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Abstract

Population-wide oscillations are ubiquitously observed in mesoscopic signals of cortical

activity. In these network states a global oscillatory cycle modulates the propensity of neu-

rons to fire. Synchronous activation of neurons has been hypothesized to be a separate

channel of signal processing information in the brain. A salient question is therefore if and

how oscillations interact with spike synchrony and in how far these channels can be consid-

ered separate. Experiments indeed showed that correlated spiking co-modulates with

the static firing rate and is also tightly locked to the phase of beta-oscillations. While the

dependence of correlations on the mean rate is well understood in feed-forward networks, it

remains unclear why and by which mechanisms correlations tightly lock to an oscillatory

cycle. We here demonstrate that such correlated activation of pairs of neurons is qualita-

tively explained by periodically-driven random networks. We identify the mechanisms by

which covariances depend on a driving periodic stimulus. Mean-field theory combined with

linear response theory yields closed-form expressions for the cyclostationary mean activi-

ties and pairwise zero-time-lag covariances of binary recurrent random networks. Two dis-

tinct mechanisms cause time-dependent covariances: the modulation of the susceptibility of

single neurons (via the external input and network feedback) and the time-varying variances

of single unit activities. For some parameters, the effectively inhibitory recurrent feedback

leads to resonant covariances even if mean activities show non-resonant behavior. Our ana-

lytical results open the question of time-modulated synchronous activity to a quantitative

analysis.

Author summary

In network theory, statistics are often considered to be stationary. While this assumption

can be justified by experimental insights to some extent, it is often also made for reasons

of simplicity. However, the time-dependence of statistical measures do matter in many

cases. For example, time-dependent processes are examined for gene regulatory networks

or networks of traders at stock markets. Periodically changing activity of remote brain

areas is visible in the local field potential (LFP) and its influence on the spiking activity is
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currently debated in neuroscience. In experimental studies, however, it is often difficult to

determine time-dependent statistics due to a lack of sufficient data representing the sys-

tem at a certain time point. Theoretical studies, in contrast, allow the assessment of the

time dependent statistics with arbitrary precision. We here extend the analysis of the cor-

relation structure of a homogeneously connected EI-network consisting of binary model

neurons to the case including a global sinusoidal input to the network. We show that the

time-dependence of the covariances—to first order—can be explained analytically. We

expose the mechanisms that modulate covariances in time and show how they are shaped

by inhibitory recurrent network feedback and the low-pass characteristics of neurons.

These generic properties carry over to more realistic neuron models.

Introduction

To date it is unclear which channels the brain uses to represent and process information. A

rate-based view is argued for by the apparent stochasticity of firing [1] and by the high sensitiv-

ity of the network dynamics to single spikes [2]. In an extreme view, correlated firing is a mere

epiphenomenon of neurons being connected. Indeed, a large body of literature has elucidated

how correlations relate to the connectivity structure [3–14]. But the matter is further compli-

cated by the observation that firing rates and correlations tend to be co-modulated, as demon-

strated experimentally and explained theoretically [4, 5]. If the brain employs correlated firing

as a means to process or represent information, this requires in particular that the appearance

of correlated events is modulated in a time-dependent manner. Indeed, such modulations

have been experimentally observed in relation to the expectation of the animal to receive task-

relevant information [15, 16] or in relation to attention [17].

Oscillations are an extreme case of a time-dependent modulation of the firing rate of cells.

They are ubiquitously observed in diverse brain areas and typically involve the concerted acti-

vation of populations of neurons [18]. They can therefore conveniently be studied in the local

field potential (LFP) that represents a complementary window to the spiking activity of indi-

vidual neurons or small groups thereof: It is composed of the superposition of the activity of

hundreds of thousands to millions of neurons [19, 20] and forward modeling studies have con-

firmed [21] that it is primarily driven by the synaptic inputs to the local network [22–24]. As

the LFP is a quantity that can be measured relatively easily, this mesoscopic signal is experi-

mentally well documented. Its interpretation is, however, still debated. For example, changes

in the amplitude of one of the components of the spectrum of the LFP have been attributed to

changes in behavior (cf. e.g. [25]).

A particular entanglement between rates and correlations is the correlated firing of spikes

in pairs of neurons in relation to the phase of an ongoing oscillation. With the above interpre-

tation of the LFP primarily reflecting the input to the cells, it is not surprising that the mean

firing rate of neurons may modulate in relation to this cycle. The recurrent network model

indeed confirms this expectation, as shown in Fig 1A. It is, however, unclear if and by which

mechanisms the covariance of firing follows the oscillatory cycle. The simulation shown in Fig

1B indeed exhibits a modulation of the covariance between the activities of pairs of cells. Such

modulations have also been observed in experiments:

Denker et al. [26] have shown that the synchronous activation of pairs of neurons within

milliseconds preferentially appears at a certain phase of the oscillatory component of the LFP

in the beta-range—in their words the spike-synchrony is “phase-locked” to the beta-range of

the LFP. They explain their data by a conceptual model, in which an increase in the local
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input, assumed to dominate the LFP, leads to the activation of cell assemblies. The current

work investigates an alternative hypothesis: We ask if a periodically-driven random network is

sufficient to explain the time-dependent modulation of covariances between the activities of

pairs of cells or whether additional structural features of the network are required to explain

this experimental observation.

To investigate the mechanisms causing time-dependent covariances in an analytically trac-

table case, we here present the simplest model that we could come up with that captures the

most important features: A local network receiving periodically changing external input. The

randomly connected neurons receive sinusoidally modulated input, interpreted as originating

from other brain areas and mimicking the major source of the experimentally observed LFP.

While it is obvious that the mean activity in a network follows an imposed periodic stimula-

tion, it is less so for covariances. In the following we will address the question why they are

modulated in time as well. Extending the analysis of mean activities and covariances in the sta-

tionary state [13, 27, 28], we here expose the fundamental mechanisms that shape covariances

in periodically driven networks.

Our network model includes five fundamental properties of neuronal dynamics: First, we

assume that the state of low and irregular activity in the network [1] is a consequence of its

operation in the balanced state [29, 30], where negative feedback dynamically stabilizes the

activity. Second, we assume that each neuron receives a large number of synaptic inputs [31],

each of which only has a minor effect on the activation of the receiving cell, so that total synap-

tic input currents are close to Gaussian. Third, we assume the neurons are activated in a thresh-

old-like manner depending on their input. Fourth, we assume a characteristic time scale τ that

measures the duration of the influence a presynaptic neuron has on its postsynaptic targets.

Fifth, the output of the neuron is dichotomous or binary, spike or no spike, rather than contin-

uous. As a consequence, the variance of the single unit activity is a direct function of its mean.

We here show how each of the five above-mentioned fundamental properties of neuronal

networks shape and give rise to the mechanisms that cause time-dependent covariances. The

presented analytical expressions for the linear response of covariances expose two different

paths by which a time-dependence arises: By the modulation of single-unit variances and

by the modulation of the linear gain resulting from the non-linearity of the neurons. The

Fig 1. A Time-varying mean activity of the excitatory populationmEðtÞ ¼ N
� 1
E

P
i2E niðtÞ in a balanced EI-network (parameters given in

Table 1). Thin gray lines are the outcomes of three independent simulations, the solid black line indicates the mean activity predicted by

the theory (Eqs (7) and (8)). Dashed black lines indicate the range of expected fluctuations of the population activity (± one standard

deviation): The square of the fluctuation magnitude is given by the variance of the population activity
aE
NE
þ cEE (Eqs (3) and (4)). B

Population-averaged cross covariance cEE ¼
1

NE ðNE � 1Þ

X

i6¼j2E
cij.

https://doi.org/10.1371/journal.pcbi.1005534.g001

Locking of correlated neural activity to ongoing oscillations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005534 June 12, 2017 3 / 32

https://doi.org/10.1371/journal.pcbi.1005534.g001
https://doi.org/10.1371/journal.pcbi.1005534


interplay of negative recurrent feedback and direct external drive can cause resonant behavior

of covariances even if mean activities are non-resonant. Qualitatively, these results explain the

modulation of synchrony in relation to oscillatory cycles that are observed in experiments, but

a tight locking of synchronous events to a particular phase of the cycle is beyond the mecha-

nisms found in the here-studied models.

Results

To understand the locking of synchronous activity to an oscillatory cycle, as observed experi-

mentally, we here need to consider time-dependent network states. We are in particular

interested in the covariance between two stochastic variables x1 and x2, which is defined as

c(t) = hδx1(t)δx2(t)i = h(x1(t) − hx2(t)i) (x1(t) − hx2(t)ii, where h. . .i denotes the average over

realizations. In words, the covariance in a time-dependent setting measures the co-variability

of a pair of signals with respect to their respective mean. The mean value itself may depend on

time. Only if this quantity can be determined with sufficient accuracy, time-dependent covari-

ances can be calculated correctly. This is the source of the technical problems occurring in the

context of a time-dependent covariance: It may be hard to assess the covariance, much more

its time-dependence, because it is overshadowed by the time-varying mean. If a stochastic

model is given, however, disentangling the time dependence of different cumulants, like mean

and covariance, is possible. A theoretical study to understand the prevalent mechanisms that

cause time-dependent covariances in a network model is therefore a necessary first step. In

the following we identify these mechanisms by which time-dependent covariances of activities

arise in oscillatory-driven recurrent networks. In Fig 1A we show the population-averaged

activity of the excitatory population activity in a balanced EI-network together with the theo-

retical prediction to be developed in the sequel: The fluctuations around the mean show a

wider spread close to the peak of the oscillation than at the trough. Correspondingly, the

covariance between pairs of neurons in panel B has its peaks and troughs at points of high and

low variability of the population activity in A, respectively.

