultural product origins and analyze their quality as rapid, non-destructive
testing methods [7–17].

Artificial Intelligence (AI) techniques, such as deep learning (DL), enable machines
to acquire knowledge from data autonomously [18]. There are a variety of deep learning
models available, but one of the most popular is the convolutional neural network (CNN).
A CNN consists of three layers: a convolutional layer, a pooling layer, and a fully connected
layer for feature extraction, compression, and classification. Combining several convolu-
tional and pooling layers allows abstract features to be learned more effectively. In the
field of computer vision, CNNs have shown remarkable performance in a variety of tasks.
As part of hyperspectral image analysis, CNN is used to classify images captured using
hyperspectral remote sensing in two and three dimensions [1]. Different CNNs have been
developed over the past few years based on specific tasks in spectral analysis, such as single
rice seed [17], rice seed varieties [19], hybrid seeds [10], and chrysanthemum varieties [9].

In a limited number of studies, deep learning has been used to identify traditional
Chinese medicine. A study is needed to determine whether CNN can discriminate between
the varieties of Fritillaria thunbergii. The main objective of the study is to examine whether
HSI combined with CNN could be used for variety discrimination of Fritillaria thunbergii
varieties. Specifically, the following objectives were to be achieved: (1) to study the
performance of SVM, PLS-DA, and CNN based on the number of training samples, (2) to
evaluate the performance of convolutional neural network (CNN) in comparison to support
vector machine (SVM) and partial least squares-discriminant analysis (PLS-DA), and (3) to
analyze the outcomes of the identification of Fritillaria thunbergii varieties according to the
best model.

2. Materials and Methods
2.1. Sample Preparation

The College of Biosystems Engineering and Food Science at Zhejiang University, China,
provided 12 different varieties of Fritillaria for the study. The Fritillaria samples were coded
as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12, as presented in (Table 1) for later data processing.
Each of the variety had 30 samples; in total, 360 samples were provided. The samples were
not subjected to any additional processing. The data set of each variety was divided into a
training and testing sets ratio of 4:1 (80:20), respectively.

2.2. Hyperspectral Image Acquisition and Correction

The hyperspectral images of Fritillaria thunbergii were obtained using a near-infrared
HSI system. It consisted of a set of devices that interact: Spectral Imaging Ltd., Oulu,
Finland; utilized an imaging spectrograph (ImSpector N17E) that has a spectral range of
874–1734 nm and a high-performance camera (OLES22) that provides a spatial and spectral
resolution of 326 × 256 pixels. A stepped motor-driven conveyer belt controlling two
150-Watt tungsten halogen lamps (3900e Light source; Illumination Technologies Inc.; West
Elbridge, NY, USA) was used to move the samples. It was determined that 25 cm, 4 ms,
and 19.5 mm/s were the appropriate distances between the lens and the conveyor belt to
produce clear, non-deformable hyperspectral images. This study acquired hyperspectral
images of Fritillaria with 256 spectral channels and a resolution of 5 nm. Using Equation (1),
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a white and black reference image was used to correct the raw hyperspectral images to
reduce the effect of dark currents and determine whether the samples were reflective or not.

IC =
Iraw − Idark

Iwhite − Idark
(1)

where Iwhite is the hyperspectral image of a white Teflon tile with nearly 100% reflectance;
Idark is acquired by covering the camera lens with its opaque cap. Iraw, Idark, Idark are obtained
under the same condition during samples collection.

Table 1. Information on different varieties of Fritillaria samples.

ID. Variety State Origin Supplier

1 TongRenTang Flake Zhejiang, China Tongrentang (Sichuan) Health Pharmaceutical Co., Ltd.
2 MoYuan Flake Zhejiang, China Anguo MedicineSource Trading Co., Ltd.
3 NiuEnTang Flake Zhejiang, China Hebei NiuEntang Electronic Commerce Co., Ltd.
4 QiGuiTang Flake Zhejiang, China Hebei Lingkang Trading Co., Ltd.
5 ZeXinTang Flake Zhejiang, China Bozhou ZeXinTang Pharmaceutical Co., Ltd.
6 JiaQiTang Flake Zhejiang, China Anguo Guangsheng Trading Co., Ltd.
7 FuXiTang Flake Zhejiang, China Sichuan Haorui Gallium Biotechnology Co., Ltd. (Sichuan)
8 ZangXiTang Flake Zhejiang, China Sichuan Zangxitang Biotechnology Co., Ltd.
9 NanBeiHang Flake Zhejiang, China Guangzhou NanBeiHang Chinese Medicine Herb Co., Ltd.

