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Background. Preeclampsia (PE), which has a high incidence rate worldwide, is a potentially dangerous syndrome to pregnant
women and newborns. However, the exact mechanism of its pathogenesis is still unclear. In this study, we used bioinformatics
analysis to identify hub genes, establish a logistic model, and study immune cell infiltration to clarify the physiopathogenesis of PE.
Methods. We downloaded the GSE75010 and GSE10588 datasets from the GEO database and performed weighted gene
coexpression network analysis (WGCNA) as well as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analyses. The online search tool for the retrieval of interacting genes and Cytoscape software were used to identify hub
genes, which were then used to establish a logistic model. We also analyzed immune cell infiltration. Finally, we verified the
expression of the genes included in the predictive model via RT-PCR. Results. A total of 100 and 212 differently expressed genes
were identified in the GSE75010 and GSE10588 datasets, respectively, and after overlapping with WGCNA results, 17 genes were
identified. KEGG and GO analyses further indicated the involvement of these genes in bioprocesses, such as gonadotropin
secretion, immune cell infiltration, and the SMAD and MAPK pathways. Additionally, protein-protein interaction network
analysis identified 10 hub genes, six (FLT1, FLNB, FSTL3, INHA, TREM1, and SLCO4A1) of which were used to establish a logistic
model for PE. RT-PCR analysis also confirmed that, except FSTL3, these genes were upregulated in PE. Our results also indicated
that macrophages played the most important role in immune cell infiltration in PE. Conclusion. This study identified 10 hub genes
in PE and used 6 of them to establish a logistic model and also analyzed immune cell infiltration. These findings may enhance the
understanding of PE and enable the identification of potential therapeutic targets for PE.

1. Introduction

Preeclampsia (PE), which is characterized by proteinuria and
hypertension, is a potentially dangerous syndrome that occurs
in pregnant women after 20 weeks of gestation [1]. It may
cause several complications, including premature birth, abor-
tion, HELLP syndrome, renal function damage, and eclampsia
[2]. Additionally, with a high incidence rate worldwide (3–
5%), it represents a significant danger to the health of pregnant
women and newborns and is one of the leading causes of
maternal and neonatal deaths [3, 4]. Therefore, understanding
its pathogenesis, developing methods for its early diagnosis,
and studying effective treatment measures for its management

are important for protecting the lives of pregnant women and
perinatal children and also conserving public resources.

The placenta plays an important role in the pathogenesis
of PE [5]. Specifically, the shallow invasion of the placenta is
an important factor in PE, as it causes long-term ischemia
and hypoxia in trophoblasts. This process continues until
the second trimester. Without adequate blood supply, the
trophoblasts release inflammatory factors into maternal
blood, leading to an increase in maternal blood pressure
and causing damage to certain organs [6]. Presently, several
theories, such as angiogenesis disorder [7], immune dys-
function [8], inflammasome activity [9], and senescence
[10], have been proposed in an attempt to explain this
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phenomenon. However, the exact cause of shallow placental
invasion is still unclear [11].

In recent years, bioinformatics analysis and the microarray
technology have been used to identify transcriptomic alterations
and differentially expressed genes (DEGs), as well as their phys-
iological functions, in many diseases. This has led to enhanced
understanding regarding the pathophysiological processes of
these diseases [12, 13]. Additionally, in several previous studies,
PE was investigated using bioinformatics analyses. Specifically,
Wu et al. observed that RAD21, UBC, SUMO1, and SUMO2
may be reliable biomarkers of PE [14], while the results of a
study conducted by Kang et al. indicated that CCR7 and ITGA5
may play important roles in the early onset of PE [15]. How-
ever, studies with a focus on the establishment of a logistic
regression model and assessment of immune cell infiltration
in PE are limited.

Thus, in this study, we used the Gene ExpressionOmnibus
(GEO) datasets GSE75010 [16] and GSE10588 [17] to identify
hub genes and establish a logistic regression model for the
early diagnosis of PE. Further, we also used RT-PCR to test
the mRNA expression levels of the identified genes and also
studied immune cell infiltration in PE using the abovemen-
tioned datasets.

2. Materials and Methods

2.1. Microarray Data Collection and Preprocessing. The pla-
cental mRNA profiles in the GSE75010 and GSE10588 data-
sets were downloaded from the GEO database (https://www
.ncbi.nlm.nih.gov/geo/). Specifically, from the GSE75010 data-
set, transcriptional profiles corresponding to 80 PE placentas
and 77 non-PE placentas were generated using the GPL6244
platform of the Affymetrix Human Gene 1.0 ST Array, and
from the GSE10588 dataset, transcriptional profiles corre-
sponding to 17 PE placentas and 26 non-PE placentas were
generated using the GPL2986 platform of the ABI Human
Genome Survey Microarray Version 2. Further, R software
was used to transform the probe numbers to gene symbols
and remove the null probes.

