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Abstract: Following our previous results on an environmentally benign one-pot 

Sonogashira-cyclization protocol to obtain substituted furopyrimidine nucleosides under 

aqueous conditions, we investigate herein the Suzuki-Miyaura cross-coupling reactions of 

aryl and heteroaryl derivatives at the C5 position of unprotected 2'-deoxyuridine in the 

same media with a common catalyst system avoiding exotic ligands, since palladium 

acetate and triphenylphosphine afforded the expected products in moderate to good yields. 
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1. Introduction 

Nucleosides attract attention due to the central role they play in all living systems. Therefore 

synthesis of unnatural nucleosides arises continuous interest because of their wide biological potential. 

For instance, 5-substituted 2'-deoxyuridines have been reported as efficient candidates in DNA 

labeling, modification, and other studies [1–17], and they also exhibit significant antiviral [18–23], 

antibacterial [24], and anticancer activities [25–27]. Due to the importance of modified nucleosides, all 

major classes of palladium-catalyzed reactions have been extensively developed to introduce various 

substituents [28–38]. Among them, the Suzuki-Miyaura reaction is a powerful and widely used method 

for carbon-carbon cross coupling reactions. Until lately, this reaction would be carried out in lipophilic 

media that required working with protected nucleosides. However protection/deprotection sequences 
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induce generally a loss of material and increase the waste production. Recently, Suzuki-Miyaura 

reactions on unprotected 2'-deoxyuridines in an aqueous-organic solvent system were described, where 

tetrahydrofuran, acetonitrile, methanol or dimethylformamide was used as co-solvent [1–27,39,40]. To 

the best of our knowledge, only two examples in the 5-iodouridine [41,42] and one in the 2'-deoxy-

uridine [43] series are reported in the literature where the experimental conditions required either  

tris(3-sulfonatophenyl)phosphine trisodium salt (TPPTS) as a specific ligand or palladium supported on 

reverse phase glass beads. This induced us to disclose herein a similar straightforward method as a 

natural extension of the current available methods. Based on our interest in environmentally sound 

processes [44,45], we investigated the development of a Suzuki-Miyaura reaction with 2'-deoxyuridines 

in a completely aqueous medium using a readily available and inexpensive catalyst/ligand system. 

2. Results and Discussion 

The conditions of the reaction were optimized using the unprotected 5-iodo-2'-deoxyuridine 1  

(5-IdU) and 4-methoxyphenylboronic acid. We started by using a mixture of water and acetonitrile in 

presence of palladium acetate (3 mol %), triphenylphosphine (5 mol %), and sodium carbonate (1.5 equiv) 

at 80 °C. After 4 hours under these conditions, the starting material 1 was completely consumed and 

the expected product was isolated in 62% yield. Then, we were pleased to observe that a complete 

aqueous medium did not prevent the reaction from proceeding but even slightly improved the yield 

(Table 1, entry 2). An increase in the catalyst loading induced no noticeable change. However the 

concentration of the reaction mixture appeared to be significant, since 2b was obtained in 75% yield 

(entry 4). Further optimizations showed that increasing the amount of boronic acid or replacing the 

ligand by tri(4,6-dimethyl-3-sulfonatophenyl)phosphine trisodium (TXTPS) [46,47], CataXCium F. 

Sulf. [48] or tris[bis(N-2-hydroxyethyl)aminomethyl]phosphine [49], which are well-known to be highly 

hydrophilic, did not improve the reaction outcome (entries 4–7) [50]. 

Table 1. Suzuki-Miyaura cross coupling optimization. 

