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Abstract
Species	distribution	models	have	great	potential	to	efficiently	guide	management	for	
threatened	species,	especially	for	those	that	are	rare	or	cryptic.	We	used	MaxEnt	to	
develop	 a	 regional-	scale	model	 for	 the	 koala	Phascolarctos cinereus	 at	 a	 resolution	
(250	m)	 that	could	be	used	 to	guide	management.	To	ensure	 the	model	was	 fit	 for	
purpose,	we	placed	emphasis	on	validating	the	model	using	independently-	collected	
field	data.	We	reduced	substantial	spatial	clustering	of	records	in	coastal	urban	areas	
using	a	2-	km	spatial	filter	and	by	modeling	separately	two	subregions	separated	by	the	
500-	m	elevational	contour.	A	bias	file	was	prepared	that	accounted	for	variable	survey	
effort.	Frequency	of	wildfire,	soil	type,	floristics	and	elevation	had	the	highest	relative	
contribution	to	the	model,	while	a	number	of	other	variables	made	minor	contribu-
tions.	 The	model	was	 effective	 in	discriminating	different	 habitat	 suitability	 classes	
when	compared	with	koala	records	not	used	in	modeling.	We	validated	the	MaxEnt	
model	at	65	ground-	truth	sites	using	independent	data	on	koala	occupancy	(acoustic	
sampling)	and	habitat	quality	(browse	tree	availability).	Koala	bellows	(n	=	276)	were	
analyzed	in	an	occupancy	modeling	framework,	while	site	habitat	quality	was	indexed	
based	on	browse	trees.	Field	validation	demonstrated	a	linear	increase	in	koala	occu-
pancy	with	higher	modeled	habitat	 suitability	 at	ground-	truth	 sites.	Similarly,	 a	 site	
habitat	 quality	 index	 at	 ground-	truth	 sites	 was	 correlated	 positively	 with	modeled	
habitat	suitability.	The	MaxEnt	model	provided	a	better	fit	to	estimated	koala	occu-
pancy	than	the	site-	based	habitat	quality	index,	probably	because	many	variables	were	
considered	simultaneously	by	the	model	rather	than	just	browse	species.	The	positive	
relationship	of	the	model	with	both	site	occupancy	and	habitat	quality	indicates	that	
the	model	is	fit	for	application	at	relevant	management	scales.	Field-	validated	models	
of	similar	resolution	would	assist	in	guiding	management	of	conservation-	dependent	
species.
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1  | INTRODUCTION

Distribution	 modeling	 provides	 effective	 tools	 for	 spatially-	explicit	
mapping	of	relationships	between	species	occurrences	and	biophysi-
cal	variables	over	broad	extents	(e.g.,	Yost,	Petersen,	Gregg,	&	Miller,	
2008).	Predictive	models	of	species	distributions	have	become	increas-
ingly	important	conservation	tools	for	guiding	and	informing	on-	ground	
management,	 especially	 for	 threatened	 species	 that	 are	 difficult	 to	
reliably	survey	 (Dickson	et	al.,	2014;	Liu,	White,	Newell,	&	Griffioen,	
2013).	However,	models	relying	on	“presence	only”	records	are	influ-
enced	by	detection	 issues	and	sampling	bias,	and	 there	 is	a	need	 to	
ensure	they	are	fit	for	purpose	(e.g.,	predicting	relative	site	suitability;	
Guillera-	Arroita	et	al.,	2015).	Such	limitations	reinforce	the	need	for	in-
dependent	field	validation	of	models	as	a	key	step	when	implementing	
species	distribution	models	for	management	purposes	(Hirzel,	Le	Lay,	
Helfer,	Randin,	&	Guisan,	2006;	Latif,	Saab,	Mellen-	Mclean,	&	Dudley,	
2015;	Loehle,	 Irwin,	Manly,	&	Merrill,	2015).	Field	validation	can	as-
sess	the	accuracy	of	modelled	predictions	and	their	potential	benefit	
to	conservation	planning	management,	although	frequently	this	step	is	
not	undertaken	or	possible	(Araújo,	Pearson,	Thuiller,	&	Erhard,	2005).