2.2. Identification of DEGs. To identify DEGs between pla-
centa tissue samples from normal pregnant women and
women with PE in both datasets, we used the “limma” R
software package. Thereafter, the DEGs were visualized
using heatmaps and volcano plots.

2.3. Weighted Gene Coexpression Network Analysis (WGCNA).
A weighted coexpression network was constructed using the
“WGCNA” R software package. Specifically, the minimal
module size was set to 50, and the cut height was set to 0.25.
For both the GSE75010 and GSE10588 datasets, the soft-
thresholding power was set to 2.

2.4. Identification of Overlapping Genes and Functional
Classification of These Genes. The DEGs and genes in the most
relevant WGCNA modules based on both datasets were com-
pared using the R software package “VennDiagram.” Seven-
teen overlapping genes were identified. Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway and Gene Ontology
(GO) term analyses were performed using the R software

package “ClusterProfiler” to evaluate the function of the over-
lapping genes. Here, statistical significance was set at P < 0:05.

2.5. Protein-Protein Interaction (PPI) Network Analysis. For
PPI network analysis, we used the search tool for the retrieval
of interacting genes (STRING) (http://string-db.org), with the
cutoff criterion set at 0.4. We also used Cytoscape software to
visualize the PPI network, and finally, to identify hub genes,
we used CytoHubba.

2.6. Construction of a Logistic Regression Model. The samples
corresponding to the GSE75010 dataset were randomly
divided into two groups: the training group (60%) and the test
group (40%). The clinical features of these two groups were the
same (P > 0:05). The logistic regression model was established
using the “glmnet” package in R, based on the training group
data and was validated using the test group data. Further, the
receiver operating characteristic (ROC) curve was drawn
using the pROC package in R, while the area under the ROC
curve (AUC) was determined using the auc () function in R
language. Further, principal component analysis (PCA) was
performed using the prcomp () function to test whether the
DEGs or hub genes in the logistic model could distinguish
normal pregnant women from patients with PE.

2.7. Immune Infiltration Analysis and Immune Scores. The R
language source code for immune infiltration analysis was
downloaded from CIBERSORT and used to assess the relative
proportions of 22 immune cells in each sample from the
GSE75010 dataset. Samples with P < 0:05were selected. There-
after, the immune infiltration results were visualized using R
language in the form of heatmaps, bar plots, and coheatmaps.

2.8. Quantitative Real-Time RT-PCR. Placental tissues from
three patients with PE and three women with normal preg-
nancy at the same gestational week were collected at our
hospital during delivery. All of the participants provided
written informed consent for their tissue samples to be used
in this study. Further, the study was approved by the Ethics
Committee of Guangdong Women and Children Hospital
and was performed in accordance with the principles out-
lined in the Declaration of Helsinki.

After the collection of the placental tissue samples, TRIzol
reagent (Invitrogen, Carlsbad, CA, USA) was used to isolate
the placental tissue total RNA according to the manufacturer’s
instructions. Reverse transcription was then performed using
the Revert Aid RT-PCR system, and real-time PCR was per-
formed using the ABI 7500 Real-Time PCR System (Roche,
Penzberg, Germany) by mixing primers, cDNA, and the Rox
Reference Dye. The conditions for the RT-PCR were as follows:
40 cycles of denaturation (95°C, 10 s), annealing (55°C, 20 s), and
extension (72°C, 35 s). The primer sequences were as follows:
FLT1 (forward, 5′-CCGGCTCTCTATGAAAGTGAAG-3′;
reverse, 5′-CGAGTAGCCACGAGTCAAATAG -3′), FLNB
(forward, 5′-CCCTCGCTCTGGTGATTATTT-3′; reverse, 5′
-AAGGGACTGAAACGGACTTG-3′), FSTL3 (forward, 5′-
TTGATGCTCAGAATCGCCTAC-3′; reverse, 5′-TATCCT
CCGTGTTGTCCTCT-3′), INHA (forward, 5′-CTCGGA
TGGAGGTTACTCTTTC-3′; reverse, 5′-CACCAGCCATG
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GGATTAAGA-3′), TREM1 (forward, 5′-CCCAGCATTGT
TCCTGTTTATG-3′; reverse, 5′-TCTGCCTCTCCTAGAG
TGTATT-3′), SLCO4A1 (forward, 5′-GGTGGGAGGAACTT
GCATAA-3′; reverse, 5′-CCACACACGATCGGGTATAAA-
3′), and GAPDH (forward, 5′-CAAGAGCACAAGAGGA
AGAGAG-3′; reverse, 5′-CTACATGGCAACTGTGAGGAG-
3′). The mRNA expression levels of the hub genes were calcu-
lated using the ΔΔCT method with GAPDH as a reference.