Binary network model and its mean field equations

To address our central question, whether a periodically-driven random network explains the

experimental observations of time-modulated pairwise covariances, we consider a minimal

model here. It consists of one inhibitory (I) population and, in the latter part of the paper,

additionally one excitatory population (E) of binary model neurons [6, 27, 29, 32]. Neurons

within these populations are recurrently and randomly connected. All neurons are driven by a

global sinusoidal input mimicking the incoming oscillatory activity that is visible in the LFP,

illustrated in Fig 2. The local network may in addition receive input from an external excit-

atory population (X), representing the surrounding of the local network. The fluctuations

imprinted by the external population, providing shared inputs to pairs of cells, in addition

drive the pairwise covariances within the network [13, c.f. especially the discussion]. Therefore

we need the external population X to arrive at a realistic setting that includes all sources of

covariances. In the following, we extend the analysis of cumulants in networks of binary neu-

rons presented in [6, 13, 27, 28, 33] to the time-dependent setting. This formal analysis allows

us to obtain analytical approximations for the experimentally observable quantities, such as

pairwise covariances, that expose the mechanisms shaping correlated network activity.

Binary model neurons at each point in time are either inactive ni = 0 or active ni = 1. The

time evolution of the network follows the Glauber dynamics [34]; the neurons are updated

asynchronously. At every infinitesimal time step dt, any neuron is chosen with probability dt
t
.

After an update, neuron i is in the state 1 with the probability Fi(n) and in the 0-state with
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probability 1 − Fi(n), where the activation function F is chosen to be

FiðnÞ ¼ H hi � yið Þ

hi ¼
XN

k¼1

Jiknk þ hextsin otð Þ þ xi

HðxÞ ¼
1 if x � 0

0 if x < 0

(

:

ð1Þ

We here introduced the connectivity matrix J with the synaptic weights Jij 2 R describing the

influence of neuron j on neuron i. The weight Jij is negative for an inhibitory neuron j and pos-

itive for an excitatory neuron. Due to the synaptic coupling the outcome of the update of neu-

ron i potentially depends on the state n = (n1, . . ., nN) of all other neurons in the network.

Compared to the equations in [13, page 4], we added an external sinusoidal input to the neu-

rons representing the influence of other cortical or subcortical areas and Gaussian uncorre-

lated noise with vanishing mean hξii = 0 and covariance hxixji ¼ dijs
2
noise

. The threshold θi
depends on the neuron type and will be chosen according to the desired mean activity.

We employ the neural simulation package NEST [35, 36] for simulations. Analytical results

are obtained by mean-field theory [6, 13, 27, 28, 37, 38] and are described for completeness

and consistency of notation in the section “Methods”. In the main text we only mention the

main steps and assumptions entering the approximations. The basic idea is to describe the

time evolution of the Markov system in terms of its probability distribution p(n, t). Using the

master Eq 14 we obtain ordinary differential equations (ODEs) for the moments of p(n, t). In

particular we are interested in the population averaged mean activitiesmα, variances aα, and

covariances cαβ

ma tð Þ ≔
1

Na

X

i2a

ni tð Þh i ð2Þ

Fig 2. Recurrent balanced network driven by oscillatory input. Recurrently connected excitatory (E) and

inhibitory (I) populations (Erdős-Rényi random network with connection probability p) receiving input from an

external (X) excitatory population. Additionally, all neurons in the microcircuit receive a sinusoidal signal of

amplitude hext and frequencyω, representing the oscillatory activity received from external brain areas.

https://doi.org/10.1371/journal.pcbi.1005534.g002
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aa tð Þ ≔
1

Na

X

i2a

ni tð Þh i � ni tð Þh i
2

ð3Þ

cab tð Þ ≔
1

NaNb

X

i2a;j2b;i6¼j

hni tð Þnj tð Þi � ni tð Þh ihnj tð Þi; ð4Þ

which are defined as expectation values hi over realizations of the network activity, where the

stochastic update of the neurons and the external noisy input presents the source of random-

ness in the network. The dynamics couples moments of arbitrarily high order [33]. To close

this set of equations, we neglect cumulants of order higher than two, which also approximates

the input by a Gaussian stochastic variable with cumulants that vanish for orders higher than

two [39]. This simplification can be justified by noticing that the number of neurons contribut-

ing to the input is large and their activity is weakly correlated, which makes the central limit

theorem applicable. In a homogeneous random network, on expectation there are Kαβ = pαβ
Nβ synapses from population β to a neuron in population α. Here pαβ is the connection proba-

bility; the probability that there is a synapse from any neuron in population β to a particular

neuron in population α and Nα is the size of the population. Mean Eq (2) and covariance Eq

(4) then follow the coupled set of ordinary differential equations (ODEs, see section II A in

S1 Text for derivation)

t
d
dt
ma tð Þ ¼ � ma tð Þ þ φðmaðm tð Þ; hextsin otð ÞÞ; saðm tð Þ; c tð ÞÞÞ ð5Þ

t
d
dt
cab tð Þ ¼

(

� cab tð Þ þ
X

g

"

S ma m tð Þ; hextsin otð Þð Þ; sa m tð Þ; c tð Þð Þð Þ

�KagJag cgb tð Þ þ dgb

ab tð Þ
Nb

 !#)

þ a$ bf g;

ð6Þ

where α$ β indicates the transposed term. The Gaussian truncation employed here is param-

eterized by the mean μα and the variance s2
a

of the summed input to a neuron in population α.

These, in turn, are functions of the mean activity and the covariance, given by Eqs (18) and

(19), respectively.

Here φ is the expectation value of the activation function, which is smooth, even though

the activation function itself is a step function, therefore not even continuous. The function φ
fulfills limm! 0 φ = 0 and limm! 1 φ = 1 and monotonically increases. Its derivative S with

respect to μ has a single maximum and is largest for the mean input μ within a region with size

σ around the threshold θ. Smeasures the strength of the response to a slow input and is there-

fore termed susceptibility. The definitions are given in “Methods” in Eqs (17) and (20).

The stationary solution (indicated by a bar) of the ODEs Eqs (5) and (6) can be found by

solving the equations

m ¼ φ mð Þ ð7Þ

2c ¼ SKJ c þ
a
N

� �

þ transposed ð8Þ

numerically and self-consistently, as it was done in [13, 27, 33].
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The full time-dependent solution of Eqs (5) and (6) can, of course, be determined numeri-

cally without any further assumptions. Besides the comparison with simulation results, this

will give us a check for the subsequently applied linear perturbation theory. The resulting ana-

lytical results allow the identification of the major mechanisms shaping the time-dependence

of the first two cumulants. To this end, we linearize the ODEs Eqs (5) and (6) around their sta-

tionary solutions. We only keep the linear term of order hext of the deviation, justifying a Fou-

rier ansatz for the solutions. For the mean activities this results in

ma tð Þ ¼ ma þ dma tð Þ ¼ ma þM1
a
eiot with

M1
a
¼
X

b

UabM
1

b
¼
X

b

Uab

hext U � 1S μ;σð Þð Þ
b
� itoþ 1 � lb

� �

toð Þ
2
þ 1 � lb

� �2
: ð9Þ

The time-dependence of σ was neglected here, which can be justified for large networks

(“Methods”, Eqs (22) and (30)). The matrix U represents the basis change that transforms

W ab ≔ S ma; sað ÞKabJab into a diagonal matrix with λα the corresponding eigenvalues. We see

that, independent of the number of populations or the detailed form of the connectivity

matrix, the amplitude of the time-dependent part of the mean activities has the shape of a low-

pass-filtered signal to first order in hext. Therefore the phase of δm lags behind the external

drive and its amplitude decreases asymptotically like 1

o
, as can be seen in Fig 3A and 3B.

If we also separate the covariances into their stationary part and a small deviation that is lin-

ear in the external drive, cab tð Þ ¼ cab þ dcab tð Þ, expand S (μα (t), σα (t)) and a (t) around their

stationary values, keeping only the terms of order hext and neglect contributions from the

time-dependent variation of the variance of the input σ2 (see “Methods”, especially Eq (30) for

a discussion of this point), we get the ODE

t
d
dt

dc tð Þ þ 2dc tð Þ � Wdc tð Þ � Wdc tð Þ
� �T

¼

(

W diag
1 � 2m
N

� �

diag δm tð Þð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
modulated� autocorrelations� drive

þ diag K⊛ J δm tð Þð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

recurrent drive

þ hextsin otð Þ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

direct drive

2

4

3

5 diag
@S

@m tð Þ

� �

K⊛ J ctotal

)

þ :::f g
T
;

ð10Þ

where we introduced the point-wise (Hadamard) product ⊛ of two matrices A and B [see 40,

for a consistent notation of matrix operations] as (A⊛ B)ij≔ AijBij, defined the matrix with

the entries diag (x)ij≔ δij xi for the vector x = (x1, ‥, xn) and set ctotal ≔ c þ diag a
N

� �
to bring

our main equation into a compact form.

We can now answer the question posed in the beginning: Why does a global periodic

drive influence the cross covariances in the network at all and does not just make the mean

activities oscillate? First, the variances are modulated with time, simply because they are

determined via Eq (3) by the modulated mean activities. A neuron i with modulated autocor-

relation ai(t) projects via Jji to another neuron j and therefore shapes the pairwise correlation

cji(t) in a time-dependent way. We call this effect the “modulated-autocovariances-drive”,

indicated by the curly brace in the second line of Eq (10). Its form in index notation is

½W diag ð1 � 2mÞ=Nð Þdiag δm tð Þð Þ�
ab
¼W ab ð1 � 2mbÞ=Nb dmbðtÞ. This is the low-pass-

filtered input.
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The other contributions are a bit more subtle and less obvious, as they are absent in net-

works with a linear activation function. The derivative of the expectation value of the activa-

tion function, the susceptibility, contributes linearly to the ODE of the covariances. As the

threshold-like activation function gives rise to a nonlinear dependence of φ on the mean input

μ, the susceptibility S = φ0 is not constant, but depends on the instantaneous mean input. The

latter changes as a function of time by the direct external drive and by the recurrent feedback

of the oscillating mean activity, indicated by the terms denoted by the curly braces in the third

line of Eq (10). Together, we call these two term the “susceptibility terms”. Both terms are of

the same form

diag δμðtÞð Þdiag
@S
@m tð Þ

� �

K⊛ J ctotal

� �

ab

¼ dmaðtÞ
@Sa

@ma

X

g

KagJag ðcgb þ dgb

ab

Nb

Þ; ð11Þ

but with different δμα. This form shows how the time-dependent modulation of the mean

input δμα, by the second derivative of the gain function
@Sa

@ma
¼ φ@, influences the transmission of

Fig 3. Periodically driven single population network. Dependence of the modulations of the mean activity and covariances on the driving frequencyω.