One	impediment	with	field	validation	is	confident	identification	of	
varying	habitat	quality	and	establishing	whether	it	is	occupied,	and	par-
ticularly,	to	avoid	false	absences	by	accounting	for	imperfect	detection	
when	estimating	occupancy	(MacKenzie	et	al.,	2002;	Wintle,	Kavanagh,	
McCarthy,	&	Burgman,	2005).	Both	the	fit	and	relationship	of	predicted	
occupancy	values	against	a	model’s	output	allow	field	validation	based	
on	ground-	truth	data.	As	an	alternative	to	occupancy,	given	that	not	all	
habitats	of	rare	species	are	likely	to	be	occupied,	habitat	quality	can	be	
assessed	independently	based	on	the	known	habitat	or	dietary	prefer-
ences	of	the	focal	species	(e.g.,	browse	species).	This	approach	is	limited	
by	available	knowledge	on	the	importance	of	different	browse	species	
and	how	this	varies	across	a	species	range	or	 in	association	with	co-	
occurring	browse	species,	soil	type,	moisture,	disturbance,	etc.

The	 koala	 (Phascolarctos cinereus)	 is	 an	 iconic	 arboreal	marsupial	
occurring	in	eucalypt	forests	and	woodlands	across	eastern	Australia	
(Martin,	Handasyde,	&	Krockenburger,	2008).	The	species	is	in	decline	
(e.g.,	Adams-	Hosking,	Grantham,	Rhodes,	McAlpine,	&	Moss,	2011)	and	
is	listed	as	an	endangered	species.	A	recent	Australian	Senate	inquiry	
(Commonwealth	of	Australia,	2011)	recommended	the	implementation	
of	habitat	mapping	to	assist	in	the	management	of	the	koala,	highlight-
ing	the	need	for	reliable	distribution	models	for	this	species.	Regional,	
coarse	 resolution	 models	 have	 been	 produced	 for	 koalas	 that	 map	
likelihood	of	records	(Predavec	et	al.,	2015)	or	that	predict	suitability	
based	on	a	variety	of	data-	layers	(Santika,	McAlpine,	Lunney,	Wilson,	&	
Rhodes,	2014;	Sequeira,	Roetman,	Daniels,	Baker,	&	Bradshaw,	2014).	
In	 comparison,	 fine-	resolution	maps	 (i.e.,	 25	m)	 of	 koala	 distribution	
based	 on	 associations	 between	 fecal	 pellet	 counts	 and	 floristic	 as-
sociations	 have	been	 restricted	 to	 local	 scales	 (e.g.,	Callaghan	 et	al.,	
2011;	Lunney,	Phillips,	Callaghan,	&	Coburn,	1998).	Regional	models	
prepared	at	a	scale	suitable	for	management	maximize	the	usefulness	
of	koala	habitat	maps	for	land	managers,	especially	where	a	complex	
mosaic	of	habitat	quality	in	local	areas	can	be	expected.	Finer	resolu-
tion	models	would	also	allow	management	actions	to	target	the	most	

appropriate	areas	for	conservation	(Razgour,	Hanmer,	&	Jones,	2011),	
such	 as	 guiding	 tree	 retention	 levels	 in	 high-	quality	 koala	 habitat	 in	
timber	production	forests	(Predavec	et	al.,	2015).

Being	 an	 obligate	 folivore,	 koalas	 are	 typically	 associated	 with	
particular	 species	of	Eucalyptus	 that	provide	palatable	 foliage	 (DECC	
2008;	Phillips,	Callaghan,	&	Thompson,	2000),	although	browse	spe-
cies	preference	may	vary	because	of	differences	in	site	productivity	or	
because	the	availability	of	more	desirable	tree	species	varies	(Crowther,	
McAlpine,	 Lunney,	 Shannon,	&	Bryant,	 2009;	Moore,	 Lawler,	Wallis,	
Beale,	&	Foley,	2010;	Phillips	&	Callaghan,	2000).	In	addition	to	avail-
ability	of	preferred	Eucalyptus	species,	koala	habitat	is	likely	to	be	in-
fluenced	by	other	factors	such	as	habitat	loss	and	fragmentation	(e.g.,	
McAlpine	 et	al.,	 2006;	 Rhodes	 et	al.,	 2006).	The	 combined	 effect	 of	
environmental	factors	(e.g.,	topography,	climate)	and	disturbances	(e.g.,	
fire)	results	in	a	spatially	complex	array	of	tree	species	within	Australian	
eucalypt	forests	(Coops	&	Catling,	2000)	and,	consequently,	a	mosaic	
of	 suitable	and	 less	 suitable	 conditions	 for	koalas.	Coarse	 resolution	
koala	habitat	models	(e.g.,	5	km)	may	not	adequately	capture	the	level	
of	spatial	complexity	needed	to	provide	suitable	information	for	local-	
scale	management.	This	can	occur	where	there	is	a	mismatch	between	
the	resolution	of	the	model	and	the	key	environmental	features	deter-
mining	habitat	quality	(Guerrero,	Mcallister,	Corcoran,	&	Wilson,	2013;	
Hermoso	&	Kennard,	2012),	leading	to	limited	implementation	of	the	
model	for	management	purposes	(Tulloch	et	al.,	2016).