2.9. Statistical Analysis. All statistical analyses were per-
formed using R software version 4.0.0, and P < 0:05 was con-
sidered statistically significant.

3. Results

3.1. Identification of DEGs in PE. To identify the DEGs
between normal pregnant women and women with PE, we
used the GSE75010 dataset, which comprises transcriptional
profiles from 77 control pregnant women and 80 patients
with PE. Using the “limma” R software package, 100 DEGs,
including 76 upregulated and 24 downregulated genes, were
identified (Figures 1(a) and 1(b)). Similarly, we analyzed the
GSE10588 dataset, which comprises transcriptional profiles
corresponding to 26 control pregnant women and 17
patients with PE, and identified 212 DEGs, including 153
and 59 upregulated and downregulated genes (Figures 1(c)
and 1(d)). The first 50 DEGs in both datasets are displayed
via volcano plots and heatmaps.

3.2. Weighted Gene Coexpression Network Analysis (WGCNA).
After identifying the DEGs, we usedWGCNA to determine the
most relevant modules with respect to PE in the GSE75010 and
GSE10588 datasets. Specifically, in the GSE75010 dataset, we
set the soft-thresholding power to 2 to establish a scale-free
gene coexpression network and generated three modules using
the dynamic tree-cut algorithm. We observed that the
turquoise module, which includes 295 genes, was themost neg-
atively regulated module in the normal group; thus, it was
selected for subsequent analysis (Figures 2(a) and 2(b)). Fur-
ther, in the GSE10588 dataset, setting the soft-thresholding
power to 2 generated 38 modules, with the purple module,
including 354 genes, being the most negatively regulated mod-
ule in the normal group. Thus, it was also selected for further
analysis (Figures 2(c) and 2(d)).

3.3. Overlapping Genes in the Two Datasets. To further iden-
tify PE-related genes, we used the “VennDiagram” package
in R software to draw a Venn diagram showing the DEGs
and the genes in the most negative and relevant modules
corresponding to the control groups from the GSE75010
and GSE10588 datasets. Seventeen overlapping genes were
identified as most relevant to PE (Figure 3(a)).

3.4. GO and KEGG Analyses of Overlapping Genes. To better
understand the function of the overlapping genes, we sub-
jected the 17 overlapping genes to KEGG and GO analyses.
The five most significantly enriched biological process terms
were “regulation of gonadotropin secretion,” “gonadotropin
secretion,” “negative regulation of leukocyte differentiation,”

“negative regulation of hematopoiesis,” and “negative regu-
lation of B-cell activation.” Further, the five most signifi-
cantly enriched molecular function terms were “activin
binding,” “hormone activity,” “transmembrane receptor
protein kinase activity,” “growth factor binding,” and
“receptor-ligand activity.” Furthermore, the five most signif-
icantly enriched cellular component terms were “focal adhe-
sion,” “cell-substrate junction,” “adherens junction,” “RISC,”
and “RNAi effector complex” (Figures 3(b) and 3(c)).

Additionally, using KEGG pathway enrichment analysis,
we observed that five pathways were enriched, namely,
“cytokine-cytokine receptor interaction,” “transcriptional
misregulation in cancer,” “focal adhesion,” “MAPK signaling
pathway,” and “Hippo signaling pathway” in multiple spe-
cies (Figures 3(d) and 3(e)).

3.5. PPI Network Analysis and Identification of Hub Genes.
From the DEGs and WGCNA modules obtained in the pre-
vious steps, we identified 17 overlapping genes based on the
two datasets employed in this study as most relevant to PE.
Next, to identify the hub genes of these 17 overlapping
genes, we uploaded them to the STRING online database
and used the Cytoscape software to generate a PPI network,
which included 16 nodes (Figure 3(f)). Next, the use of
CytoHubba to identify hub genes revealed that the top 10
hub genes were INHA, ENG, INHBA, FLT1, FLNB, FSTL3,
LEP, NDRG1, ISL1, and TREM1 (Figure 3(g)).