A Amplitude of modulation of mean activity. B Phase of modulation of mean activity relative to the external drive. C Amplitude of modulation of

covariances. D Phase of modulation of covariance relative to the external drive. In all panels, the analytical predictions (Eqs (9) and (39)) are shown as

solid black curves. The black curve is the complete solution. The different contributions to the time-dependent covariances, identified in Eq (12), are shown

separately: The Sh-term in red, the Sm-term in blue, their sum in purple, and the a-term in orange. Numerical solutions of the full mean-field equations (Eqs

(5) and (6)) are shown as stars and simulation results by dots (only indicated in the legend of A). The numerical results are obtained by using the integrate.

ode-method from the python-package scipy [41] with the option “lsoda”, meaning that either implicit Adams- or backward differentiation-algorithms

(depending on the given problem) are used. Network parameters: Number of neurons NI = 5000, connection probability pII = 0.1, coupling strength JII = −1,

mean activity mI� 0.3, and snoise ¼ ssystem ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2
IIpII NImIð1 � mIÞ

p
� 10:2.

https://doi.org/10.1371/journal.pcbi.1005534.g003
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covariances. The sum following
@Sa

@ma
is identical to the one in the static case Eq (8). For the

“recurrent drive”, the time-dependent input is given by δμα(t) = ∑β Kαβ Jαβ δmβ(t), which is a

superposition of the time-dependent activities that project to population α and is therefore

low-pass-filtered, too. The term due to “direct drive” is δμα(t) = hext sin(ωt).
We solve Eq (10) by transforming into the eigensystem of W and inserting a Fourier ansatz,

dcab tð Þ ¼ C1
ab
eiot . The solution consists of a low-pass filtered part coming from the direct drive

and two parts that are low-pass filtered twice, coming from the recurrent drive and the modu-

lated-autocovariances-drive. For a detailed derivation, consult the section “Covariances: Sta-
tionary part and response to a perturbation in linear order”.

We have calculated higher Fourier modes of the simulated network activity and of the

numerical solution of the mean-field equations to check if they are small enough to be

neglected, so that the response is dominated by the linear part. Of course, it would be possible

to derive analytical expressions for those as well. However, we will see that the linear order and

the corresponding first harmonic qualitatively and for remarkably large perturbations even

quantitatively gives the right predictions. The limits of this approximation are analyzed in Fig

D in S1 Text. We will therefore constrain our analysis to controlling the higher harmonics

through the numerical solution.

In the following we will study three different models of balanced neuronal networks to

expose the different mechanisms in their respective simplest setting.

Single population. As a first example, we quantitatively study the particular case of a sin-

gle population, which has to be inhibitory to ensure stable stationary activity. Let us look at the

behavior of the different contributions in Eq (10) to the modulated covariance and their

mutual relation. Written explicitly, the terms driving the time variation of the covariance are

ð K J dmðtÞ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Sm � term/ 1
o for big o

þ hext sinðotÞ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Sh � term does not scale with o

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
susceptibility terms;partly cancel

Þ @S
@m
K J c þ

a
N

� �

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
partly cancel

þ Wð1 � 2mÞ
dmðtÞ
N|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

a� term/ 1
o for big o

: ð12Þ

With respect to their dependence on the number of synaptic connections |K|, the sum of the

two susceptibility terms is of the same order of magnitude as the modulated-autocovariances-

drive (cf. 37 in the section “Methods”), therefore their interplay determines the shape of the

solution of Eq (10) and we cannot neglect either term in favor of the other.

To analyze the contributions to δc, it is reasonable to first focus on the quasi-static case

ω! 0, because its analysis is simplest and, due to the continuity of the observed quantities, it

carries over to the case of biologically relevant small frequencies up to the β-range. For ω! 0,

the solution δc in Eq (10) has the same sign as the sum of the inhomogeneities, because it is

given by a multiplication with 0.5 (1 −W)−1, whereW< 0. The main information—especially

about the sign—is therefore already included in these inhomogeneities, that we termed “recur-

rent drive” and “direct drive” (the susceptibility terms) and “modulated-autocovariances-

drive” in the previous section. The modulation of the covariance δc(t) then results by low pass

filtering their sum. Individually they yield the Sm-term and Sh-term (together the S-terms) and

the a-term, respectively.

In a general balanced network, the deviation of the mean activity from the stationary solu-

tion δm(t) is in phase with the perturbation for ω� 0 and lags behind it for larger ω due to the

“forgetfulness” of the network caused by the leak term in the ODE. At low frequencies, the

recurrent drive/ K⊛ J δm(t) therefore partly cancels the direct drive/ hext sin (ωt). This is

because the rate response δm is in phase, and the feedback KJ< 0 in the network is negative.

The cancellation becomes less efficient at larger frequencies, because the recurrent drive

Locking of correlated neural activity to ongoing oscillations
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asymptotically decays like ω−1 and is phase-shifted; the mean activity is low-pass-filtered

Eq (9). The direct drive, in contrast, does not depend on the driving frequency ω. Therefore,

the Sm-term is low-pass-filtered twice and the Sh-term term only once, therefore their sum has

a peak at an intermediate frequency, as visible in Fig 3C, purple curve. Note that this cancella-

tion generally appears in the balanced state, because the network feedback is always effectively

inhibitory. Furthermore, the modulated-autocovariances-drive only vanishes forma ¼
1

2
; for

realistic activityma �
1

2
it is in anti-phase with δm(t), because it is defined includingW< 0,

which flips the phase by π.

Average covariances in inhibitory networks are negative [13]. As a consequence, in the set-

ting of a single inhibitory population there is a second kind of cancellation: The two terms c
and N � 1a in the prefactor c þ N � 1a of the susceptibility terms in Eq (12) partly cancel; their

sum in fact vanishes in the large N limit [cf. 13, eq. (32) and their Fig 5]. This leads to the dom-

inance of the a-term, shown in Fig 3D (orange curve). The maximum in the S-terms is there-

fore overshadowed by the a-term, which asymptotically also shows a second order low pass

characteristics with/ ω−2. So in the purely inhibitory network the peak is not visible in the

sum of all contributions to Ĉ oð Þ.

In summary, the model of a single population in the balanced state exposes several generic

features of time-dependent mean activities and covariances: Mean activities and the direct

drive contribution to covariances follow the external modulation with first order low pass

characteristics. The Sm-term and the a-term of the covariances, being mediated by the mean

activity, consequently expose a second order low pass filtering. The direct drive and the recur-

rent drive (the susceptibility terms) to large extent cancel at low frequencies, but not at high

ones. Due to their overall decay in amplitude with increasing frequency, an intermediate maxi-

mum arises in their sum. In the single population model this peak is typically overshadowed

by the a-term. This is because of the suppression of population fluctuations by negative feed-

back in the stationary state [10], which causes a small population variance N � 1a þ c and the

latter term controls the amplitude of the susceptibility terms.

Two homogeneously connected populations. A slightly more realistic, but still simple

setup is an EI-network with the same input for the inhibitory and the excitatory neurons, as

studied before, in [13, parameters, exceptmX as in fig. 6 there]. This network is also inhibition-

dominated, therefore we observe qualitatively the same competition of the two S-terms leading

to the existence of a maximum in the ω-dependence of |C1|. In contrast to the single population

case, in the E-I network the peak may be visible. This is because—in contrast to the single popu-

lation case—covariances in this setup may also be positive, preventing the cancellation with the

variances in the term c þ a
N that drives the S-terms. The latter contribution may therefore domi-

nate over the a-term at small ω. Its dominance increases the larger the covariances are, which

for example arises when increasing the external drive or by lowering the noise level at the input

to the neurons. The “resonance” effect itself increases for weaker the excitatory synapses.

Fig 4C, indeed shows a peak of the response of the covariances at a frequency of about 120

Hz. We here focus on the covariances between excitatory neurons, because their activities are

recorded most often and also cell assemblies are normally assumed to consist of excitatory

neurons.