In	this	study,	we	modeled	the	potential	habitat	of	koalas	at	a	res-
olution	suitable	 for	 land	management	 (i.e.,	250	m)	across	northeast-
ern	 NSW	 using	 the	 Maximum	 Entropy	 Approach	 (MaxEnt,	 Phillips,	
Anderson,	&	Schapire,	2006).	MaxEnt	is	a	powerful	machine	learning	
technique	that	models	“presence	only”	records	 (Elith	et	al.,	2011)	to	
produce	environmental	niche	and	species	distribution	maps	 (hereaf-
ter	habitat	suitability	models).	Our	aim	was	to	develop	and	validate	a	
predictive	habitat	suitability	model	that	would	be	useful	for	managing	
the	 species	 in	 the	 context	 of	 forest	management,	 especially	 timber	
harvesting.	To	achieve	this,	our	objective	was	to	ensure	the	model’s	
resolution	was	fine	enough	to	map	habitat	suitability	for	the	species	
at	a	forest	subcompartment	scale	 (250-	m	grid	cell).	Rather	than	rely	
on	cross-	validation	approaches	that	have	problems	related	to	data	de-
pendence	(Roberts	et	al.	2016),	we	field	validated	our	koala	model	by	
relating	modeled	habitat	suitability	to	two	different,	although	comple-
mentary,	independent	datasets	at	ground-	truth	sites.	The	first	dataset	
of	koala	occupancy	was	estimated	using	acoustic	sensors	set	over	a	
seven	 night	 period,	 allowing	 detectability	 to	 be	 accounted	 for.	 The	
second	was	an	index	of	koala	habitat	quality	based	on	browse	species	
availability.	For	model	validation	purposes,	we	predicted	an	increase	in	
koala	occupancy	and	the	habitat	quality	 index	with	modeled	habitat	
suitability	across	all	ground-	truth	sites.

2  | METHODS

2.1 | Study area and koala occurrence records

The	analysis	focused	on	northeastern	New	South	Wales.	The	study	area	
(~8.5	million	ha)	consisted	of	two	subregions:	subregion	1	(areas	below	
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500	m	above	sea	level	(ASL))	and	subregion	2	(areas	above	500	m	ASL)	
(Fig.	1).	This	 subdivision	was	chosen	because	 it	was	considered	 likely	
that	different	drivers	of	koala	habitat	operated	 in	coastal	 areas	com-
pared	to	uplands	(McAlpine	et	al.,	2008).	We	acquired	reliable	locations	
(n	=	7,997,	<100-	m	accuracy)	where	koalas	have	been	recorded	(1990–
2015)	from	the	New	South	Wales	National	Parks	and	Wildlife	Service	
Wildlife	Atlas.	Records	dating	back	to	1990	were	used	because	exten-
sive	forest	surveys	were	undertaken	for	 the	koala	 in	 the	early	1990s	
that	 have	 not	 been	 repeated,	 and	 inclusion	 of	 these	 records	 better	
represents	koala	distribution	than	relying	on	only	more	recent	records.	
All	 records	 located	within	 cleared	 areas	were	 removed	 reducing	 the	
number	of	suitable	records	to	5,558	(4,238	in	Subregion	1	and	1,320	in	
Subregion	2).	In	order	to	reduce	spatial	aggregation	in	our	records	(e.g.,	
Fourcade,	Engler,	Rödder,	&	Secondi,	2014;	Kramer-	Schadt	et	al.,	2013),	
we	randomly	selected	koala	occurrences	that	were	separated	by	a	mini-
mum	distance	of	2	km.	We	replicated	this	 filtering	process	 five	times	
and	 generated	 five	 random	 sets	 of	 records	 for	 each	 subregion.	 The	
number	of	records	in	the	five	sets	ranged	from	1,078	to	1,090.	Records	
(n	=	3,116)	that	were	not	included	in	the	five	filtered	sets	were	retained	
and	used	for	model	evaluation	(see	Section	2.4)	prior	to	field	validation.