10 ShenYue Flake Zhejiang, China Tonghua Sanbao Ginseng Antler Trading Co., Ltd.
11 KangMei Flake Zhejiang, China Kangmei Pharmaceutical Co., Ltd. (Guangdong)
12 YiLing Flake Zhejiang, China Shijiazhuang Yiling Herbal Pieces Co., Ltd.

2.3. Pretreatment and Extraction of Spectra

Before spectral analysis, each Fritillaria sample must be segmented from its black back-
ground. For obtaining binary masks, threshold segmentation of an image with maximum
contrast between sample regions and the background was performed at 1019 nm using an
image with maximum contrast between sample regions and the background. Grayscale im-
ages at other wavelengths were also masked with this binary mask to achieve this. Figure 1
illustrates both a binary and raw colored image. Each ROI within each Fritillaria sample
was spectrally analyzed for a wavelength range of 974–1634 nm in addition to its ROIs.
Instabilities in the hyperspectral imaging system resulted in random noise in the spectral
data collected at the beginning and end of the sampling process. In this study, we examined
the mid-wavelengths between 875 and 1546 nm. The pixel-wise spectrum was smoothed
with a wavelet transform (WT), a decomposition scale of 3, and a primary function of 6.
The reduction in spectral noise improved the signal-to-noise ratio. The pixel-wise spectra
of each ROI were used to discriminate the different Fritillaria samples.

2.4. Software

The Fritillaria samples in the hyperspectral images were cropped from irrelevant
backgrounds using ENVI 4.6 (ITT Visual Information Solutions, Boulder, CO, USA). Hyper-
spectral images were extracted and pre-processed using MATLAB R2018a (The MathWorks,
Natick, MA, USA). MATLAB R2018a was also used to implement PCA for pattern recog-
nition between different varieties. Spyder 3.2.6 (Anaconda, Austin, TX, USA) was used
to implement Python-based discriminant models, including SVM, PLS-DA, and CNN.
Programming was conducted with scikit-learn (http://scikit-learn.org/stable/, accessed
on 22 August 2022) and Pytorch (Facebook, Menlo Park, CA, USA). An Intel(R) core (TM)
i5-8500 processor with 3.00 GHz and 8G RAM was used as the hardware platform for the
execution of all software tools.

http://scikit-learn.org/stable/
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2.5. Analysis of Chemometrics
2.5.1. CNN

Figure 2 shows an illustration of convolutional neural networks (CNNs). A one-
dimensional spectrum input was incorporated into the design of VGGNet [20]. There are
similarities between patterns found in spectral curves and those found in images. The
peaks and minimums of a spectral curve are analogous to the edges of an image. This
network is chosen because of its high performance in image classification and the ease of
modification and extension it provides. Figure 2 illustrates the architecture in terms of five
main blocks. Two convolutional layers follow a top pooling layer. Deeper blocks have more
convolutional filters (starting at 16 and ending at 128). In convolutional layers, there are
three kernels, one stride, and one padding. A convolutional algorithm learns local patterns
based on its input and local connections. Convolutional layers can be chained together so
that deeper layers are connected to a more significant portion of the input data. This results
in different layers of learning features based on raw input. The data set of each variety was
divided into a training and testing sets ratio of 4:1 (80:20), respectively.

The last block contains a fully connected layer (FC Block). The fully connected layer
may learn combinations of features obtained from convolutional layers. It has two layers:
dense and dropout layers [21]. The activation function of the original VGGNet architecture
was a rectified linear unit (ReLU). The exponential linear unit (ELU) is shown to accelerate
learning and outperforms the (ReLU) in some cases [22]. The performance of ELU acti-
vation with batch normalization was superior to ReLU activation [23]. Therefore, ELU is
implemented as part of the architecture. The following is a description of an ELU function.

f(x) =

{
x i f x > 0

∝ (exp(x)− 1) i f x ≤ 0
(2)
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As a classification confidence score, values in the range [0, 1] are produced from the
CNN output. A classification loss is calculated based on the samples’ confidence scores
and their actual labels. As shown in the following equations, softmax and loss function
are defined.

