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Abstract
Today, the increasing rate of cancer-related mortality, has rendered cancer a major global challenge, and the second leading 
cause of death worldwide. Conventional approaches in the treatment of cancer mainly include chemotherapy, surgery, immu-
notherapy, and radiotherapy. However, these approaches still come with certain disadvantages, including drug resistance, 
and different side effects such as gastrointestinal (GI) irritation (e.g., diarrhea, mucositis). This has encouraged scientists to 
look for alternative therapeutic methods and adjuvant therapies for a more proper treatment of malignancies. Application of 
probiotics as an adjuvant therapy in the clinical management of cancer appears to be a promising strategy, with several notable 
advantages, e.g., increased safety, higher tolerance, and negligible GI side effects. Both in vivo and in vitro analyses have 
indicated the active role of yeast probiotics in mitigating the rate of cancer cell proliferation, and the induction of apoptosis 
through regulating the expression of cancer-related genes and cellular pathways. Strain-specific anti-cancer activities of yeast 
probiotics strongly suggest that their administration along with the current cancer therapies may be an efficient method to 
reduce the side effects of these approaches. The main purpose of this article is to evaluate the efficacy of yeast probiotics in 
alleviating the adverse effects associated with cancer therapies.
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Introduction

The World Health Organization (WHO) defines probiotics 
as “living microorganisms which confer beneficial health 
effects to the host when administered in adequate amounts” 

[1]. The currently recognized probiotics are mainly catego-
rized into the lactic acid bacteria and yeast groups. Along 
with various strains of bacteria [2], a big number of yeast 
species, including Saccharomyces cerevisiae var. boulardii, 
Kluyveromyces, Debaryomyces, Candida, Pichia, Hanse-
niaspora, and Metschnikowia have been shown to possess 
probiotic properties [3]. The primary salutary effects of yeast 
probiotics, such as their potential for prevention and treat-
ment of intestinal disorders, along with their immunomodu-
latory properties, have been reviewed in several studies [4]. 
Likewise, the anti-cancer properties of yeast probiotics have 
been extensively investigated by different methods in vari-
ous studies, including cell-based studies, animal models, and 
clinical trials. Table 1 summarizes the recent application of 
probiotics and their strain-specific effects mediated through 
different mechanisms. In this review, we aim to provide a 
brief account of the beneficial effects of yeast probiotics, 
with the emphasis on their anti-cancer properties, particu-
larly in the prevention of Colorectal Cancer (CRC).
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General overview of yeast probiotics

To date, several successful attempts have been made at 
the isolation and characterization of bacterial probiotics 
(primarily lactobacillus) from different sources, including 
traditional dairy products, plants, and human biological 

samples [2, 32–35]. Regardless of the bacterial source of 
most probiotics, the therapeutic potential of non-patho-
genic yeasts probiotics warrants prospective clinical trials 
in this field. An important advantage of yeast probiotics 
is that they are highly resistant against gastrointestinal 
enzymes, bile salts, pH variations, organic acids, and 
variations in temperature. For instance, Saccharomyces 

Table 1  List of health benefits of probiotics in the treatment of various diseases

Effect Probiotic strains Mechanisms of actions

Immunomodulation Lactobacillus Induce TNF-α secretion by lipoteichoic acid (LTA) 
[5]

Bifidobacterium longum Modulate TNF-α, IL-6, IL-10 and IL-12 and TH17 
responses [6] due to its surface exopolysaccharide

B. animalislactis Bb-12 Activated intestinal NF-κB [7]
IgA secretion [8]

Improving the immune system and cytokine 
production in COVID-19 patients

Lactobacillus As adjuvant nutritional therapies in COVID-19 
patients [9–11]

Protective effects against physiological stress L. acidophilus (strain LAP5 and LF33) Bind to the intestinal epithelial cells and blocked 
the colonization of Salmonella [12]

L. acidophilus A4 Antagonize adhesion of the E. coli adhesion to 
epithelial cells by up-regulation of mucin-2, IL-8, 
IL-1β and TNF-α [13]

Bifidobacterium spp. Produce acetate and inhibit Shiga toxin–producing 
E. coli O157:H7 [14]

Lactobacilus and Enterococcus Produce bacteriocins [15, 16]
L. salivarius UCC118 Protect infected mice with L. monocytogenes [17]
L. acidophilus La-5 1 Inhibited autoinducer-2 (AI-2) and decreased the 

virulence factors expression of E. coli O157:H7 
[18]