2.2 | Environmental variables

We	trialed	30	gridded	(250	m)	environmental	variables	for	their	poten-
tial	influence	on	koala	habitat	suitability	(Table	1).	These	were	selected	

from	published	relationships	between	koalas	and	their	environments,	
such	 as	 the	 influence	 of	 vegetation,	 browse	 trees,	 topography,	 fire,	
climate,	and	primary	productivity	on	the	distribution	of	koalas	(Lunney,	
Gresser,	O’Neill,	Matthews,	&	Rhodes,	2007;	Van	Dyck	and	Strahan,	
2008;	 Moore	 et	al.,	 2010;	 Sequeira	 et	al.,	 2014;	 Briscoe,	 Kearney,	
Taylor,	&	Wintle,	2016).	Variables	 included	both	biotic	 (e.g.,	 floristic	
composition)	and	abiotic	(e.g.,	climate,	soil)	factors	and	were	produced	
at	a	250-	meter	spatial	resolution	(i.e.,	pixel	size	=	250	m).

Four	broad	floristic	categories	(1	=	primary	browse	species,	2	=	sec-
ondary	browse	species,	3	=	tertiary	browse	species,	and	4	=	unsuitable	
habitat)	were	derived	from	available	floristic	maps	(i.e.,	Comprehensive	
Regional	 Assessment	 Aerial	 Photographic	 Interpretation,	 CRAFTI;	
NSW	 National	 Parks	 and	Wildlife	 Service,	 2001a,b).	 Categorization	
was	based	on	prevalence	of	tree	species	in	each	forest	type	and	the	im-
portance	of	tree	species	to	koalas	as	listed	in	the	NSW	Koala	Recovery	
Plan	(Department	of	Environment	and	Climate	Change,	2008)	and	sup-
plemented	by	expert	opinion.	Additionally,	we	calculated	the	percent-
age	 cover	of	Class	1	 and	Class	2	 (CRAFTI)	 combined	within	 a	1-	km	
radius	of	each	pixel	to	account	for	the	coverage	of	primary	and	sec-
ondary	 browse	 species	 at	 a	 broader	 scale.	 Four	 topography-	related	
variables	were	used	(Table	1)	together	with	the	density	of	sealed	roads	
(m	of	road	per	km2)	to	account	for	anthropogenic	disturbance.

Soil	types	were	derived	from	the	National	Soil	Data	provided	by	
the	Australian	Collaborative	Land	Evaluation	Program	ACLEP	(http://
www.clw.csiro.au/aclep/,	last	accessed	February	2017).	Additionally,	
we	acquired	soil	depth	(m),	organic	carbon	(%),	total	phosphorus	(%),	
and	available	water	capacity	 (%)	from	The	Soil	and	Landscape	Grid	
of	 Australia	 (http://www.clw.csiro.au/aclep/soilandlandscapegrid/
ProductDetails-SoilAttributes.html,	accessed	April	2016)	to	charac-
terize	soil	fertility,	which	is	thought	to	be	an	important	influence	on	
browse	quality	(Moore	et	al.,	2010).	We	also	derived	site	greenness	
from	 remote-	sensing	 variables,	 calculating	 normalized	 difference	
vegetation	index	(NDVI,	Rouse,	Haas,	Schell,	&	Deering,	1974)	values	
using	MODIS	MOD13Q1	granules	 acquired	 in	January,	April,	 July,	
and	October	from	2000	to	2015.	For	each	month,	all	NDVI	data	were	
averaged	to	provide	spectral	values	in	the	central	month	of	summer	
(NDVI_su),	autumn	(NDVI_au),	winter	(NDVI_wi),	and	spring	(NDVI_
sp).	Three	 additional	 vegetation-	related	variables	were	 included	 in	
the	analysis:	(1)	above	ground	biomass	(Mg	Ha−1)	was	acquired	from	
NSW	Office	of	 Environment	 and	Heritage	 (ALOS	Woody	biomass,	
Lucas	et	al.,	2010),	(2)	foliage	projective	cover	(%)	was	acquired	from	
NSW	Office	of	Environment	and	Heritage	(http://www.environment.
nsw.gov.au/research/AncillaryVegetationProductsDataInventory.
htm,	 last	 accessed	February	2017),	 and	 (3)	 net	 primary	productiv-
ity	 (NPP,	 kg	C/m2)	 was	 extracted	 from	MODIS	 data	 (MOD17A3).	
MOD17A3	annual	NPP	was	averaged	from	2000	to	2015	to	calculate	
mean	annual	NPP.	A	number	of	bioclimatic	factors	were	investigated	
for	 their	 potential	 influence	 on	 the	 distribution	 of	 koalas.	 Bioclim	
(Houlder,	Hutchinson,	Nix,	&	McMahon,	2009)	was	used	to	produce	
10	bioclimatic	parameters	based	on	 long-	term	meteorological	data	
and	a	digital	elevation	model	(DEM).	Finally,	we	used	wildfire	history	
data	(1970–2015)	acquired	from	NSW	Rural	Fire	Service	for	the	po-
tential	 influence	 of	 this	 disturbance	 on	 koala	 habitat	 suitability.	A	