 
Entry Ligand (L) a Solvent Conditions Yield (%) b 

1 PPh3 H2O:CH3CN 2:1 80 °C, 4 h 62 

2 PPh3 H2O (5 mL) 80 °C, 4 h 67 
3 PPh3 

c H2O (5 mL) 80 °C, 4 h 69 
4 PPh3 H2O (2.5 mL) 80 °C, 4 h 75 (74) d 

5 TXPTS H2O (2.5 mL) 80 °C, 4 h 71 
6 CataCXium F sulf H2O (2.5 mL) 80 °C, 4 h traces 
7 P(CH2N(C2H4OH)2)3 H2O (2.5 mL) 80 °C, 4 h 70 
8 PPh3 H2O (2.5 mL) 120 °C, 10 min MW 75 (66) e 

9 PPh3 H2O (2.5 mL) 120 °C, 10 min MW 70 f 

a Ratio Pd/L: 1/1.8; b Isolated yield; c Pd(OAc)2 (10 mol %) and PPh3 (25 mol %); d with 2 equiv. of  

R-B(OH)2; 
e with 1 mL H2O; f with Na2PdCl4. 
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Then, under the best conditions, the use of microwave irradiation significantly reduced the reaction 

time with the same yield. Concentrating the media and changing the catalyst induced no positive 

changes (entries 8 and 9). 

To probe the scope of the reaction, the use of different arylboronic acids was examined (Table 2). 

The expected products were cleanly obtained in good yields with substrates that contained electron 

withdrawing and donating groups in the para and meta positions (entries 1 and 2). It is worth noting 

that the use of potassium trifluoroborate is compatible with these experimental conditions as a strict 

stoichiometric amount of potassium phenyltrifluoroborate gave 2a with the same range of yields (entry 1). 

Table 2. Substrates scope. 

 
Entry RB(OH)2 Products Yield (%) a 

1 
 

 

2a: R1 = H 70 (62) b 

2b: R1 = OMe 75 

2c: R1 = Ac 72 

2d: R1 = CHO 79 

2e: R1 = F 74 

2f: R1 = NO2 68 

2 
 

2g 70 

3 
 

2h: R2 = Me - 

2i: R2 = OMe - 

4 
 

2j 53 c 

5 
 

2k 30 

6 
 

2l: X = O 67 (73) d 

2m: X = S 81 

7 
 

2n 44c 

a Isolated yield; b with 1 equiv. Ph-BF3K; c with 3 equiv. of R-B(OH)2; 
d with 2 equiv. of R-B(OH)2. 
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The effects of steric hindrance were also tested with mono- and di-ortho-substituted boronic acids 

showing a limitation of the method by causing a moderate and drastic loss of yield, respectively (entries 

3 and 4). Then the challenging styrene-4-boronic acid was also tried to compare the reaction with the 

competitive Heck cross-coupling. In this case, the desired product was isolated in 30% yield with no 

trace of the alkenyl compound [51]. To expend the range of applicable substrates, 5-iodo-2'-

deoxyuridine 1 was coupled with a variety of heteroarylboronic acids (Table 2, entries 6 and 7). 

Moderate to good yields were observed with thiophene-3-, furan-2-, and furan-3-boronic acids requiring 

occasionally a larger excess of the boronic moiety (entries 6 and 7). Unfortunately, with pyridin-2- and 

pyridin-3-boronic acids no reaction was observed, and the same result was obtained with the more 

stable potassium pyridin-3-trifluoroborate. 

3. Experimental 

3.1. General 

Solvents and reagents were purchased from commercial suppliers and used without further 

purification. 1H-NMR and 13C-NMR were recorded on a Bruker Avance DPX 250 or 400 MHz 

spectrometers. High-resolution mass spectra (HRMS) were recorded with a TOF spectrometer in the 

electrospray ionisation (ESI) mode or with a Finnigan MAT 95 XL in the chemical ionisation (CI) 

mode at the Regional Center of Physical Measurement University Blaise Pascal. All commercial 

solvents were used without further purification. Column chromatography was carried out using Silica 

gel 60N (spherical, neutral, 40–63 µm, Merck). Melting point was measure on Thermo Scientific 9200. 

Intfrared (IR) spectra were obtained on FT-IR Thermo Scientific Nicolet iS10. Thin layer 

chromatography (TLC) was carried out on Merck silica gel 60F254 precoated plates. Visualization was 

made with ultraviolet light. 