Two populations with inhomogeneous connections. The example of homogeneous

connectivity helps to explain the fundamental mechanisms that shape the covariances; it is,

however, certainly not very realistic. Furthermore, in the case of synaptic weights being dif-

ferent for individual receiving populations, the linearized connectivity W can have a pair of

complex eigenvalues, which is qualitatively different to the setup described before. To check

if the theory also works for parameters satisfying biological constraints, we choose the
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connectivity and activity levels in accordance to experimental studies. Apart from the results

from [26], the parameters were measured in the layer 2/3 in the barrel cortex of mice. We

select this layer, because it is the assumed location of cell assemblies [42], allowing us to

relate our results to the original hypothesis of excess synchrony by activation of assemblies

[26], a feature that could be considered in future studies. The connection probabilities are

taken from [43], the fractions of excitatory and inhibitory neurons from [44] and the mem-

brane time constant is extracted from [45, supplementary material]. We adjust the neurons’

thresholds such that the stationarity condition φ mð Þ ¼ m is fulfilled formα = τνα, where

α 2 {exc., inh.}, να is the firing rate of the respective population and τ is the neuronal time

constant. Note that the mapping m = τν implies a slightly different notion of a “spike” of a

binary neuron than previously used [28]. The two conventions agree in the limit of vanishing

firing rates (cf. section II B in S1 Text). The firing rate of 18 Hz given in [26] presumably

reflects the activity of excitatory neurons (private communication). To obtain the firing rate

of the inhibitory neurons νinh., we scale the measurement from [26] by the ratio νinh/νexc.
from [46]. All parameters are summarized in Table 1. The effective connectivity W of this

Fig 4. Periodically driven E-I network. A Amplitude of modulation of the mean activity deviating from the stationary value for the excitatory population. B

Phase of the modulation of the mean activity. C Different contributions to the amplitude of the covariance between pairs of excitatory cells in dependence

of the frequencyω of the external drive. D Phase of covariances relative to the driving signal. Analytical theory (Eqs (9) and (39)) shown by solid black

curves, numerical solutions of the full mean field equations (Eqs (5) and (6)) (stars) and simulation results (dots, only indicated in the legend of A). Same

color code as in C. In C and D, the contributions to the variation of covariances are shown separately: The Sh-term in red, the Sm-term in blue, their sum in

purple and the a-term in yellow. The legend for C and D is split over both panels. Numerical solutions obtained by the same methods as in Fig 3.

Parameters: NE = NI = NX = 8192, pE = pI = pX = p = 0.2, mE = mI� 0.11, mX = 0.25, identical to [13, e.g. fig. 6].

https://doi.org/10.1371/journal.pcbi.1005534.g004
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system has two conjugate complex eigenvalues. Therefore, there exists a resonance frequency

also for the mean activity, shown in Fig 5C.

In the two upper panels of Figs 5 and 6, we compare the stationary values for the mean

activity Eq (7) and the covariances Eq (8) with the respective time averaged results of the simu-

lation and with the numerical solution of the full mean-field equations. The stationary statistics

have been investigated before for other parameters in finite networks [13] and in the limit

N!1 [6]. The second harmonics extracted from the simulations and the numerical solution

of the full mean-field equations show good agreement and are overall small compared to the

zeroth and first harmonics, justifying the truncation of the Fourier series in the analytical the-

ory after the first term.

The first harmonics of the mean activity (see Fig 5) and covariances (see Fig 6) predicted by

the linear response theory agree well with simulations and the numerical solution. This is not

necessarily clear a priori because the perturbation in the input to every neuron is of the order

O s

10

� �
, where σ is the input noise level of the unperturbed system. However, linear response

theory works surprisingly well, even for the covariances caused by a perturbation leading to a

response of the same order of magnitude as the stationary value. Increasing the perturbation

strength hext further ultimately leads to a breakdown of the linear perturbation theory, visible

in the growing absolute values of the second Fourier modes of mean activities and covariances

(Fig D in S1 Text). The maximal modulation in the firing rates amounts to� 0.8 for the excit-

atory and 4.9 Hz for the inhibitory neurons.

In this biologically inspired setting, it is also interesting to apply the Unitary Event (UE)

analysis to our data, as it was done for experimental data in [26]. Because this is a bit aside the

scope of this paper, we present this part in the appendix, Sec. I in S1 Text.

The connectivity matrix has complex eigenvalues l1 ¼ l
�

2
, so we observe a resonance of the

mean activities at the frequencies

fres;mean ¼
I l1ð Þ

t2p
;

indicated by a vertical line in Fig 5C. The components of δm are composed of different modes,

therefore their maximum does not appear exactly at fres, mean. The covariances are shaped by

more modes: In general, the covariance matrix for a three-dimensional quantity has 6 inde-

pendent components. In our case, cXX is always 0, which is a consequence of the missing feed-

back to X. Now, the evolution of every mode of edc is given by the sum of two eigenvalues of

1 −W, i.e. 2 − λ, 2 − λ�, 2 − 2λ, 2 − 2λ� and 2 − (λ� + λ). The missing mode is the “trivial” one

owing to the vanishing eigenvalue ofW. So the behavior of the “kernel” of the ODE for δc is

given by the resonances at
jI lð Þj

t2p
and 2 �

jI lð Þj

t2p
. In addition, the inhomogeneity of the ODE (10)

(its right hand side) is already resonant at
jI lð Þj

t2p
. All these modes are mixed with different

strength in the different modes of δc, giving rise to a maximum of |C1| somewhere in the vicin-

ity of fres, mean and 2fres, mean. In all cases the “resonances” are damped, therefore, a resonance

Table 1. Parameters for the biologically inspired network model used in Figs 5 and 6 and Figs A, B, C and D in S1 Text.

exc. inh. ν (Hz) mean act. #neurons

exc. connection prob. 0.168 0.5 18 0.045 1691 τ = 2.5ms

synaptic weight 0.37 −0.52

inh. connection prob. 0.327 0.36 108 0.27 230 mex = 0.1

synaptic weight 0.82 −0.54

https://doi.org/10.1371/journal.pcbi.1005534.t001
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catastrophe, induced by δm oscillating with the resonance frequency of δc, cannot occur. We

also notice that all resonances are the stronger, the closer <(λ) is to 1, the critical point, which

makes sense intuitively: The damping comes from the overall inhibitory feedback; at the criti-

cal point the leak term is exactly compensated by positive feedback of identical magnitude. It is

Fig 5. Driven E-I network with biologically inspired parameters: Mean activity. From the first to the third row, the zeroth to second Fourier mode of

the mean activity is shown. A Constant part of mean activity (zeroth order). B First three Fourier-modes of the mean activities on a loglog-scale. C

Amplitude of first mode of the mean activity. D Phase of first mode relative to driving signal. E and F are structured analogous to C and D for the second

Fourier modes. Solid curves indicate the linear theory (Eq (9)), stars numerical integration of the full mean field equations (Eqs (5) and (6)) and dots the

simulation results of the full network. Black symbols indicate the activity of excitatory, gray symbols of inhibitory neurons. Numerical results obtained by the

same methods as in Fig 3. Noise amplitudes σnoise,E = σnoise,I = 10, σnetwork,E = 2.8, σnetwork,E = 4.6, other parameters of the network model given in Table 1.

https://doi.org/10.1371/journal.pcbi.1005534.g005
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worth noticing that the effect of the partial cancellation of the S-terms, which can be read

off from Eq (10) and is described in the previous subsections for small ω is still valid. The func-

tional form of |C1(ω)|, however, is now mainly determined by the resonances due to the com-

plex eigenvalues of W.

The ω-dependencies of the cII- and the cEI- covariances shown in the appendix are qualita-

tively similar (Fig. B and Fig. C in S1 Text). The stationary covariance is well predicted by the

theory [13], which is confirmed here.

Fig 6. Driven E-I network with biologically inspired parameters: EE-Covariance. Response of the covariance to a perturbation with

frequencyω in the Fourier space. A Zeroth Fourier mode (time independent part) of the covariance. B Absolut value of the first three Fourier

components of the cee-covariances on a loglog-scale. C Absolute value of the first order of the time-dependent part of the covariance. D

Phase angle in relation to the driving signal. E and F are analogous to C and D for the second Fourier modes. Solid lines indicate the linear

theory Eq (39), stars the results of the numerical solution of the full mean-field theory Eqs (5) and (6) and dots the direct simulation of the full

network. Numerical results obtained by the same methods as in Fig 3. Parameters of the network model as in Fig 5.

https://doi.org/10.1371/journal.pcbi.1005534.g006
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Fig 7 illustratively summarizes the results of this section. In panel A, the probability of the

binary system to be in a certain activity state (minh,mexc)
T is indicated by different gray

shades, the darker, the higher the probability to find it in the respective area. On top, the area

including the most probable network states, as predicted by the linear theory, is indicated by

black dots. Its construction is depicted in panel B: We draw the limit cycle (black) formed by

the points (hminh(t)i, hmexc(t)i)T as a parametric plot with time as parameter. Then, we define

the points on the error ellipse (minh,mexc)
T as follows

dm tð ÞT cpop tð Þð Þ
� 1

dm tð Þ ¼ 1; ð13Þ

where δmT: = (minh,mexc, 0)T − (hminhi, hmexci, 0)T and

cpop tð Þ ¼

cpop
EE tð Þ cpop

EI tð Þ cpop
EX tð Þ

cpop
EI tð Þ cpop

II tð Þ cpop
IX tð Þ

cpop
EX tð Þ cpop

IX tð Þ 0

0

B
B
B
@

1

C
C
C
A
:

In this way, the solutions δm(t) of Eq (13) are composed of all points that are one standard

deviation away from the expected activity. The covariances enter the total population averaged

variability, given by

cpop
ab tð Þ ≔ dma tð Þdmb tð Þ


 �
¼

1

Na

X

i2a

dni tð Þ
1

Nb
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i2b
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þ
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aa tð Þ
Na

þ cab tð Þ

with the definitions Eqs (3) and (4).