Pij =
eZij

∑K
k=1 eZik

f or j = 1, K (3)

Loss = −∑i ∑j labelij log
(

pij
)

(4)

where Z represents a CNN input, i represents a sample, j represents a class, and K represents
the number of classes.

During CNN training, the data were normalized by dividing the standard deviation
by the mean. Before pre-processing the test data, means and standard deviations were
calculated on the training data. Initializing the weights of the CNN was carried out
by the procedure described in [21]. The Adam algorithm optimized the softmax cross-
entropy loss [24]. The following equation showed a gradual decrease in learning rate (
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origin discrimination. Specifically, it consists of the precision and recall values that are 
used to extract information. The precision, recall, and F-score are defined as follows, and 
their values are presented in Table 2. Precision = True positivesTrue positives + False positives (6)

Recall = True positivesTrue positives + False positives (7)

F-Score = 2 × ୰ୣୡ୧ୱ୧୭୬ × ୖୣୡୟ୪୪୰ୣୡ୧ୱ୧୭୬ାୖୣୡୟ୪୪  (8)

Table 2. Precision, Recall, and F-Score values of the three models. 

Models Data Set Precision (%) Recall (%) F-Score 

CNN 
Training 0.9705 0.9688 0.9697 
Testing 0.8988 0.8889 0.8938 

SVM 
Training 0.9967 0.9965 0.9965 
Testing 0.8010 0.7917 0.7963 

PLS-DA 
Training 0.9267 0.9259 0.9263 
Testing 0.8333 0.8194 0.8263 

  

0) represents the number of epochs
and the decrease in the learning rate represents k.

To find the best combination of hyperparameters, a grid search was conducted. A total
of 256 batches was generated; dropout ratio was set at 0.5 and ELU at 1.0. To train the CNN,
800 epochs were conducted with the following parameters: h0 = 0.0005 and k = 0.045.

2.5.2. PLS-DA

This method is considered to be a supervised technique that achieves the maximum
level of discrimination between samples in the classification process [25]. The PLS-DA was
cross-validated with leave-one-out. The absolute difference between the actual classification
number and the predicted value was used to determine discrimination accuracy in both
training and test sets. The data set of each variety was divided into a training and testing
sets ratio of 4:1, respectively.
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2.5.3. SVM

As a pattern recognition method, the Vapnik-Chervonenkis dimension theory and the
structural risk minimization principle make SVMs very effective [12,26]. Due to its ability to
find a global minimum, SVM differs from neural networks because fewer training samples
are required. Radial basis functions (RBFs) are used to construct the kernel function. The
data set of each variety was divided into a training and testing sets ratio of 4:1, respectively.
A grid-search procedure was used to determine the penalty parameters (c) and kernel
function parameters (g).

2.5.4. Discrimination Models Accuracy Evaluation

A well-known F-score was used to assess the discrimination accuracy of the models [27–33],
in comparison to reference classifications, this metric measures the quality of origin dis-
crimination. Specifically, it consists of the precision and recall values that are used to extract
information. The precision, recall, and F-score are defined as follows, and their values are
presented in Table 2.

Precision =
True positives

True positives + False positives
(6)

Recall =
True positives

True positives + False positives
(7)

F − Score = 2 × Precision × Recall
Precision + Recall

(8)

Table 2. Precision, Recall, and F-Score values of the three models.