3.2. General procedure 

Under nitrogen, 5-IdU 1 (100 mg, 0.282 mmol), PPh3 (4.1 mg, 0.016 mmol), sodium carbonate 

(44.8 mg, 0.423 mmol), and ary/hetarylboronic acid (0.423 mmol) were dissolved in water (2.5 mL). 

Then Pd(OAc)2 (2.5 mg, 0.011 mmol) was added to the mixture before sealing the vial. Then the 

mixture was irradiated for 10 min at 120 °C. After completion, water was added (5 mL) and the pH 

was adjusted to 7 using aqueous HCl 10%. The solution was concentrated under reduced pressure and 

the residue was finally purified by silica gel chromatography to afford the desired product. 

5-Phenyl-2'-deoxyuridine (2a). DCM/MeOH (96/4), spectroscopic data conformed to the literature [40]. 

5-(4-Methoxyphenyl)-2'-deoxyuridine (2b). DCM/MeOH (96/4), spectroscopic data conformed to the 

literature [40]. 

5-(4-Acetylphenyl)-2'-deoxyuridine (2c). DCM/MeOH (96/4), white solid (72% yield); mp >250 °C 

(slow degradation); 1H-NMR (250 MHz, DMSO-d6) δ 11.60 (bs, 1H), 8.41 (s, 1H), 7.96 (d, J = 8.5 Hz, 

2H), 7.75 (d, J = 8.5 Hz, 2H), 6.24 (t, 1H, J = 6.5 Hz), 5.28 (d, 1H, J = 2.7 Hz), 5.19 (t, 1H, J = 3.2 Hz), 

4.37–4.26 (m, 1H), 3.88–4.81 (m, 1H), 3.69–3.60 (m, 2H), 2.59 (s, 3H), 2.35–2.12 (m, 2H); 13C-NMR 
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(125 MHz, DMSO-d6) δ 197.8, 162.3, 150.2, 139.7, 138.5, 135.6, 128.5, 128.1, 112.6, 88.0, 85.2, 70.5, 

61.3, 27.1 (one peak under the DMSO-d6 signal); IR (neat): 3421, 3162, 3054, 2921, 2831, 1671, 1657, 

1598, 1558, 958 cm−1; HRMS (ESI) calcd. for C17H18N2O6Na (M+Na) 369.1063, Found 369.1077. 

5-(4-Formylphenyl)-2'-deoxyuridine (2d). DCM/MeOH (96/4), spectroscopic data conformed to the 

literature [7]. 

5-(4-Fluorophenyl)-2'-deoxyuridine (2e). DCM/MeOH (96/4), spectroscopic data conformed to the 

literature [40]. 

5-(4-Nitrosophenyl)-2'-deoxyuridine (2f). DCM/MeOH (96/4), spectroscopic data conformed to the 

literature [52]. 

5-(3-Cyanophenyl)-2'-deoxyuridine (2g). DCM/MeOH (96/4), white solid (70% yield); mp 179.2–180.5 °C; 
1H-NMR (250 MHz, DMSO-d6) δ 11.63 (bs, 1H), 8.34 (s, 1H), 8.01 (s, 1H), 7.89 (d, J = 7.9 Hz, 1H), 

7.76 (d, J = 7.9 Hz, 1H), 7.58 (t, J = 7.9 Hz, 1H), 6.22 (t, J = 6.5 Hz, 1H), 5.26 (d, J = 3.9 Hz, 1H), 

5.17 (t, J = 4.7 Hz, 1H), 4.35–4.24 (m, 1H), 3.81 (q, J = 3.9 Hz, 1H), 3.65 (dd, J = 8.6, 4.7 Hz, 1H), 

3.58 (dd, J = 8.6, 3.9 Hz, 1H), 2.35–2.12 (m, 2H); 13C-NMR (125 MHz, DMSO-d6) δ 162.3, 150.2, 

139.7, 135.0, 133.0, 131.6, 131.1, 129.8, 119.3, 111.8, 111.8, 88.0, 85.1, 70.3, 61.2 (one peak under 

DMSO d6 signal); IR (neat): 3468, 3336, 3207, 3071, 2236, 1682, 1263, 1086, 945, 817 cm−1; HRMS 

(ESI) calcd. for C16H15N3O5Na (M+Na) 352.0909, Found 352.0906. 

