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Abstract  
Many studies have attempted to elucidate the motor recovery mechanism of stroke, but the majority 
of these studies focus on cerebral infarct and relatively little is known about the motor recovery 

mechanism of intracerebral hemorrhage. In this study, we report on a patient with intracerebral 
hemorrhage who displayed a change in injured corticospinal tract originating from the premotor 
cortex to the primary motor cortex on diffusion tensor imaging. An 86-year-old woman presented 

with complete paralysis of the right extremities following spontaneous intracerebral hemorrhage in 
the left frontoparietal cortex. The patient showed motor recovery, to the extent of being able to 
extend affected fingers against gravity and to walk independently on even ground at 5 months after 

onset. Diffusion tensor imaging showed that the left corticospinal tract originated from the premotor 
cortex at 1 month after intracerebral hemorrhage and from the left primary motor cortex and 
premotor cortex at 5 months after intracerebral hemorrhage. The change of injured corticospinal 

tract originating from the premotor cortex to the primary motor cortex suggests motor recovery of 
intracerebral hemorrhage. 
Key Words: diffusion tensor imaging; corticospinal tract; motor recovery; reorganization 

Abbreviations: ICH, intracerebral hemorrhage; CST, corticospinal tract; PMC, premotor cortex; DTI, 
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INTRODUCTION 
    

Because motor weakness is one of the most 

serious disabling sequelae of stroke, so it is 

important to elucidate the motor recovery 

mechanism for successful rehabilitation
[1-2]

. 

Many studies have attempted to elucidate the 

motor recovery mechanism of stroke and 

several motor recovery mechanisms have 

been suggested
[3-13]

. However, the majority of 

these studies focus on cerebral infarct and 

relatively little is known about the motor 

recovery mechanism of intracerebral 

hemorrhage (ICH)
[7, 14-18]

. Diffusion tensor 

imaging (DTI) can help to investigate the 

motor recovery mechanism of ICH by enabling 

the direct visualization and estimation of the 

corticospinal tract (CST)  
[7, 14-20]

. Some 

recovery mechanisms have been suggested
[7, 

14-20]
. In this study, we report on a patient with 

ICH who showed a change in the origin of an 

injured CST from the premotor cortex (PMC) 

to the primary motor cortex (M1). 

 
CASE REPORT 
 
An 86-year-old woman presented with 

complete paralysis of the right upper and 

lower extremities, which occurred at the 

onset of spontaneous ICH (Motricity Index 

(MI): 0 (full mark: 100)) (Table 1)
[21]

. 
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Table 1  Longitudinal changes in motor 
function 

Duration from 

onset 
Onset 

After onset (month) 

1   2    5   

MRC     

Shoulder 

abductor 

0 0 1 2 

Elbow flexor 0 0 1 2 

Finger flexor 0 0 1 3 

Finger extensor 0 0 1 3 

Hip flexor 0 0 1 3 

Knee extensor 0 0 2 4 

Ankle 

dorsiflexor 

0 0 0 1 

MI     

Upper 

extremity 

0 0 30 50 

Lower 

extremity 

0 0 23 53 

Total 0 0 27 52 

 
MRC: Medical Research Council. 0: No 

contraction; 1: palpable contraction, but no visible 

movement; 2: movement without gravity; 3: 

movement against gravity; 4: movement against a 

resistance lower than the resistance overcome by 

the healthy side; 5: movement against a resistance 

equal to the maximum resistance overcome by the 

healthy side. MI: Motricity Index (range 0-100). The 

high score represented the mild motor impairment. 
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T2-weighted MR images showed a hematoma in the left 

fronto-parietal lobe, including M1, at 1 month after onset, 

that resolved at 5 months after onset (Figure 1A). From 1 

month to 5 months after onset, she received 

comprehensive rehabilitative management, which 

included the administration of neurotrophic drugs 

(ropinirole, bromocriptine, levodopa, and amantadine), 

movement therapy, and neuromuscular electrical 

stimulation of the affected finger extensors and ankle 

dorsiflexors
[22-23]

. Movement therapy focused on 

improving the motor functions of the right upper and 

lower extremities and included physical and occupational 

therapy sessions five times per week. Weakness of her 

left extremities improved from an MI score of 0 point at 1 

month to 27 points at 2 months and to 52 points (5 

months after ICH onset) after 4 months of rehabilitation. 