Fig 7. Distribution of population-averaged activity of periodically driven E-I network. A Empirical density of population activity of

the E-I network. Gray shading indicates time-averaged occupation of states. The thin mid gray curve is a sample of the binary dynamics

of 10 periods after the start of the simulation. The black dots indicate the σ-region predicted by the linear theory as described by Eq (13)

in the main text. B Limit cycle of the linear theory (black ellipse), together with error ellipses stemming from the sum of covariances and

variances (dark gray, slightly tilted) and representing solely variances (light gray). The stars are at the same places as in A. Parameters

are given in Table 1, only the perturbation strength is increased to hext = 6 (noise level around σE’ 14, σI ’ 23) for reasons of readability

(for this value the simulated results already show deviations from the linear approximation as shown in Fig. D in S1 Text). The perturbing

frequency is chosen to be f = 80 Hz.

https://doi.org/10.1371/journal.pcbi.1005534.g007
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The two points on the border of the dark gray error-ellipses of the full covariances with the

largest distance to the tangent of the limit cycle at (hminhi, hmexci) are marked by a star, which,

taken together, form the border of a tube-shaped σ-area. This tube indicates the region in

which we most likely expect to find the system. To visualize the contributions of auto- and

pairwise covariances, we plot in light gray the error ellipses based solely on the variances

(cpop (t) is diagonal in this case). The dark error ellipses are bigger than the light ones, indicat-

ing that the covariances are positive and their axes are tilted; the cEI = cIE-component is non-

zero. Furthermore, the error ellipses significantly change their size in time, indicative of the

modulation of the fluctuations with time. The variances grow monotically with the respective

mean activities, explaining that the light gray ellipses are largest (smallest) where the mean

activities are largest (smallest). One can read off the phase shift of cEE tomE to be roughly p

2
: the

deviation of the dark gray error ellipses from the light gray ones is largest at the points where

mE tð Þ � mE and δmI (t) is minimal.

Methods

Glauber dynamics in mean-field theory

We have left out so far several steps in the derivation of the results that were not necessary for

the presentation of the main ideas. In this section, we will therefore give a self-contained deri-

vation of our results also necessitating paraphrases of some results known from earlier works.

The starting point is the master equation for the probability density of the possible network

states emerging from the Glauber dynamics [34] described in “Binary network model and its
mean field equations” (see for the following also [13, 37])

@p
@t
ðn; tÞ ¼

1

t|{z}
update rate

XN

i¼1

ð2ni � 1Þ
|fflfflfflfflffl{zfflfflfflfflffl}

2f� 1;1g;direction of flux

�iðnnni; tÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
net flux due to neuron i

8 n 2 f0; 1gN ;
ð14Þ

where

�iðnnni; tÞ ¼ pðni� ; tÞ Fiðni� Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
neuron i transition up

� pðniþ; tÞ ð1 � FiðniþÞÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

neuron i transition down

¼ � pðniþÞ þ pðni� ; tÞ Fiðni� Þ þ pðniþ; tÞ FiðniþÞ:

The activation function Fi(n) is given by Eq (1).

Using the master equation (for details cf. section II A in S1 Text), one can derive a differen-

tial equation for the mean activity of the neuron i, hnii (t) = ∑n p(n, t) ni and the raw covariance

of the neurons i and j, hni (t) nj (t)i = ∑n p (n, t)ni nj [6, 13, 27, 34, 37]. This yields

t
d
dt
nkh i tð Þ ¼ � nkh i tð Þ þ Fk tð Þh i

d
dt
nk tð Þ nl tð Þh i ¼ � nk tð Þ nl tð Þh i þ nl tð Þ Fk tð Þh if g þ k$ lf g:

ð15Þ

As mentioned in “Binary network model and its mean field equations”, we assume that the

input hi coming from the local and the external population is normally distributed, say with

Locking of correlated neural activity to ongoing oscillations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005534 June 12, 2017 16 / 32

https://doi.org/10.1371/journal.pcbi.1005534


mean μi and standard deviation σi given by

miðtÞ ≔ hih i ¼ J nh ið Þi þ hext sinðotÞ

s2
i ðtÞ ≔ h2

i


 �
� hih i

2
¼
XN

k;k0¼1

Ji;kJi;k0 nknk0h i � nkh i nk0h ið Þ þ snoise
i

� �2

¼ JT cJð Þii þ J⊛ J nh i⊛ 1 � nh ið Þ þ snoise
i

� �2
;

ð16Þ

where the average hi is taken over realizations of the stochastic dynamics and we used the ele-

ment-wise (Hadamard) product (see main text).

The additional noise introduced in Eq (1) effectively leads to a smoothing of the neurons’

activation threshold and broadens the width of the input distribution. It can be interpreted as

additional variability coming from other brain areas. Furthermore, it is computationally con-

venient, because the theory assumes the input to be a (continuous) Gaussian distribution,

while in the simulation, the input
PN

l¼k Jiknk, being a sum of discrete binary variables, can only

assume discrete values. The smoothing by the additive noise therefore improves the agreement

of the continuous theory with the discrete simulation. Already weak external noise compared

to the intrinsic noise is sufficient to obtain a quite smooth probability distribution of the input

(Fig 8).

Fig 8. Distribution of inputs from binary neurons for different noise levels. Probability distribution of synaptic

input hi = ∑j Jijnj + ξi of a neuron in a network of independently active cells nj with hnEi = hnIi = 0.2 and synaptic

weights jI = −0.21, jE = 0.01. j
jE
jI
j was deliberately chosen to be large because only then the convolution of a binomial

distribution “squeezed” to the step size jE with the binomial distribution squeezed to the step size |jI| results in a

probability distribution with many local maxima leading to the impression of an oscillation. The noiseless case ξi = 0

is shown as black dots. The solid black curve indicates the Gaussian approximation (cf. e.g. Eq (16), here without

perturbation) of this distribution from the main text. This distribution appears in the expectation values of the

activation function F (cf. e.g. Eq (1)): It is a Gaussian distribution with the mean μ = KEjEmE + KIjImI and the variance

s2
network

¼ KEj
2
EmE ð1 � mEÞ þ KIj

2
I mI ð1 � mIÞ of the original binomial distributions Binom(mE, KE), Binom(mI, KI). The

other curves indicate convolutions with the Gaussian noise x � N ð0; snoiseÞ of different magnitudes σnoise, given in

units of the noise level σnetwork intrinsically produced by the network.

https://doi.org/10.1371/journal.pcbi.1005534.g008

Locking of correlated neural activity to ongoing oscillations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005534 June 12, 2017 17 / 32

https://doi.org/10.1371/journal.pcbi.1005534.g008
https://doi.org/10.1371/journal.pcbi.1005534


The description in terms of a coupled set of moment equations instead of the ODE for the

full probability distribution here serves to reduce the dimensionality: It is sufficient to describe

the time evolution of the moments on the population level, rather than on the level of individ-

ual units. To this end we need to assume that the synaptic weights Jij only depend on the popu-

lation α, β 2 {exc., inh., ext.} that i and j belong to, respectively, and thus (re)name them Jαβ
(homogeneity). Furthermore, we assume that not all neurons are connected to each other, but

that Kαβ is the number of incoming connections a neuron in population α receives from a neu-

ron in population β (fixed in-degree). The incoming connections to each neuron are chosen

randomly, uniformly distributed over all possible sending neurons. This leads to expressions

for the population averaged input hα, mean activitymα and covariance cαβ, formally nearly

identical to those on the single cell level and analogous to those in [13, sec. Mean-field

solution].

Mean activity: Stationary part and response to perturbation in linear order. We are

now able to calculate the quantity hFα (n (t), t)i = hH (hα (t) − θ)i (recall that hα (t) is a Gaussian

random variable with mean μα (t) and standard deviation σα (t)), the nonlinearity of the ODEs

15 on the population level. Multiplying H (hα (t) − θα) by the Gaussian probability density for

hα (t), we get, after substitution of the integration variable,

Fa n tð Þ; tð Þh i ¼ H ha tð Þ � yað Þh i

¼
1
ffiffiffi
p
p

Z 1

y� ma tð Þffiffi
2
p

sa tð Þ

e� x2 dx ¼
1

2
erfc

ya � ma tð Þffiffiffi
2
p

sa tð Þ

 !

≕ φðmaðm tð Þ; hext sin otð ÞÞÞ; saðm tð Þ; c tð ÞÞÞ;

ð17Þ

where we defined the average input μα and the width of the input distribution σα

ma tð Þ ≔ K ⊛ Jð Þm tð Þ½ �
a
þ hextsinðotÞ ð18Þ

s2
a
tð Þ ≔ K ⊛ Jð Þ

T c tð Þ K ⊛ Jð Þ
� �

aa

þ K ⊛ J ⊛ Jm tð Þ ⊛ 1 � m tð Þð Þ½ �
a
þ s2

a;noise:
ð19Þ

Recall that we defined x to be the quantity x in the stationary case (without external input).

For the linear approximation around ma ¼ ma, sa ¼ sa and hext = 0, we have to take into

account all dependencies via inner derivatives. We set dma ¼ ma � ma and dsa ¼ sa � sa. Note

that δμ includes the variation of μ both because of fluctuations in the network and because of

the external drive. The Taylor expansion up to linear order is

φðmaðm; c; hextÞ; saðm; cÞÞ � φðma; saÞ þ S ma; sað Þ
|fflfflfflfflffl{zfflfflfflfflffl}

≕Sa

dma þ
y � ma

sa

dsa

� �

;

where we introduced the susceptibility on the population level

S ma tð Þ; sa tð Þð Þ ≔
d

dma tð Þ
φ maðtÞ; saðtÞð Þ ¼

1
ffiffiffiffiffiffi
2p
p

sa tð Þ
e
�

ma tð Þ � yað Þ
2

2s2
a
tð Þ :

ð20Þ

Now, we express δσα and δμα via dm ≔ m � m and dc ≔ c � c (cf. [13, eq. (29)] for the time-
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independent case):

dma tð Þ ¼
X

b

KabJabdmb tð Þ þ hext sin otð Þ ð21Þ

dsa tð Þ ¼
1

2sa

X

b

KabJ
2

ab
1 � 2mb

� �
dmb tð Þ þ

X

b;g

KabKagJabJagdcbg tð Þ

 !

: ð22Þ

Note that in δμα (but not δσα), the perturbation occurs again explicitly. In Eq (33), we

demonstrate that δc scales like dm
N , like in the stationary case. Furthermore, we certainly have

jKj
N ¼ O 1ð Þ and s ¼ O

ffiffiffiffiffiffiffi
jKj

p� �
, thus

dμ tð Þj j ¼ O jKjjdm tð Þjð Þ ¼ O hextð Þ; but dσ tð Þj j ¼ O
ffiffiffiffiffiffiffi
jKj

p
jdm tð Þj

� �
¼ O

hextffiffiffiffiffiffiffi
jKj

p

 !