Models Data Set Precision (%) Recall (%) F-Score

CNN
Training 0.9705 0.9688 0.9697
Testing 0.8988 0.8889 0.8938

SVM
Training 0.9967 0.9965 0.9965
Testing 0.8010 0.7917 0.7963

PLS-DA
Training 0.9267 0.9259 0.9263
Testing 0.8333 0.8194 0.8263

3. Results and Discussion
3.1. Spectral Features

Figure 3 illustrates that the valley and peak positions of the average spectra of the
twelve (12) varieties were similar. While Fritillaria spectra were generally similar, a few
slight differences were observed. These variations in spectrum properties are brought about
by the various chemical and biological properties of these twelve (12) kinds. The peaks of
spectral curves, at 1100 and 1300 nm, as well as the valleys at 1200 and 1460 nm, could be
used to discriminate among Fritillaria varieties. At 1200 nm, the second overtone of C-H
stretching is responsible for the two peaks and valleys [16,34]. Furthermore, at 1460 nm,
a valley is associated with the first overtone of the O-H stretching [9,34]. The spectral
curves of 5, 6, 7, 8, 9, 10, and 11 show a strong overlapping in the range of 950–1200 nm,
indicating that these two varieties chemical compositions are similar. The wavelength
between 1100 and 1300 nm might be associated with the second overtone of the C-H
stretch [35]. Combination bands of C-H vibrations may be responsible for the wavelength
between 1300 nm and 1400 nm [36]. The wavelengths between 1400 and 1450 nm might be
ascribed to water bands [36]. An overtone of O-H stretch was found to have a wavelength
around 1480 nm [37]. CH2 stretching and non-stretching were attributed to the wavelength
at 1500 nm [38]. An overtone of the N-H stretch might produce the wavelength between
1500 nm and 1530 nm [39]. An overtone of C-H stretching might account for the wavelength
around 1610 nm [40]. The aromatic C-H band was attributed to the wavelength around
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1630 nm [11]. These wavelengths carrying the category information are closely related to
the constituent differences in chemical composition of different Fritillaria variety.
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3.2. PCA

Spectral data analysis is commonly performed using the principal component analysis
(PCA). Using PCA, principal components (PCs) were determined from linear combinations
of original variables. Depending on the interpretation of the variation, PCs are positioned
orthogonally. First, PC examined nearly all variations, followed by second, third, etc.
Generally, the first few PCs analyzed most variations [30,41]. PCAs are often used as a qual-
itative method of spectral analysis. This study used PCA to compare twelve (12) varieties
of Fritillaria. During the PCA analysis, hyperspectral images of each variety of the testing
set were randomly selected. Approximately 78.77% and 17.35% of the information in the
original spectral data is reflected in the first and second PC, respectively.

Conversely, the first two PCs accounted for 96.12% of the variance. Based on this anal-
ysis, the two peak PCs contain virtually all spectral information for the various spectrum
regions. Figure 3 shows the mean spectra of 12 varieties of Fritillaria. It was observed
that the reflectance curves of Fritillaria resembled those of Fritillaria in [6,42]. As shown
in Figure 4, there is little overlap between the twelve varieties. There appears to be a
disconnection between the varieties. There was a rough separation of the Fritillaria samples.
According to the PCA analysis, different varieties have different chemical compositions.
Although the cluster trend could be observed in two dimensions, no distinction could be
made between the samples. Consequently, discriminant algorithms were employed in this
study [30,43,44].

3.3. CNN

Using a CNN as the discriminant model, Fritillaria samples were correctly classified.
SVM and PLS-DA were introduced as contrast methods. The data set of each variety was
divided into a training and testing sets ratio of 4:1, respectively. Spectral imaging requires
machine learning methods to interpret the spectral data derived from various spectroscopy
techniques. Artificial intelligence is focused on deep learning, and convolutional neural
networks are among the most popular deep learning models. Two-dimensional images
are typically analyzed using deep learning methods [17]. This study found that CNN can
perform well when applied to one-dimensional spectra. CNN model showed improved
performance over the SVM and PLS-DA models. As shown in this study, a new method for
analyzing spectral data can be developed using CNN, which provides new methods for
handling spectral data. Varieties of Fritillaria may differ greatly in chemical composition
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due to environmental influences, cultivation management, and other factors. Qiu et al. [17]
analyzed whether hyperspectral imaging and convolutional neural networks can be used
to distinguish rice seed varieties. Four rice seeds were photographed using hyperspectral
imaging techniques in the 380–1030- and 874–1734-nanometer spectral regions. Generally,
CNN models outperformed SVMs and KNNs, showing CNN’s effectiveness in analyzing
spectral data. It was shown in this study that CNN had positive outcomes when used
for the analysis of spectral data. Acquarelli et al. [45] suggested using a CNN structure
to analyze data from vibrational spectroscopy, as comparison methods, PLS-DA, logistic
regression, and KNN were employed. The CNN model demonstrated a good outcome.
While CNN consistently outperformed other models, it was not always the best option.
Liu et al. [46] classified pre-processed and not pre-processed Raman spectra using a CNN
architecture. CNN performed better than models based on KNN, SVM, gradient boosting,
random forest, and correlation analysis. In addition to the results presented in this paper,
this study concludes that CNN can be used to analyze one-dimensional spectral data.
The number of training samples was also examined to ascertain whether it affected the
results. In general, as the number of training samples increases, the performance of machine
learning methods increases. Models that have been trained cannot perform well on tests
due to a lack of training samples. In view of the redundancy of information within the
training samples, once a certain point is reached, performance may no longer be significant.
Additionally, collecting samples may take considerable time [17]. It is, therefore, important
to strike a balance between model performance and cost. With increased training samples,
CNN outperformed SVM and PLS-DA models. A deep learning method may be able
to learn features automatically, and more samples may enable a deeper exploration of
potential feature combinations. In practical applications, models should be developed that
are capable of identifying more Fritillaria varieties. Keeping a hold-out set of test data and
gradually collecting samples for training so that there is no significant change in the test
accuracy is essential if high model performance is achieved reasonably.
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3.4. PLS-DA