5-(2-Fluoro-3-methoxyphenyl)-2'-deoxyuridine (2j). DCM/MeOH (96/4), white solid (53% yield); mp 

173.2–174.2 °C; 1H-NMR (250 MHz, DMSO-d6) δ 11.52 (bs, 1H), 8.05 (s, 1H), 7.13 (m, 2H), 6.91  

(dt, J = 6.3, 2.8 Hz, 1H), 6.22 (t, J = 6.7 Hz, 1H), 5.25 (d, J = 3.6 Hz, 1H), 4.97 (t, J = 4.7 Hz, 1H),  

4.23–4.25 (m, 1H), 3.84 (s, 3H), 3.81–3.75 (m, 1H), 3.60–3.45 (m, 2H), 2.21–2.12 (m, 2H); 13C-NMR 

(125 MHz, DMSO-d6) δ 161.8, 150.5, 148.6, 147.7, 140.1, 124.3, 123.1, 121.9, 113.7, 109.3, 88.0, 

84.9, 70.8, 61.5, 56.5 (one peak under the DMSO-d6 signal); IR (neat): 3411, 3040, 2943, 2837, 1697, 

1663, 1480, 1271, 1096, 1043, 1021, 790 cm−1; HRMS (ESI) calcd. for C16H17N2O6FNa (M+Na) 

375.0968, Found 375.0971. 

5-(4-Vinylphenyl)-2'-deoxyuridine (2k). DCM/MeOH (96/4), pale yellow gel (30% yield); 1H-NMR 

(400 MHz, DMSO-d6) δ 11.57 (bs, 1H), 8.31 (s, 1H), 7.62 (d, J = 8.3 Hz, 2H), 7.53 (d, J = 8.3 Hz, 

2H), 6.80 (dd, J = 17.7, 10.8 Hz, 1H), 6.30 (t, J = 6.5 Hz, 1H), 5.91 (d, J = 17.7 Hz, 1H), 5.33 (d,  

J = 10.8 Hz, 1H), 5.32 (d, J = 3.6 Hz, 1H), 5.19 (t, J = 4.8 Hz, 1H), 4.38–4.34 (m, 1H), 3.91–3.82 (m, 

1H), 3.71–3.59 (m, 2H), 2.37–2.14 (m, 2H); 13C-NMR (125 MHz, DMSO-d6) δ 162.5, 150.3, 138.4, 

136.7, 136.4, 128.4, 126.3, 114.7, 113.4, 88.0, 85.0, 70.6, 61.4 (one peak under the DMSO-d6 signal);  

IR (neat): 3395, 3056, 2961, 1667, 1262, 1088, 1047, 1027, 792 cm−1; HRMS (ESI) calcd. for 

C17H18N2O5Na (M+Na) 353.1113, Found 353.1112. 

5-(Furan-3-yl)-2'-deoxyuridine (2l). DCM/MeOH (96/4), spectroscopic data conformed to the 

literature [53]. 



Molecules 2012, 17 14414 

 

5-(Thiophen-3-yl)-2'-deoxyuridine (2m). DCM/MeOH (96/4), spectroscopic data conformed to the 

literature [53]. 

5-(Furan-2-yl)-2'-deoxyuridine (2n). DCM/MeOH (96/4), spectroscopic data conformed to the 

literature [54]. 

4. Conclusions 

In summary, we disclose herein a successful Suzuki-Miyaura reaction with 5-iodo-2'-deoxyuridine 

in a completely aqueous medium. The inexpensive and common triphenylphosphine combined with 

palladium acetate gave rise to the expected products in moderate to good yields. Furthermore, the 

variety of aryl and heteroaryl derivatives introduced demonstrates the generality of this method. 
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