:

We therefore neglect δσ in our calculations for δm from Eq (24) on. This yields for the lineari-

zation of the ODE Eq (5)

t
@

@t
dma tð Þ þ dma tð Þ ¼ Sa ½dma tð Þ þ

ya � ma

sa|fflfflfflffl{zfflfflfflffl}
¼erfc� 1 mð Þ

dsa tð Þ�
ð23Þ

t
@

@t
dma tð Þ þ dma tð Þ ¼

X

b

Wabdmb tð Þ þ Sahext sin otð Þ þO h2

ext;
1
ffiffiffiffi
K
p

� �

; ð24Þ

where we used the relation
Ya � ma

sa
¼

ffiffiffi
2
p

erfc
� 1

2mað Þ, derived from Eq (7) in connection with

Eq (17), which implies that this expression does not depend on K, but solely onma and we

defined

Wab ≔ SaKabJab:

The only change compared to the setup in [13] is again the occurrence of a periodic term, here

Sahext sinðotÞ.
We solve Eq (24) by transforming it into the eigenbasis of the matrixWαβ

U � 1WU ¼ diag l1; ::;l ~Nð Þ ≔ L: ð25Þ

We multiply Eq (24) by U−1, define δmα≔ (U−1)αβ δmβ and get

t
d
dt

dma ¼ � dma þ L
a

b
dmb þ U � 1ð Þ

abSbhextsin otð Þ: ð26Þ

Note that the input is projected onto the respective eigenmodes. Eq (26) can be solved includ-

ing the transient phase by the method of variation of constants.

But as we are only interested in the cyclostationary part of the solution, we can neglect the

solution of the homogeneous part and solely compute the particular solution. Observe that
d
dt Imðdm

aðtÞÞ ¼ Im d
dt dm

aðtÞ
� �

for a differentiable function δmα because t 2 R. We insert the

ansatz dma ¼ Ma
1
eiot and solve forMa

1
, which gives Eq (9) of the main text. For further calcula-

tions, keep in mind thatM1
a

and therefore δmα are of order O hext
S
SKJ

� �
¼ O hext

1

KJ

� �
. In sec-

tion II C in S1 Text, we describe how to extract the right phase of the real solution from the

complex ansatz.
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Covariances: Stationary part and response to a perturbation in linear order. Using Eq

(15) in the population-averaged version, we calculate the derivative of the zero time-lag covari-

ance

cab tð Þ ≔
1

NaNb

X

i2a;j2b;i6¼j
hni tð Þnj tð Þi � ni tð Þh ihnj tð Þi

getting

t
dcab tð Þ
dt

¼ � 2cab tð Þ þ
1

NaNb

X

i2a;j2b;i6¼j
hFj n tð Þð Þ dni tð Þi þ hFi n tð Þð Þ dnj tð Þi:

Neglecting cumulants of order higher than two, we can expand the expectation value

hFi (n (t)) δnj (t)i (cf. [13, 33, section “Linearized equation for correlations and susceptibil-

ity”]) and get

hFi n tð Þð Þ dnj tð Þi � S mi tð Þ; si tð Þð Þ
X

k6¼j

Jikckj tð Þ þ S mi tð Þ; si tð Þð Þ Jijaj tð Þ: ð27Þ

After carrying out the population averaging, we get the ordinary differential equation

t
dcab tð Þ
dt

¼ � cab tð Þ þ
X

g

S ma tð Þ; sa tð Þð ÞKagJag cgb tð Þ þ dgb

ab tð Þ
Nb

 !( )

þ a$ bf g:

ð28Þ

Therefore, the stationary part c of the covariances fulfills the relation (cf. [13, 33])

2cab ¼
X

g

S ma; sað Þ K � Jð Þ
ag
cgb þ dgb

ab

Nb

 !

þ a$ b: ð29Þ

As for the mean activities, we want to make a little step (of order hext, to be precise) away from

the stationary state determining the deviation dc tð Þ ≔ c tð Þ � c. For that, we have to calculate

the Taylor expansion of S (μα (t), σα (t)) in δm, i.e.

S ma tð Þ; sa tð Þð Þ

≔
1
ffiffiffiffiffiffi
2p
p

1

sa tð Þ
exp �

ma tð Þ � yað Þ
2

2 sa tð Þð Þ
2

 !

� S ma; sað Þ þ
@S

@ma tð Þ
dma þ

@S
@sa tð Þ

dsa

� ��
�
�
�

ma¼ma ;sa¼sa

;
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where δμα and δσα are given by Eq (21) and

@S
@ma tð Þ

ma; sað Þ ¼
ya � ma

s2
a

S ma; sað Þ

@S
@sa tð Þ

ma; sað Þ ¼ �
1

sa

1 �
ya � ma

sa

� �2
 !

S ma; sað Þ

¼
ya � ma

s2
a

ya � ma

sa|fflfflfflffl{zfflfflfflffl}
¼O 1ð Þ

�
sa

ya � ma|fflfflfflffl{zfflfflfflffl}
¼O 1ð Þ

0

B
B
B
@

1

C
C
C
A
S ma; sað Þ

Here again, the relation
Ya � ma

sa
¼

ffiffiffi
2
p

erfc
� 1

2mað Þ was used to estimate the dependence on K.

We insert the linearization of S and the expressions for δμ and δσ, Eq (21), into the ODE for

cab tð Þ ¼ cab þ dcab tð Þ to get, after neglecting the contributions of order O h2
ext

� �
and sorting

the rest into terms proportional to δc, hext and δm respectively:

t
d
dt

dcab tð Þ þ
X

g

dag � S ma; sað ÞKagJag

� �
dcgb tð Þ

( )

þ a$ bf g

¼
@S

@ma tð Þ

X

g

KagJag cgb þ
ab

Nb

dgb

 !(

hext sin otð Þ þ
X

d

KadJaddmd tð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼O hextð Þ

0

B
B
B
B
@

1

C
C
C
C
A

þ
@S

@sa tð Þ

X

g

KagJag cgb þ
ab

Nb

dgb

 !

dsa tð Þ|fflfflffl{zfflfflffl}

¼O hextffiffi
K
p

� �

þ S ma; sað ÞKabJab

1 � 2mb

� �

Nb

dmb tð Þ

)

þ a$ bf g ð30Þ

Before finally solving for δc (t), we want to justify the assumption dc ¼ O dm
N

� �
, which we

needed already in the beginning to determine δm (t), by a short calculation. We insert Eq (22)

into Eq (30) and switch to matrix notation for brevity, which yields

t
d
dt

dc tð Þ þ 1 � SKJ
� �

dc tð Þ
� 	

þ :::f g
T

¼
@S
@m
KJ c þ

a
N

� �

hext sinðotÞ þ KJdm tð Þð Þ þ
@S
@s
|{z}

¼@S
@m

Y� m
s �

s
Y� mð Þ

KJ c þ
a
N

� �

8
>>>>><

>>>>>:

�
KJ2 1 � 2mð Þ

2s
dm tð Þ þ

KJ
2s

dc tð Þ KJð ÞT
� �

þ SKJ
1 � 2m
N

dm tð Þ
�

þ :::f g
T
:

ð31Þ

We can rewrite the left hand side in order to recognize the parts, which are identical to the
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right hand side of Eq (23), i.e. the ODE for δm (t) without the neglect of δσ, which gives

(
@S
@m
KJ c þ

a
N

� �

hext sinðotÞ þ KJdm tð Þð Þ þ
Y � m

s

KJ2 1 � 2mð Þ

2s
dm tð Þ þ

KJ
2s

dc tð Þ KJð ÞT
� �� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ t @

@t dm tð Þþ dm tð Þð Þ=S

�
@S
@m
|{z}

¼1
s

Y� m

s
S

s

Y � m
KJ c þ

a
N

� �
KJ2 1 � 2mð Þ

2s
dm tð Þ þ

KJ
2s

dc tð Þ KJð ÞT
� �

þSKJ
1 � 2m
N

dm tð Þ
�

þ :::f g
T
:

ð32Þ

Bringing the δc-terms on the left hand side finally yields

t
d
dt

dc tð Þ þ 1 � SKJ
� �

dc tð Þ þ
1

s
SKJ c þ

a
N

� �
KJ
2s

dc tð Þ KJð ÞT

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼O SKJ KN
KJ2
s2 dc tð Þ

� �
¼O SKJ KN dc tð Þð Þ

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

þ :::f g
T

¼

@S
@m

S
|{z}

¼1
s

Y� m

s

KJ c þ
a
N

� �

t
@

@t
dma ðtÞ þ dma ðtÞ

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼O SKJ 1

N dmðtÞð Þ

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

�
1

s
SKJ c þ

a
N

� �
KJ2 1 � 2mð Þ

2s
dm tð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼O SKJ 1

N dm tð Þð Þ

þ SKJ
1 � 2m
N

dm tð Þ

9
>>>>=

>>>>;

þ :::f g
T
:

ð33Þ

We have therefore shown that—independent of the scaling of the synaptic weights J—the rela-

tion dc ¼ O dm
N

� �
holds not only for the zero-mode, i.e. for the stationary case, but also for the

time-dependent part. Note that for our actual calculation of δm, we have neglected its depen-

dence on δσ, as it is one order
ffiffiffiffi
K
p

smaller than the δμ-contribution. However, this is not true

for δc because of the cancellation of the two contributions to δμ. Inserting the rhs of the ODE

Eq (24) actually used to determine δm and shifting the δc-contribution of δσ back to the other
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side, we arrive at

t
d
dt

dc tð Þ þ 1 � SKJ
� �

dc tð Þ
� 	

þ :::f g
T

¼

@S
@m

S
KJ c þ

a
N

� �

t
@

@t
dma tð Þ þ dma tð Þ

� �

8
>><

>>:

�
1

s
1 �

m � Y

s

� �2
 !