As a result, she was able to extend the affected fingers 

against gravity and to walk independently on even 

ground. The patient provided informed consent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Clinical evaluation 
ICH volume was measured on CT image and 

T2-weighted MRI images through Picture Archived 

Communication System (PACS, Marotech, Korea). The 

maximum width (X), length (Y) and height (Z) of lesion at 

the level where a hematoma was clearly seen were 

measured
[24]

. The ICH volume was calculated according 

to the formula:  

 

 

 

 

 

The volume of ICH was 37.19 mV on the CT images at 

the ICH onset and 26.71 mV on the MR images at 1 

month after onset.  

DTI examination  
Diffusion tensor images were acquired using a synergy-L 

sensitivity encoding (SENSE) head coil on a 1.5-T Philips 

Gyroscan Intera system (Hoffman-LaRoche, Mijdrecht, 

the Netherlands) using a single-shot echo planar imaging 

with a navigator echo. For each of the 32 noncollinear 

diffusion-sensitizing gradients, 60 contiguous slices 

(matrix = 192 × 192, field of vision = 240 mm, repetition 

time/echo time = 10 726/76 ms, b = 600 mm
2
/s, number 

of excitations = 1, thickness = 2.5 mm) were acquired. 

Three-dimensional reconstructions of fiber tracts were 

obtained using the DTI task card software (Philips 

Extended MR Work Space 2.6.3) (threshold fractional 

anisotropy (FA) = 0.15, angle = 45
o
) 

[25]
. Fiber tracts 

passing through both region of interests (CST portion of 

the anterior mid-pons and low-pons on the color map) 

were designated final tracts of interest. 

At 1 month and 5 months after ICH onset, DTI results 

showed that in the right (non-affected) hemisphere, the 

right CST originated from the cerebral cortex (including 

M1) and passed through the known CST pathway. 

However, in the left (affected) hemisphere, the CST 

originated from the left PMC at 1 month and from the left 

M1 and PMC at 5 months (Figure 1B).  

Transcranial magnetic stimulation (TMS) 
TMS was performed using a Magstim Novametrix 200 

magnetic stimulator equipped with a 9-cm mean 

diameter circular coil (Novametrix Medical Systems Inc, 

Wallingford, CT, USA). Cortical stimulation was then 

performed with the coil held tangentially over the vertex. 

The left hemisphere was stimulated by a 

counterclockwise current and the right hemisphere was 

stimulated by a clockwise current. Motor-evoked 

potentials (MEPs) were obtained from both abductor 

pollicis brevis muscles in a relaxed state. Excitatory 

threshold (ET) was defined as the minimum stimulus 

required to elicit an MEP with a peak-to-peak amplitude 

of 50 µV or greater during two of four attempts. 

Stimulation intensity was set at the ET plus 20% of the 

maximum stimulator output. Each site was stimulated 

three times with inter-stimulus intervals of > 10 seconds, 

and shortest latency and average peak to peak 

Figure 1  Brain magnetic resonance images, diffusion 
tensor imaging (DTI) and transcranial magnetic stimulation 
results of an 86-year-old female patient with a hematoma 

in the left fronto-parietal lobe. 

(A) T2-weighted magnetic resonance images showed a 
hematoma in the left fronto-parietal lobe including the 
primary motor cortex at 1 month after onset, which was 

resolved at 5 months after onset. 