L. acidophilus GP1B Prevented AI-2 activity of Clostridioides difficile 
[19]

L. reuteri RC-14 Production of mediators against Staphylococcus 
aureus QS, blocked its virulence, and expression 
of toxic shock syndrome toxin-1 [20]

Suppression of pathogens L. plantarum Reduce hydroxy-cis-12-octadecenoic acid via regu-
lation of TNF receptor 2 expression and MEK/
ERK pathway [21]

Modulation of gut microbiome and Intestinal Bar-
rier Function

L. fermentum and L. plantarum In context to Obesity [22, 23], Produce Short Chain 
Fatty Acids (SCFAs) and Acetic acid, improve 
tight junction proteins, regulating the immune 
response, and stimulating host defense peptides 
[24]

Other mechanisms Lactobacillus and Bifidobacterium Reduction weight gain, decrease the levels of 
plasma cholesterol and liver triglycerides [25, 26], 
bile acids deconjugation [27], impaired glucose 
tolerance [28]

L. rhamnosus JB-1 Modified the γ-aminobutyric acid (GABA)-A 
expression and GABA-B receptors in the brain 
related to stress and anxiety-related responses 
[29]

L. reuteri ATCC PTA 6475 Showed an anti-nociceptive effect via transient 
receptor potential vanilloid 1 -dependent manner 
[30]

L. acidophilus NCFM Induced expression of μ-opioid and cannabinoid 
receptors in the gut epithelial cells and presented 
analgesic impact [31]
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is a non-bacterial prototype harboring the same benefi-
cial properties as the bacterial probiotics. In compari-
son with bacterial probiotics, the size of yeast cells is 10 
times larger, with an optimal growth pH and temperature 
of 4.5–6.5 and 37 °C, respectively. The majority of yeast 
strains are able to grow at a pH equal to 3.0, however, 
some species can tolerate an even lower pH (<1.5).

Compared to bacterial probiotics, yeasts possess intrin-
sic resistance to antibiotics. Non-genetic transferring of 
antibiotic-resistance genes between bacteria and yeasts 
may render these probiotics more effective for patients 
who use antibiotics. Besides, the modification of the 
immune response is considered an important mechanism 
to explain the positive effects of yeast probiotics. The 
structure of yeast cell wall and the secretory bioactive 
compounds such as β-glucan, mannoproteins, chitin, and 
nucleic acids are responsible for the immunostimulatory 
effects of these organisms [36]. The majority of reported 
investigations on yeast probiotics in clinical and animal 
studies have been carried out on Saccharomyces cerevi-
siae; however, the probiotic effects of Candida strains, 
Hanseniaspora opuntia, Hortaea werneckii, Meyerozyma 
guilliermondii, Debaryomyces strains have also been doc-
umented [37–39]. S. cerevisiae and S. boulardii are mostly 
adopted in probiotic adjuvant therapies to treat antibiotic-
associated diarrhea and bacterial infections, improve the 
intestinal mucosa, modulate mucosal immune responses, 
and induce the expression of a heterologous protein with 
several therapeutic properties [40–42].

S. boulardii is most active in the colon, and it can sur-
vive the preceding portion of the GI tract until it reaches the 
colon [43]. Hence, this yeast probiotic would be suitable 
for human consumption for the treatment of Inflammatory 
Bowel Disorders (IBD), and any type of gastroenteritis [42, 
44, 45]. The optimal growth temperature for Saccharomy-
ces strains ranges from 22 °C to 30 °C. However, inside 
the human body, S. boulardii is able to survive at up to 
37 °C. Owing to its intrinsic resistance to the gastric acid 
and intestinal bile, S. boulardii is highly likely to survive 
the effects of antibiotics and proteolysis in the intestinal 
tract, ultimately improving intestinal inflammations. In an 
study led by Sougioultzis et al., human HT-29 colonocytes 
and THP-1 monocytes were immunologically induced with 
IL-1β, TNF-α or LPS combined with the supernatant of S. 
boulardii. The study reported that S. boulardii hindered 
the production of IL-8 in HT-29 cells by inducing IL-1β or 
TNF-α. Moreover, S. boulardii was also able to inhibit the 
production of IL-8, prevent the degradation of IB-α, and 
counteract the upregulation of NF-kB-DNA through bind-
ing to NF-kB reporter gene. The anti-inflammatory effects 
of this yeast were shown to result in deactivation of NF-kB, 
and down-regulation of IL-8 in intestinal epithelial cells and 
monocytes. These findings suggest S. boulardii as a potential 

therapeutic candidate to be used either for the treatment of 
infectious and non-infectious human intestinal diseases [46].