3.6. Logistic Regression Model. We next constructed a logistic
regression model. Specifically, we randomly separated the
GSE75010 dataset into two groups, namely, the training group
and test group, withmatched clinical features (P > 0:05). There-
after, we used the training group to perform a logistic regression
analysis and observed that the P values corresponding to FLT1,
FLNB, FSTL3, INHA, TREM1, and SLCO4A1 were below 0.05.
Further, the AUC corresponding to the training group was
0.927, while that corresponding to the test group was 0.878
(Figures 4(a)–4(d)).We also observed that via PCA of theDEGs
and the genes in the logistic regression model, it was possible to
distinguish placental tissues from normal pregnant women
from those corresponding to their counterparts with PE.

3.7. Immune Cell Infiltration. PE is closely associated with
immune response. To examine the changes in immune cell
infiltration in the placenta in pregnant women with PE, we
analyzed the GSE75010 dataset for differences in infiltration
in terms of 22 immune cell types using the CIBERSORT
method. To this end, P < 0:05 was considered to be statisti-
cally significant for each sample, and data corresponding to
21 normal pregnant and 15 patients with PE were included
in analysis. We observed that three immune cell types dis-
played the highest differential infiltration between normal
pregnant women and pregnant women with PE. Specifically,
in patients with PE, plasma cells and M1 macrophages were
upregulated, while M2 macrophages were downregulated
(P < 0:05) (Figure 5).

3.8. RT-PCR. We collected placental tissues from normal
pregnant women and women with PE, and via RT-PCR,
we investigated the relative gene expression levels of the six
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genes in the logistic model. We observed that FLT1, FLNB,
INHA, TREM1, and SLCO4A1 showed increased expression
levels in the PE group relative to their expression levels in
the normal group (Figure 6).

4. Discussion

The aim of this study was to identify hub genes in PE to the
end of clarifying the mechanism of its pathogenesis and
developing a logistic model. We also studied immune cell
infiltration in patients with PE.

PE, which is characterized by hypertension and positive
urinary protein in women after 20 weeks of pregnancy, can
lead to organ function damage and tends to worsen with

an increase in gestational weeks. Thus, it is a serious threat
to the health of mothers and newborns. Currently, because
its pathogenesis is unclear, the only effective treatment for
PE is pregnancy termination [18, 19]. Thus, conducting
studies to provide clarification in this regard and developing
effective treatments for its management are of prime impor-
tance. The development of microarray analysis and the
RNA-seq technology has enabled measurement of the
expression of many genes as well as the identification of
DEGs between normal and patient tissues. This is important
for understanding disease mechanisms [20].

WGCNA is an analytical method used to analyze the gene
expression patterns of multiple samples. It can cluster genes
with similar expression patterns, analyze the relationship
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Figure 1: Results of the analysis of differentially expressed genes (DEGs) between placental tissues from normal pregnant women and
patients with preeclampsia based on the GSE75010 and GSE10588 datasets. (a) Heatmap and (b) volcano plot of DEGs in the GSE75010
dataset. (c) Heatmap and (d) volcano plot of DEGs in the GSE10588 dataset.
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between modules and specific traits or phenotypes, and finally
identify target genes and gene networks for disease treatment
[21]. Compared with traditional analytical methods, this new
processing method has the potential for application in bringing
correlation values more in line with the characteristics of scale-
free networks, thereby providing more biologically significant
results [22]. In this study, we usedWGCNA to identify themost
negative modules corresponding to the control group in each

dataset and identified 17 overlapping genes that were the most
differentially expressed.

To further investigate the function of the overlapping
genes, we performed KEGG and GO analyses and observed
the enrichment of some important biological processes,
including gonadotropin secretion. Several studies have been
conducted to investigate the effect of gonadotropin in PE.
For example, Li et al. observed that the expression of the
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mRNA of the FSH receptor is reduced in PE [23], while Rei-
singer et al. reported that gonadotropins, such as FSH and
LH, are angiogenic factors and play an important role in
PE [24]. Another biological process associated with PE is
the SMAD pathway, which is well known for its relationship
with epithelial mesenchymal transition (EMT) and angio-
genesis. Several studies have demonstrated that Smad2,
Smad4, and Smad7 may participate in PE via the EMT path-
way [25, 26]. In this study, we also observed that several bio-
logical processes that showed enrichment based on the GO
analysis, including “negative regulation of B-cell activation”
and “negative regulation of lymphocyte differentiation,”
were associated with immune cell infiltration. Therefore,
we studied the relationship between immune cells and the
DEGs to clarify the existence of an association between PE
and immune cell infiltration. Our analyses suggested that
M1 macrophages were upregulated in patients with PE.
Additionally, it has been reported that macrophages play
an essential role in regulating immune response, which is

important in the pathogenesis of PE [27]. Several studies
have also been conducted to clarify the function of these
immune cells in PE, and it has been suggested that macro-
phages mediate the apoptosis of extravillous trophoblasts
and also maintain maternal-fetal tolerance [28]. Further, it
has also been hypothesized that changes in macrophage dys-
function and polarity may induce PE.