(B) DTI findings of the corticospinal tract (CST). DTI 
results showed that at 1month and 5 months after 
intracerebral hemorrhage, the right CSTs originated from 

the cerebral cortex, including the primary motor cortex, 
and then passed through the known CST pathway. In the 
left (affected) hemisphere, the CSTs originated from the 

left premotor cortex at 1 month after onset, and from the 
left primary motor cortex and premotor cortex at 5 months 
after onset.  

(C) Transcranial magnetic stimulation results. A motor 
evoked potential of low amplitude (100 µV) was obtained 
from right abductor pollicis brevis muscle by the affected 

(left) hemisphere stimulation at 1 month after onset. 
However, motor evoked potential amplitude was increased 
to the normal range (3.8 mV) at 5 months after onset. 

ICH volume (mV) = 4/3 × π × X (cm) × Y (cm) ×  
Z (cm) × 1/16 

1 month 5 months 

100 µV 1 mV 
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amplitude were estimated. 

MEP (latency: 23.5 ms; amplitude: 100 µV; ET: 100%) 

was evoked from the affected (left) hemisphere during 

the TMS study conducted at 1 month after ICH onset, but 

the amplitude increased to the normal range at 5 months 

after ICH onset (latency: 19.7 ms; amplitude: 3.8 mV; ET: 

70%) (Figure 1C). 

 
DISCUSSION  
 

In this patient, we investigated changes of the injured left 

CST and found that the injured CST seemed to recover 

as detected by DTI, TMS and clinical observation. At 1 

month after ICH onset, the left CST originated from the 

PMC by DTI, and the MEP obtained at the right hand 

showed low amplitude and a latency compatible with that 

of the CST
[26-27]

. By contrast, 5-month results revealed 

that the left CST originated from the left M1 by DTI and 

that MEP amplitude had improved to the normal range by 

TMS
[26-27]

. The M1 is the major origin of the CST, 

although the CST is known to originate from the 

extensive cerebral cortex, including the PMC, the 

primary somatosensory cortex, and the prefrontal cortex. 

On the other hand, the amplitude of the MEP reflects 

fiber numbers in the CST. Consequently, the DTI and 

TMS results of this patient suggest that the severely 

injured left CST had recovered over 4 months in terms of 

its origin and fiber number
[9, 28-29]

. Furthermore, clinically, 

the finding that the patient was able to flex and extend 

against gravity at 5 months after ICH onset provides 

additional evidence of left CST recovery
[30-31]

. As a result, 

right extremity motor functions seemed to have been 

recovered due to reorganization of the injured left CST 

originating from the left PMC to left M1. It is also possible 

that compression of the CST into the left PMC recovered 

in concert with hematoma resolution.  

For the motor recovery mechanism in ICH, several DTI 

based studies have described recovery of an injured 

CST or the contribution made to recovery by the 

contralateral unaffected CST
[7,14-18]

. During the last 5 

years, a number of serial DTI studies have described the 

recovery of injured CST after ICH
[14, 17-18]

. Jang et al 
[15]

 

demonstrated the recovery process of an injured CST in 

a patient with a subcortical ICH by serial DTI. The patient 

presented with complete paralysis of right extremities at 

onset, but over 16 months, motor functions of affected 

extremities slowly recovered to nearly normal. 

Furthermore, DTT showed that the origin of the CST had 

changed from the posterior parietal cortex at 1 month to 

the primary somatosensory cortex at 4 months and M1 at 

16 months. The authors suggested that recovery of the 

origin of the damaged CST was due to a process of 

normalization from the parietal cortex to M1. By contrast, 

our patient showed a change in the origin of the injured 

CST from the PMC to M1. 

This study described changes of an injured CST that 

occurred in concert with motor recovery in a patient with 

ICH. To the best of our knowledge, this is the first 

longitudinal study to demonstrate a change in the origin 

of an injured CST from the PMC to M1 in ICH. Results 

from this study suggest a motor recovery mechanism of 

ICH and the important implications regarding brain 

plasticity and brain rehabilitation after ICH. However, this 

study is obviously limited by case numbers, and further 

complementary studies involving larger case numbers 

are warranted. 
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