Kluyveromyces lactis is another yeast probiotic with 
unique features such as resistance to gastrointestinal diges-
tion, β-galactosidase activity, and a high potential for adhe-
sion, prevention of enteric pathogens, and production of 
Short Chain Fatty Acids (SCFAs) [42, 47]. Several benefi-
cial effects of K. marxianus strain B0399 have also been 
investigated, which includes adhesion, metabolic activity, 
and immunomodulation of gut microbiota. Accordingly, the 
adhesion of K. marxianus to the Caco-2 cells can ameliorate 
the inflammatory response by inhibiting pro-inflammatory 
cytokines, and also improve colonic microbiota by increas-
ing the population of bifidobacteria, and the production of 
SCFAs (acetate and propionate) [48]. In another investiga-
tion, K. marxianus S-2-05 and K. lactis S-3-05 were isolated 
from traditional cheese and their activity against Salmonella 
was evaluated in a GI model. Reportedly, these yeasts were 
able to survive in the GI environment and form a biofilm 
on polystyrene surfaces, suggesting their potential for adhe-
sion to Caco-2 cells and probiotic properties [49]. An inves-
tigation on the anti-inflammatory effects of K. marxianus 
CIDCA 8154 in IBD concluded that pretreatment of cells 
with K. marxianus might decrease the levels of intracellular 
reactive oxygen species and IL-6. Moreover, cellular oxida-
tive stress was reported to be modulated by the activation 
of the SKN-1 transcription factor via the DAF-2 pathway in 
nematode models [50].

Debaryomyces hansenii is another yeast probiotic strain 
with immunostimulatory effects on goat leukocytes through 
β-glucans. D. hansenii CBS 8339 can survive in bile salts 
and the acidic pH of the GI tract, and adhere to the intesti-
nal mucosa. The analysis of immunological and antioxidant 
properties of this strain confirmed the positive effects of D. 
hansenii on the viability of leukocytes in animal models. 
On the other hand, a yeast-supplemented diet resulted in the 
upregulation of TLR receptor genes, modulator genes (such 
as Raf.1, Syk, and Myd88, AP-1), and cytokine levels (IL-
1β and TNF-α). These findings demonstrated that the oral 
administration of D. hansenii CBS 8339 stimulated immune 
response, antioxidant agents, and immune-associated sign-
aling pathways genes in a short time [51]. Moreover, the 
effects of D. hansenii in combination with Qi-Wei-Bai-Zhu 
powder were investigated on the gut microbiota of mice 
with antibiotic-associated diarrhea. The microbial content 
was evaluated by sequencing the 16S rRNA gene to dem-
onstrate the species-wise diversity. The results indicated a 
high frequency of Bacteroidales S24–7 and Bifidobacterium, 
suppression of Oscillospira and Ruminococcus, and prolif-
eration of Erysipelotrichaceae and Blautia in the murine 
models of diarrhea [52]. The main functions of gut micro-
biota including digestion, metabolism, and modulation of 
immune reactions depend on its diversity [53]. As mentioned 
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earlier, treatment of antibiotic-associated diarrhea with D. 
hansenii, as a part of the intragastric flora, improved the 
operational taxonomic units of intestinal bacteria and recov-
ered the beneficial bacteria, such as Bacteroidaceae [54]. 
Follow-up analyses confirmed the potential of D. hanse-
nii in the maintenance of the normal microbiome ecology, 
development of lactase-producing bacteria, and inhibition of 
opportunistic pathogens [55, 56, 39]. The results obtained 
from animal studies warrant prospective therapeutic clini-
cal applications of yeast probiotics, with an emphasis on 
management of diarrhea.

The role of yeast probiotics 
in the management of cancer

According to the WHO reports, cancer is a global health 
problem with ~9.6 million deaths in 2018 [57]. The most 
prevalent cancers include lung, breast, colorectal, prostate, 
skin, and stomach cancer. Yeast probiotics may have impor-
tant effects on the molecular and cellular pathways, that 
could be useful in the prevention and treatment of cancers 
[58]. The basic mechanisms of signal transmission and sen-
sitization underlying the negative regulatory effects of yeasts 
on cancer cells include modification of microbiota, degra-
dation of carcinogenic substances in the intestinal lumen, 
production of anti-carcinogenic components like SCFAs, 
and conjugation of SCFAs to linoleic acid. Modulation of 
immune responses, improvement of intestinal barriers, inhi-
bition of cell proliferation, and induction of apoptosis are 
other mechanisms through which yeast probiotics regulate 
the growth of cancer cells [59].