After identifying hub genes, we screened six genes,
namely, FLT1, FLNB, FSTL3, INHA, TREM1, and SLCO4A1,
to establish the logistic model. This model represented a
screening technique that could be used to distinguish patients
with PE from women with normal pregnancies. Further, Fms-
related tyrosine kinase 1, also known as FLT1 or VEGFR1, is
encoded by FLT1 in the human body, and Flt1, which is a
member of the src gene family, is related to the oncogene, reac-
tive oxygen species [29], and exhibits tyrosine protein kinase
activity, which is involved in the control of cell differentiation
and proliferation. Furthermore, sFLT1, a soluble Flt1 protein,
is an antiangiogenic factor originating from the placenta [30],
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Figure 3: Identification of hub genes and the results of GO, KEGG, and PPI network analyses. (a) Venn diagram showing DEGs and
WGCNA modules based on the GSE75010 and GSE10588 datasets. (b and c) Bar plot and bubble plot showing overlapping genes based
on GO analysis. (d and e) Bar plot and bubble plot of overlapping genes based on KEGG analysis. (f) PPI network of the overlapping
genes. (g) The most significant top 10 hub genes in the PPI network.
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Figure 5: Immune cell infiltration analysis. (a) Relative percentage of immune cells in samples from the GSE75010 dataset. (b) Heatmap of
immune cells. (c) Correlation analysis of immune cells. (d) Comparison of immune cell infiltration between normal pregnant women and
patients with PE.
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and its overproduction is an important event that drives the
clinical features of PE, such as hypertension. Several scholars
have shown that the mRNA level of sFLT1 is upregulated in
both the blood and placenta of patients with PE [31], suggest-
ing that sFLT1 is a potential predictive factor for PE [32].

Recently, it was observed that FLNB, which is thought to
be a dimeric actin-binding protein that is implicated in skel-
etal deformities, plays a role in platelet dysfunction and
hypertension; however, very little is known regarding its role
in PE. In this study, FLNB was identified as a hub gene for
PE; hence, its effect on PE requires further research [33, 34].

INH, which is also known as inhibin, is a glycoprotein
hormone that comprises two subunits, the α and β subunits.
Specifically, the α subunit, which is expressed in a variety of
human tissues, such as the placenta, determines its specific-
ity. Depoix et al. observed that INHA is associated with PE
[35]. Additionally, TREM1, which is a myeloid cell surface

receptor that is expressed on the surfaces of neutrophils,
monocytes, and macrophages, amplifies inflammatory
responses in coordination with classical pattern recognition
receptors (PRRS), such as toll-like receptor (TLR) family and
nod-like receptor (NLR) family. Xie et al. reported that during
PE, TREM1 amplifies trophoblastic inflammation via the acti-
vation of the NF-κB pathway [36]. Additionally, studies on
SLCO4A1 have been predominantly focused on microRNA
and cancer. There are no reports in this regard on PE; thus,
further studies are needed to clarify its effect on PE.

In conclusion, in this study, using the WGCNA method,
we identified 10 hub genes associated with PE, and after GO,
KEGG, PPI network, and immune infiltration analyses
involving these genes, six (FLT1, FLNB, FSTL3, INHA,
TREM1, and SLCO4A1) were selected to construct a logistic
model. We observed that overexpression of FLT1, which is
an antiangiogenic factor originating from the placenta, is
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an important event that drives the clinical feature of PE. It
was also identified as a potential predictor for PE. Further,
INHA and TREM1 were also found to be associated with
PE. Therefore, further studies on these three classic PE-
related genes may reveal the pathogenesis of PE, facilitate
the identification of potential therapeutic targets and strate-
gies for early diagnosis, and also accelerate the development
of new effective therapies. Interestingly, studies on the roles
of FLNB and SLCO4A1 in PE are limited. RT-PCR showed
that these two genes were upregulated in patients with PE.
Therefore, in future, further studies should focused on clar-
ifying their functional and diagnostic values in PE. This will
provide new ideas regarding the mechanism of the patho-
genesis of PE.

5. Conclusions

Taken together, the outcomes of this study enhance the
understanding regarding the pathophysiological mecha-
nisms of PE and also clarify the identification of potential
therapeutic targets for PE and the development of diagnostic
methods for its early diagnosis. In future, it would be neces-
sary to focus on the functional and diagnostic values of
FLNB and SLCO4A1 in PE.
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