SKJ c þ
a
N

� �
KJ2 1 � 2mð Þ

2s
dm tð Þ þ

KJ
2s

dc tð Þ KJð ÞT
� �

þSKJ
1 � 2m
N

dm tð Þ
�

þ :::f g
T
:

ð34Þ

We want to compare the contribution from δμ in the second line of Eq (34) with the contribu-

tion from δσ in the third line. As pointed out above, they scale in the same way with the system

size N, given that we do not rescale the driving frequency with N. Therefore, its contribution

stays equally important if we enlarge the network. We neglect it anyway, which can be justified

by comparing the decisive part of the prefactors of the δσ and the δμ-parts (the remaining

parts are of the same order of magnitude):

s

@S
@m

S
¼

Y � m

s
¼

ffiffiffi
2
p

erfc� 1
2mð Þ �

for input fluct: not too small 1

s
exp � erfc� 1

2mð Þ
2

� �
¼ S:

This inequality is fulfilled for the three settings used in this work, whereas the first term is one

or two orders of magnitude larger than the second. Especially, this inequality can always be ful-

filled if the externally generated noise level is high. Therefore, even if the neglect of the δσ-con-

tribution to δc cannot be justified by the standard mean-field argument that it decays faster

with the system size than other terms, it is applicable because the input fluctuations are large

enough—for all system sizes. This largely simplifies the calculations because the ODE for δc
can be solved by transforming into the eigensystem ofW, which would not be possible after

including the more involved term emerging from δσ. Taking into account the neglected term

would require to reformulate the problem as an equation for the vector (δcEE, δcEI, ‥), which

would be much less intuitive. Furthermore, there is an indirect argument for high frequencies

that does rely on the system size: The ω-dependence of the absolute value of the maxima of δm
and δc scales with the eigenvalues ofW, which scale with

ffiffiffiffi
K
p

. Thus, changing the system size

N in first order just stretches the ω-axis. Therefore, the “interesting” frequencies do scale with

N, which leads to the dominance of the derivative term in the second line of Eq (34) over the

δσ-term. Note that the observation from Eq (32) that

KJ 1þO
1
ffiffiffiffi
K
p

� �� �

dm
� �diag

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼O hextð Þ

þ hext sin otð Þ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼O hextð Þ

ð35Þ

¼ Sdiag
� �� 1

t
@

@t
dmþ dm

� �

þO
ffiffiffiffiffiffiffi
jKj

p
jdmj

� �
¼ O

ffiffiffiffiffiffiffi
jKj

p
jdmj

� �
¼ O

hextffiffiffiffiffiffiffi
jKj

p

 !

ð36Þ

is a direct consequence of the recurrent drive being effectively inhibitory (for other networks,

the expansion around the stationary point would not make sense): Any of the two terms in the
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susceptibility terms are of order
ffiffiffiffi
K
p

bigger than their sum. Furthermore, we see from Eq (33)

that the sum of the susceptibility terms is of the same order of magnitude with respect to its

dependence on K (or, equivalently, the connection probabilities and the system size) as the

term coming from the time modulation of the variances (modulated-autocovariances-drive).

We define

Tab ≔ KabJab

Vab ≔
Y � ma

sað Þ
2
S ma; sað ÞKabJab;

ð37Þ

and

Ndiag
ab ¼ dabNa

mdiag
ab ¼ dabma

adiag
ab ¼ dabaa

dmdiag
ab tð Þ ¼ dabdma tð Þ

Tdm tð Þð Þ
diag
ab

¼ dab

X

g

Tagdmg tð Þ;

ð38Þ

in order to end up with the index-free version Eq (10). The first two inhomogeneities, the sus-

ceptibility terms introduced in the main part (“Results”) reflect the nonlinearity of the gain-

function.

With U given in Eq (25), we multiply Eq (30) from the left by U−1 and from the right by

(U−1)T to get (cf. [13, 33])

t
d
dt
U � 1dc tð Þ U � 1ð Þ

T

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

≔ edc

¼ � 1þðf U � 1WU
|fflfflfflffl{zfflfflfflffl}

¼L

ÞU � 1dc tð Þ U � 1ð Þ
T

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

≔fdcðtÞ

þ U � 1 Tdm tð Þð Þ
diag
þ hext sin otð Þ

� �
V c þ

1

Ndiag
adiag

� �

U � 1ð Þ
T

þ U � 1W 1 � 2mdiag
� � 1

Ndiag
dm tð Þdiag U � 1ð Þ

T
g

þ :::f g
T
:

We are only interested in the cyclostationary statistics, so we can ignore again the transient

state making the ansatz gdcinhom
ab ¼ fC1

abeiot . Inserting this ansatz and transforming back into the
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original system, we get

fC1
ab ¼ hext

� itoþ 2 � la þ lb

� �

toð Þ
2
þ 2 � la þ lb

� �� �2

X

g;d;y;ϕ;Z

U � 1

aZ
U � 1

bd
TZyUyϕ U

� 1Sð Þϕ
� itoþ 1 � lϕ

toð Þ
2
þ ð1 � lϕÞ

2
VZ;g c þ

1

Ndiag
adiag

� �

gd

"

þ
X

g;d;�

U � 1

a�
U � 1

bd
V�g c þ

1

Ndiag
adiag

� �

gd

þ
X

y;ϕ;g

U � 1

ag
U � 1

by
Wgy 1 � 2mdiag

y

� � 1

Ny

Uyϕ U
� 1Sð Þϕ

� itoþ 1 � lϕ

toð Þ
2
þ ð1 � lϕÞ

2

#

ð39Þ

Together with Eq (9), this is the main result of this section.

Discussion

The present work offers an extension of the well-known binary neuronal network model

beyond the stationary case [6, 13, 27, 28, 33]. We here describe the influence of a sinusoidally

modulated input on the mean activities and the covariances to study the statistics of recur-

rently generated network activity in an oscillatory regime, ubiquitously observed in cortical

activity [18].

Comparing with the results of the simulation of the binary network with NEST [35, 36] and

the numerical solution of the full mean-field ODE, we are able to show that linear perturbation

theory is sufficient to explain the most important effects occurring due to sinusoidal drive.

This enables us to understand the mechanisms by the help of analytical expressions and fur-

thermore we can predict the network response to any time-dependent perturbation with exist-

ing Fourier representation by decomposing the perturbing input into its Fourier components.

We find that the amplitude of the modulation of the mean activity is of the order

hext= 1 � lað Þ
2
þ toð Þ

2
� �1

2, where λα, α 2 {E, I} are the eigenvalues of the effective connectivity

matrixW, i.e. the input is filtered by a first order low-pass filter and the amplitude of the mod-

ulation decays like/ ω−1 for large frequencies. This finding is in line with earlier work on the

network susceptibility [27, esp. section V].

The qualitatively new result here is the identification of two distinct mechanisms by which

the covariances δc are modulated in time. First, covariances are driven by the direct modula-

tion of the susceptibility S due to the time-dependent external input and by the recurrent input

from the local network. Second, time-modulated variances, analogous to their role in the sta-

tionary setting [13], drive the pairwise covariances.

Our setup is the minimal network model, in which these effects can be observed—minimal

in the sense that we would lose these properties if we further simplified the model: The pres-

ence of a nonlinearity in the neuronal dynamics, here assumed to be a threshold-like activation

function, is required for the modulation of covariances by the time-dependent change of the

effective gain. In a linear rate model [10, 46] this effect would be absent, because mean activi-

ties and covariances then become independent.

The second mechanism relies on the binary nature of neuronal signal transmission: the var-

iance a(t) of the binary neuronal signal is, at each point in time, completely determined by its

meanm(t). This very dependence provides the second mechanism by which the temporally
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modulated mean activity causes time-dependent covariances, because all fluctuations and

therefore all covariances are driven by the variance a(t).
Rate models have successfully been used to explain the smallness of pairwise covariances

[6] by negative feedback [10]. A crucial difference is that their state is continuous, rather than

binary. As a consequence, the above-mentioned fluctuations present due to the discrete nature

of the neuronal signal transmission need to be added artificially: The pairwise statistics of spik-

ing or binary networks are equivalent to the statistics of rate models with additive white noise

[46]. To obtain qualitative or even quantitative agreement of time-dependent covariances

between spiking or binary networks and rate models, the variance of this additive noise needs

to be chosen such that its variance is a function of the mean activity and its time derivative.

The direct modulation of the susceptibility S due to the time-dependent external input

leads to a contribution to the covariances with first order low-pass filter characteristics that

dominates the modulated covariances at large frequencies. For small—and probably biologi-

cally realistic—frequencies (typically the LFP shows oscillations in the β-range around 20 Hz),

however, the modulation of the susceptibility by the local input from the network leads to an

equally important additional modulation of the susceptibility. The intrinsic fluctuations of the

network activity are moreover driven by the time-dependent modulation of the variance,

which is a function of the mean activity as well. Because the mean activity follows the external

drive in a low-pass filtered manner, the latter two contributions hence exhibit a second order

low-pass-filter characteristics. These contributions are therefore important at the small fre-

quencies we are interested in here.

The two terms modulating the susceptibility, by the direct input and by the feedback of the

mean activity through the network, have opposite signs in balanced networks. In addition they

have different frequency dependencies. In networks in which the linearized connectivity has

only real eigenvalues, these two properties together lead to their summed absolute value having

a maximum. Whether or not the total modulation of the covariance shows resonant behavior,

however, depends also on the third term that stems from the modulated variances. We find

that in purely inhibitory networks, the resonance peak is typically overshadowed by the latter

term. This is because inhibitory feedback leads to negative average covariances [13], which we

show here reduce the driving force for the two resonant contributions. In balanced E-I net-

works, the driving force is not reduced, so the resonant contribution can become dominant.