Based on the confusion matrices, the results of the various models for the 12 varieties of
Fritillaria are illustrated in Figure 5. Different varieties of Fritillaria produce different results
when compared with different models. As the number of Fritillaria varieties increased,
the performance of the PLS-DA model decreased. In linear classification, PLS-DA is an
efficient approach [47]. Regarding the classification of seeds, neural networks and nonlinear
models, such as support vector machines, outperformed linear models [17,48–50]. Based
on a CNN discriminant model, 96.88% and 88.89% recognition accuracy were achieved
in training and test sets, respectively, which were superior to the classification accuracy
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achieved for twelve (12) varieties of Fritillaria thunbergii by SVM and PLS-DA. The CNN
effectively extracted features from the spectral data because it contained the most in-depth
information. Many deep features were present in the spectral data, which were more easily
extracted with a CNN. The deep architecture of deep learning models allows the extraction
of more abstract and non-changing features from the data, resulting in a higher level of
performance than traditional shallow classifiers [51]. Figure 5 illustrates how CNN and
PLS-DA discriminant analysis models can maintain a relatively high level of performance
compared to SVM.
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3.5. SVM

The SVM algorithm is a nonlinear machine learning algorithm that uses nonlinear
hyperplanes to classify complex data sets [26]. As the number of Fritillaria varieties in-
creased, the discriminant performance of the SVM decreased, and the training and test sets
were recognized accurately with an accuracy of 99.65% and 79.17%, respectively. Zhao et al.
classified maize seeds using a radial basis function neural network, with calibration and
prediction accuracy of 98.03% and 93.26%, respectively [13]. There was a problem of over-
fitting in the SVM-based discriminant analysis model. It has been shown that discriminant
models undergo overfitting when used with NIR hyperspectral imaging data [12,17,52].
A grid-search procedure was used to determine the penalty parameters (c), kernel function
parameters (g), and best component in Figure 6. By using dropouts and batch normal-
ization, discriminant models can be improved [10]. Deep learning algorithms provide
superior models for discriminant analysis [17,20,52]. Comparing CNN with SVM and
PLS-DA models, the CNN model performed significantly better when the number of Frit-
illaria varieties was increased. In addition, the discriminant model based on CNN was
optimized to minimize the problem of overfitting. This allows the CNN to be used for the
classification of Fritillaria thunbergii varieties using hyperspectral imaging technology. It is
imperative that additional Fritillaria varieties be collected in order to develop an instrument
for identifying Fritillaria varieties. Furthermore, a comprehensive research effort will be
required in the future to assess the quality of Fritillaria.
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4. Conclusions

The capability of hyperspectral imaging technology to discriminate was demonstrated
using machine learning algorithms. The classification of Fritillaria varieties was successfully
achieved by three algorithms. The accuracy of each model was optimized through cross-
validation (CV), which was determined using the highest classification rate for each model.
CNN model showed improved performance over the SVM and PLS-DA models, with F-
scores of 89.38%, 79.63%, and 82.63%, respectively. There has been little research examining
deep learning algorithms for the classification of traditional Chinese medicine using HSI,
making this study an important contribution to the field. As a result of the investigation,
some conclusions have been drawn. Developing more robust origin models capable of
detecting regional and temporal variations is necessary in the future. A large data set
representing a wide range of variability (such as geographical origin, harvest period, and
harvest year) should be conducted. The results obtained in the present study revealed
that application of HSI in conjunction with the deep learning technique can be used for
classification of Fritillaria thunbergii varieties rapidly and non-destructively.
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