Cancer (CRC) is the second cause of cancer-related mor-
tality with an annual number of 862,000 deaths. Today, there 
is a rising debate regarding the efficacy of conventional can-
cer treatment methods. CRC is a multistage malignancy with 
various risk factors including genetic factors, familial back-
ground, age, gender, nutrition, smoking, and limited physical 
activity. In search of novel therapeutics, the clinical applica-
tion of safe yeast probiotics is speculated to yield promising 
results [60, 61]. Probiotics could provide a non-expensive 
and non-invasive adjuvant therapy for the treatment of CRC 
by modulating the genes and signaling pathways involved 
in the pathogenesis of CRC. In addition, using probiotic 
yeasts in the treatment of CRC could reduce the side effects 
of current cancer therapies. The administration of probiot-
ics to CRC patients could enhance the gut flora, produce 
antimicrobials materials and anti-carcinogenic agents, 
remove 32–3 carcinogens, provide intestinal permeability, 
and improve the function of tight junctions and enzyme 
activity in CRC patients. However, not all of the probiotic 
strains possess anti-CRC properties. Hence, further studies 

are required to identify potent probiotics, as probiotic-based 
therapeutic agents, to prevent and treat CRC [62].

Shamekhi et al. reviewed the promising biotherapeutic 
effects of yeast probiotics in the prevention and treatment 
of CRC [63]. In terms of cancer therapy, S. boulardii and 
S. cerevisiae improve enterocyte tight junctions, modulate 
host cell signaling, inhibit the activity of ERK1/2 and EGFR 
signaling, and inactivate tyrosine kinase receptors [64, 65] 
(Table 2). The β-Glucan of S. cerevisiae was reported to 
stimulate the mammalian immune system, suggesting poten-
tial therapeutic implications in the treatment of infectious 
diseases and cancer [66]. The immunomodulatory effects 
associated with yeast probiotics mostly involve receptors 
like Dectin-1, Complement Receptor 3 (CR3) and TLR-
2/6. In addition, the immune systems can be modulated by 
triggering immune cells including macrophages, neutro-
phils, monocytes, Natural Killer Cells (NKCs), Dendritic 
cells (DCs), and increasing the opsonic and non-opsonic 
phagocytosis.

An investigation revealed that upon oral administration, 
animals were not able to digest a specific chain of β-glucans 
(backbone 1 → 3 linear β-glycosidic). As a result, the exces-
sive β-glucans are transferred to the proximal small intestine, 
where a small amount of these molecules are captured by 
macrophages. After internalization and fragmentation of 
β-glucans within these cells, macrophages migrate to the 
bone marrow and endothelial reticular system. Different 
immune responses are activated when small fragments of 
β-glucans released by macrophages are taken up by other 
immune cells. It has been confirmed that different sizes of 
β-glucans and branching patterns have variable immuno-
genicity. In this regard, to investigate the effect of β-glucans 
in clinical studies, a careful selection of probiotics is essen-
tial [67]. Further studies have indicated that β-glucans of 
yeasts can induce secretion of cytokines, and lead to pro-
duction of IL-12 in DCs. In one study, the production of 
cytokines was noticeably reduced in Myeloid Differentia-
tion factor 88 (MyD88)-deficient macrophages and DCs. 
These findings indicated that β-glucans could be used in 
adjuvant therapy of cancer due mostly to their bioavail-
able moiety, and their modulatory effects on the cytokine 
secretion through DCs, and phagocytosis of iC3b-opsonised 
tumor cells by macrophages [68]. Another study conducted 
on animal cancer models confirmed that a combination of 
yeast β-glucans with anti-cancer monoclonal antibodies 
would improve the clinical therapeutic efficacy in tumor 
regression and long-term survival during cancer treatment 
[69]. It has been revealed that S. cerevisiae is consider-
ably suppressed in CRC. The beneficial effects of yeasts 
on Colorectal Adenoma (CRA) were validated by in vivo 
(C57BL/6 and APCMin/+ mouse models) and in vitro cells 
assays. Murine models of CRA/CRC were divided into test 
and control groups, with the former receiving S. cerevisiae, 
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along with antibiotics, for 8 weeks. According to the results, 
the density of S. cerevisiae in CRA and CRC patients were 
2.68-fold and 3.94-fold lower in comparison to the control 
groups, respectively. In addition, the outcomes of in vivo 
analysis displayed the potential of S. cerevisiae in mitigating 
the progression of CRC by inducing apoptosis, modulation 
of gut microbial profiles, and intestinal immunity. Moreover, 
S. cerevisiae downregulated NF-κB and rapamycin-mediated 
signaling pathways (mTOR). The apoptotic effects of yeast 
probiotics and their ability in modulating the mucosal micro-
bial profile in CRC confirmed the important role of probiotic 
S. cerevisiae in the treatment of CRC, warranting further 
investigations [9].