For the biologically motivated parameters used in the last setting studied here, the effective

coupling matrixW has complex eigenvalues which cause resonant mean activities. If the inho-

mogeneity was independent of the driving frequency, δc would have resonant modes with fre-

quency fres and 2fres. Due to the mixing of the different modes and by the frequency

dependence of the inhomogeneity driving the modulation of covariances, these modes deter-

mine only the ballpark for the location of the resonance in the covariance. Especially the reso-

nances are not sharp enough so that each of them is visible in any combination of the modes.

Different behavior is expected near the critical point where <ðlÞ≲ 1.

For predictions of experimental results, however, a more careful choice of reasonable bio-

logical parameters would be necessary. In particular, the external drive should be gauged such

that the modulations of the mean activities are in the experimentally observed range. Still, our

setup shows that the theory presented here works in the biologically plausible parameter

range.

The goal of extracting fundamental mechanisms of time-dependent covariances guides the

here presented choice of the level of detail of our model. Earlier works [6, 28, 29] showed that

our setup without sinusoidal drive is sufficient to qualitatively reproduce and explain phenom-

ena observed in vivo, like high variability of neuronal activity and small covariances. The latter

point can be explained in binary networks by the suppression of fluctuations by inhibitory
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feedback, which is a general mechanism also applicable to other neuron models [10] and even

finds application outside neuroscience, for example in electrical engineering [47]. The high

variability observed in binary networks can be explained by the network being in the balanced

state, that robustly emerges in the presence of negative feedback [29, 30]. In this state, the

mean excitatory and inhibitory synaptic inputs cancel so far that the summed input to a neu-

ron fluctuates around its threshold. This explanation holds also for other types of model net-

works and also for biological neural networks [48]. We have seen here that the operation in

the balanced state, at low frequencies, gives rise to a partial cancellation of the modulation of

covariances.

Our assumption of a network of homogeneously connected binary neurons implements the

general feature of neuronal networks that every neuron receives input from a macroscopic

number of other neurons, letting the impact of a single synaptic afferent on the activation of a

cell be small and the summed input be distributed close to Gaussian: For uncorrelated incom-

ing activity, the ratio between the fluctuations caused by a single input and the fluctuations of

the total input is N � 1
2, independent of how synapses scale with N. However, the input to a neu-

ron is actually not independent, but weakly correlated, with covariances decaying at least as

fast as N−1 [6, 29]. Therefore this additional contribution to the fluctuations also decays like

N � 1
2. The Gaussian approximation of the synaptic input relies crucially on these properties.

Dahmen et al. [39] investigated third order cumulants, the next order of non-Gaussian correc-

tions to this approximation. They found that the approximation has a small error even down

to small networks of about 500 neurons and 50 synaptic inputs per neuron. These estimates

hold as long as all synaptic weights are of equal size. For distributed synaptic amplitudes, in

particular those following a wide or heavy-tailed distributions (e.g. [49, 50], reviewed in [51]),

we expect the simple mean-field approximation applied here to require corrections due to the

strong effect of single synapses.

The generic feature of neuronal dynamics, the threshold-like nonlinearity that determines

the activation of a neuron, is shared by the binary, the leaky integrate-and-fire and, approxi-

mately, also the Hodgkin-Huxley model neuron. An important approximation entering our

theory is the linearity of the dynamic response with respect to the perturbation. We estimate

the validity of our theory by comparison to direct simulations. To estimate the breakdown of

this approximation we compare the linear response to the first non-linear correction. We

observe that the second order harmonics in the considered range of parameters remains as

small as about 10 percent of the first harmonics. The quadratic contribution to the transfer

properties of the neurons stems from the curvature of the effective gain function φ (Eq (17)).

The linear portion of this gain function, in turn, is controlled by the amplitude σ of the synap-

tic noise. One therefore expects a breakdown of the linear approximation as soon as the tem-

poral modulation of the mean input is of the order of this amplitude. Fig D in S1 Text shows

that with the parameters hext = 1 and σexc,inh� 10, used in the plots Figs 5 and 6 and Fig. B and

Fig. C in S1 Text, the linear approximation is good, whereas in Fig 7, we used hext = 6, for

which the linear perturbation theory already begins to break down. The latter figure is mainly

supposed to give an intuitive impression.

A generic property that is shared by nearly all neuron models is the characteristic duration

τ during which the activity of a sending cell affects the downstream neuron. For the binary

neuron model, this time scale is identical to the mean interval τ between updates, because,

once active, a neuron will stay active until the next update. It most certainly deactivates at that

point, because we here consider low activity states prevalent in cortex [1]. In the leaky inte-

grate-and-fire model the exponentially decaying membrane voltage with time constant τ is

qualitatively similar: it sustains the effect that an input has on the output for this time scale. As
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a consequence, neurons transmit their input in a low-pass filtered manner to their output.

This feature persists for more realistic spiking models, as shown for the leaky integrate-and-

fire model [52, 53], the exponential integrate-and-fire model [52, 53], and the quadratic inte-

grate-and-fire model [54]. We therefore expect that the qualitative properties reported here

will carry over to these models.

A possible application of the framework developed in this paper is a quantitative compari-

son of the neuronal activity in the model network to the analysis of data measured in cortex

[26]. Detecting the occurrence of so called Unitary Events (UE, [55–57], see also Sec. I in S1

Text), the authors observed that the simultaneous activation of neurons above the level

expected for independence is locked to certain phases of the LFP. They hypothesized that the

reason for this observation is the activation of cell assemblies. The results presented here show

that the correlated activation of pairs of neurons is modulated by a sinusoidal drive even in a

completely unstructured random network. In consequence, the locking of pairwise events to

the cycle of the LFP is more pronounced for correlated events than for single spikes. Future

work needs to quantitatively compare experimental data to the results from the model pre-

sented here. The closed form expressions for the modulations of the mean activities and

covariances enable such an approach and the effective study of the dependence on the model

parameters. A quantitative comparison needs to convert mean activities and pairwise covari-

ances for binary neurons into the probability to measure a unitary event, interpreting the

binary neuron states as binned spike trains. Preliminary results indicate that already the homo-

geneous network presented in this work can show some features described in [26]. In Sec. I in

S1 Text, we apply the Unitary Event analysis to our setting. The presented methods will be

helpful to analyze the modulation of synchrony in the presence of cell assemblies [58] in the

model. This can be done by enhancing the connection probability among groups of excitatory

neurons, similar as in [59] and will yield a more realistic model, which captures also nonlinear

effects in the perturbation. Technically this extension amounts to the introduction of addi-

tional populations and the change of the connectivity matrix to reflect that these populations

represent cell assemblies.

The relation of spiking activity to mesoscopic measures, such as the LFP, is still an open

question. These population measures of neuronal activity naturally depend on the statistics of

the microscopic activity they are composed of. Pairwise covariances, the focus of the current

work, in particular tend to dominate the variance of any mesoscopic signal of summed activity:

The contribution of covariances grows quadratically in the number of components, the contri-

bution of variances only linearly [60, Box 2][10, eq. (1)][21, eq. (1),(2)]. Under the assumption

that the LFP mainly reflects the input to a local recurrent network [21, 24], we have shown

here that these two signals—spikes and LFPs—are intimately related; not only does the afferent

oscillatory drive trivially modulate the propensity to produce spikes, their firing rate, but also

the joint statistics of pairs of neurons by the three distinct pathways exposed in the present

analysis. Forward modeling studies have shown that the spatial reach of the LFP critically

depends on covariances, with elevated covariances leading to larger reach [21]. In this light

our work shows that a local piece of neuronal tissue driven by a source of coherent oscillations

will more effectively contribute to the local field potential itself: not only the spiking rate is

modulated accordingly, but also the covariances are increased and decreased in a periodic

manner, further amplifying the modulation of the generated local field potential and tempo-

rally modulating the spatial reach of the signal.

Functional consequences of the findings presented here deduce from the hypothesis that

communication channels in cortex may effectively be multiplexed by the selective excitation of

different areas with coherent oscillations [61, 62]. The presented analysis exposes that oscil-

latory drive to a local piece of cortex alone already effectively enhances coherent firing beyond

Locking of correlated neural activity to ongoing oscillations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005534 June 12, 2017 28 / 32

https://doi.org/10.1371/journal.pcbi.1005534


the level expected based on the assumption of independence. If synchronous activity is

employed as a dimension to represent information, it is hence tightly entangled with time-

dependent changes of the mean activity. A similar conclusion was drawn from the observation

that covariance transmission in feed-forward networks is monotonously increasing with firing

rate [4, 5]. Any information-carrying modulation of synchronous activity must hence go

beyond the here investigated effects, which can be regarded the baseline given by the non-sta-

tionary activity in networks without function. Since the mechanisms we have exposed only

depend on generic features of cortical tissue—networks of non-linear neurons, connectivity

with strong convergence and divergence, and dynamic stabilization by inhibition—the time-

dependent entanglement of mean activity and covariances qualitatively exists in any network

with these properties. In this view, our analysis can help to distinguish the level of time-modu-

lated covariances in neural tissues that are surprising, and are therefore candidates to be attrib-

uted to function, from those that need to be expected in networks due to their generic

properties.

Supporting information

S1 Text. Appendix. In this text, we show how to apply the UE-analysis to a model network of

binary neurons choosing the parameters from Table 1. We also present the derivation of the

ODEs for the first two moments, we discuss the different possibilities to define a spike in a

binary network and show how to handle the complex phase jump induced by the usage of the

sine-function as a perturbation. Furthermore, we include the plots of the II- and EI-compo-

nent of the covariances for the parameters of Table 1 and a plot of the mean activities and the

EE-covariance for varying perturbation strength hext for the same parameters.

(PDF)
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