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This is a rebuttal on the earlier letter “Correspondence 
to the European Heart Journal-digital health in response 
to the paper by Attia et al. 2022”, https://doi.org/10.1093/ 
ehjdh/ztac053.
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We appreciate the opportunity to address Higaki and Yamaguchi and 
their detailed commentary on our study.1 In the referenced study, 
we show that variational auto-encoders (VAEs), which use deep 
neural networks (DNNs) to learn the underlying factors of variation 
in the median beat electrocardiogram (ECG), can be used to provide 
improved explainability over previous attempts to open the ‘black box’ 
of ECG-based DNNs using saliency-based heatmaps. There are cur
rently conflicting definitions of explainability and interpretability in 
the literature and both are used interchangeably. In this work, ex
plainability refers to the concept of providing insight into why the al
gorithm makes a certain decision. Interpretability, on the other hand, 
refers to how the algorithm decides, by providing a direct relation be
tween predictor and outcome.2

Currently employed explainability techniques for ECGs are usually 
saliency-based heatmaps, but these techniques have shown to be un
reliable and poorly reproducible. For example, Adebayo et al.3 have 
shown that even untrained DNNs provide heatmaps that look re
assuring. Moreover, Hooker et al.4 have shown that when you re
move the regions deemed important by many saliency-based 
methods, performance of the classifier does not decrease after re
training. Our own preliminary experiments have shown similar re
sults for ECGs.

Even when saliency-based methods produce reliable results, the 
heatmap can only point at temporal locations in the ECG, which 
does not provide enough explainable value. For example, a high
lighted terminal T-wave could mean the QT interval, the T-wave 

height, the T-wave morphology, or something else.5 Some research
ers have tried to overcome this by entering two-dimensional images 
of the ECG into the DNN and applying the heatmap on the image.6

Although this may add some ‘voltage-related’ information, it will still 
not provide information on the exact morphology of that feature.

Lastly, next to the individual explanations of decisions by the 
model, some form of model-level explainability is necessary to 
gain insight into the overall decision-making process of the model. 
Especially in big datasets, it is not feasible to inspect all individual 
heatmaps. Although there have been attempts to translate the in
dividual heatmaps to complete datasets, for example by taking the 
mean, model-level explainability remains unsatisfactory.7 A lack of 
model-level explainability poses the risk of confirmation bias: when 
there are many possible individual explanations for your complex 
model, will you just pick the ones that confirm your hypothesis?2

Many papers show only some example ECGs with their respective 
heatmaps, and draw conclusions from these examples alone about 
the workings of the algorithm.8

In our study, we demonstrated improved explainability over 
heatmap-based methods for these three major limitations. This is 
done by intentionally decoupling feature discovery from classification 
in DNNs using a β-VAE to decompose the ECG into its generative 
factors (the FactorECG). By combining these learned explainable fac
tors with standard interpretable models (such as logistic regressions) 
in a pipeline, we are able to create a fully explainable pipeline 
(Figure 1). This approach greatly improves reproducibility and reliabil
ity, as a pretrained VAE will always produce the same FactorECG for 
a given ECG. Moreover, we are able to show actual changes to ECG 
morphology instead of just a temporal location in the ECG by using 
visual inspection of the factor traversals. In the current analysis, we 
provide additional insight into the factors by showing relationships 
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with diagnoses and conventional ECG characteristics (e.g. PR inter
val), but using solely these characteristics does not lead to compar
able performance as using the ECG factors.9 We completely agree 
with Higaki and Yamaguchi, however, that associations with 

echocardiography or genetics are much more interesting, and this 
is an area of active investigation by our group.

Conversely to the suggestion of Higaki and Yamaguchi, we have 
designed and extensively described the employed pipeline not to 
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Figure 1 Overview of the novel explainable pipeline. During training and validation (left), any electrocardiogram dataset with available outcomes 
can be used as input to the pipeline. As the electrocardiograms are converted to only 32 factors, datasets can be relatively small. The variational 
auto-encoder, which was pretrained on 1.1 million electrocardiograms, is subsequently used to convert every single electrocardiogram into its 
FactorECG (32 continuous values that represent that electrocardiogram). These 32 factors per electrocardiogram are used in the next step to train 
an interpretable statistical model for diagnosis or prediction, such as logistic regression. As these models are inherently interpretable, they provide 
importance values, such as odds ratios, for every electrocardiogram factor individually. As we are able to visualize the influence of the individual 
electrocardiogram factors on the electrocardiogram morphology using the variational auto-encoder decoder, a direct relationship between elec
trocardiogram morphology and the prediction can be obtained on the model-level. During inference (right), an individual electrocardiogram can be 
entered into the pretrained variational auto-encoder. Prediction is performed using the previously trained interpretable, and individual-level import
ance measures per electrocardiogram factor are obtained. These individual importance measures can subsequently be related to the electrocardio
gram morphologies and correlates of each factor, to better understand why the algorithm made this specific prediction. An online tool is provided 
for other researchers to use the FactorECG in their study (https://encoder.ecgx.ai).

https://encoder.ecgx.ai
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hide the fact that we use simpler interpretable statistical models 
(such as logistic regression or extreme gradient boosting with shap
ley explanations) for prediction tasks, but rather as a major 
strength of the selected methodology. This allows establishing a 
direct relation between the ECG factors (and their respective in
fluence on the ECG morphology) and the prediction on the indi
vidual and model-level, without a loss of predictive performance 
(Figure 1). When logistic regression is used, the odds ratios for 
each ECG factor provide model-level explainability, while for indi
vidual cases the ECG factor values of that specific ECG can be inves
tigated in combination with the odds ratios. Furthermore, due to the 
dimensionality reduction, it broadens the applicability of DNNs to 
much smaller datasets. In recent publications, we have shown that 
the FactorECG is able to predict the risk of life-threatening ventricular 
arrhythmias in patients with dilated cardiomyopathy and success of 
cardiac resynchronization therapy.9,10

In conclusion, we show that decoupling feature extraction from 
classification in deep learning-based ECG analysis allows for im
proved explainability over heatmap-based methods. Our pipeline 
employs the power of deep learning to discover features in the me
dian beat ECG morphology, while also enabling the use of different 
interpretable classification models. Our experiments show that 
this decoupling does not lead to a loss in predictive performance, 
which contradicts a longstanding assumption that the ‘black box’ 
nature of the currently applied DNNs was inevitable to achieve im
pressive performances. Future studies should thus focus on using 
such explainable pipelines, consisting of a separate feature extrac
tion method (for example a VAE) and interpretable classification 
method, as they could increase trust in artificial intelligence (AI), 
allow for bias detection, and broaden the application of AI to 
many other (rare) diseases.

Data availability
The data underlying this article are available in the article.
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