Along with the anti-cancer effects of S. cerevisiae and 
S. boulardii, the inhibitory role of the exopolysaccharide 
(EPSs) of K. marxianus and P. kudriavzevii on SW-480 
(non-metastatic), HT-29 (low-metastatic), and HCT-116 
(highly-metastatic), and human embryonic kidney normal 
cell line (KDR/293) were investigated. According to the 
results, EPSs considerably induced apoptosis by up-regu-
lation of pro-apoptotic genes (BAX, Caspase-3, and Cas-
pase-8) and down-regulation of anti-apoptotic genes (Bcl-
2). Furthermore, a depressed expression of inflammation 
pathway genes (AKT-1, JAK-1, and mTOR) in cancer cells 
treated with both extracted EPSs was detected with insig-
nificant changes when compared to the normal cell lines.

The ferroptosis signaling pathway was assessed by 
evaluating the Nrf-2 and CoQ10 genes. The Nrf-2 mRNA 
levels increased, while the CoQ10 mRNA levels were not 
significantly upregulated. Therefore, it was assumed that 
these EPSs of probiotic yeast could be applied as therapeu-
tic agents against CRC-targeted molecules [90]. Kourelis 
et al. evaluated the in vitro ability of probiotic yeasts isolated 
from different sources (feta cheese or infantile gastrointesti-
nal tract). All strains displayed in vitro probiotic properties 
including resistance to acid and bile, adhesion to Caco-2 
cells, removal of cholesterol, and immunostimulatory activ-
ity. Moreover, it was found that beside the Saccharomyces 
strains, other yeast species such as K. lactis could also be 
considered as probiotics. Despite these valuable results, fur-
ther studies are necessary to elucidate the beneficial effects 
of yeasts on the GI system after oral administration [91]. 
Shamloo et al. investigated the role of P. fermentans metabo-
lites on the induction of apoptosis in Squamous Cell Car-
cinoma (SCC). Similar to cisplatin, the metabolites of this 
yeast imposed a cytotoxicity of 85% to the tumor cells, while 
in the normal cells only a cytotoxicity of 21% was recorded. 
In addition, the effects of S. cerevisiae was not the same 
as P. fermentans results, which actually pointed to strain-
dependent bioactivity of yeasts. The cytotoxicity mentioned 
here was shown to be due to the effects of the yeast on the 
mechanisms involved in apoptosis, mediated mostly through 
the regulation of BAX and CASP genes [92].Ta
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Conclusion

According to the recent studies, S. cerevisiae is a safe 
microorganism that can be used as a promising therapeu-
tic approach for effective inhibition of tumor cell prolif-
eration. More robust and coherent studies on the effects 
of probiotics on cancer cell types are required to achieve 
more reliable results. This can be an important step in the 
treatment and prevention of cancer. Until now, efficient 
therapies using yeast probiotics have been confirmed for 
the treatment of different diseases. However, finding the 
exact dosage and viability potential of yeast probiotics 
still remains a significant challenge. This requires further 
well-designed clinical studies to elucidate the exact ben-
efits of probiotics, identify and demonstrate their criteria 
and strain-specific properties, and assess their biosafety. 
Furthermore, increasing the half-life of probiotic prod-
ucts, preservation against the GI secretions, and raising 
the adherence potential of these microorganisms to the GI 
epithelium are all essential in this context. Gene technol-
ogy can help discover novel potential yeast strains. Appli-
cation of a combination of probiotics may leave a greater 
positive impact on the efficacy of cancer treatment regi-
mens when compared to a single probiotic. Given the con-
firmed anti-cancer potentials of probiotics, a wide range 
of these microorganisms has recently been considered for 
their immunomodulatory effects and antiviral activity, 
especially against Coronavirus Disease-2019 (COVID-
19). However, since COVID-19 is a newly spreading viral 
infection with a high rate of mortality, more researches 
are necessary to affirm probiotics as a safe and effective 
therapy against COVID-19.
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