F IGURE  1 Map	of	northeast	NSW	with	the	locations	of	5,558	
koala	records	within	the	two	subregions

http://www.clw.csiro.au/aclep/
http://www.clw.csiro.au/aclep/
http://www.clw.csiro.au/aclep/soilandlandscapegrid/ProductDetails-SoilAttributes.html
http://www.clw.csiro.au/aclep/soilandlandscapegrid/ProductDetails-SoilAttributes.html
http://www.environment.nsw.gov.au/research/AncillaryVegetationProductsDataInventory.htm
http://www.environment.nsw.gov.au/research/AncillaryVegetationProductsDataInventory.htm
http://www.environment.nsw.gov.au/research/AncillaryVegetationProductsDataInventory.htm
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fire	frequency	map	was	calculated	by	classifying	the	data	into	four	
categories	(Table	1).

An	essential	step	in	habitat	modeling	is	to	avoid	overfitting	using	
too	many	variables,	especially	those	that	are	highly	intercorrelated.	To	
minimize	 multicollinearity,	 the	 number	 of	 continuous	 variables	 was	
reduced	by	eliminating	highly	correlated	(R	>	0.75)	predictors	and	re-
taining	 the	variable	with	 the	most	 interpretable	 biological	 response	
(Kramer-	Schadt	et	al.,	2013).

TABLE  1 List	of	the	30	environmental	variables	trialed	in	the	
MaxEnt	predictive	modeling

Variable name Variable description Variable type

Climatic variables

Bio01 Annual	mean	temperature	
(°C)

Continuous

Bio08 Mean	temperature	of	
wettest	quarter	(°C)

Continuous

Bio09 Mean	temperature	of	
driest	quarter	(°C)

Continuous

Bio10 Mean	temperature	of	
warmest	quarter	(°C)

Continuous

Bio11 Mean	temperature	of	
coldest	quarter	(°C)

Continuous

Bio12 Annual	precipitation	(mm) Continuous

Bio14 Precipitation	of	driest	
period	(mm)

Continuous

Bio17 Precipitation	of	driest	
quarter	(mm)

Continuous

Bio20 Annual	mean	radiation	
(Mj/m2/day)

Continuous

Bio28 Annual	mean	moisture	
index

Continuous

Vegetation variables

Biomass Above	ground	biomass	
(Mg	Ha−1)

Continuous

Cra CRAFTI	floristic	groups: 
Class	1:	Primary	browse	
species 
Class	2:	Secondary	
browse	species 
Class	3:	Tertiary	browse	
species 
Class	4:	Unsuitable	
habitat

Categorical

Cra% Percentage	cover	of	
primary	and	secondary	
CRAFTI-	based	browse	
species

Fpc Foliage	projective	cover	
(%)

Continuous

NDVI_au Normalized	difference	
vegetation	index	in	
autumn

Continuous

NDVI_sp Normalized	difference	
vegetation	index	in	spring

Continuous

NDVI_su Normalized	difference	
vegetation	index	in	
summer

Continuous

NDVI_wi Normalized	difference	
vegetation	index	in	
winter

Continuous

NPP Net	primary	productivity	
(kg	C/m2)

Continuous

(Continues)

Variable name Variable description Variable type

Disturbance variables

Fire Wildfire	frequency	
(1970–2015): 
Class	0:	areas	that	never	
burned	and	that	are	
considered	not	
flammable	(e.g.,	
rainforests) 
Class	1:	areas	that	never	
burned 
Class	2:	areas	that	burned	
1–3	times 
Class	3:	areas	that	burned	
more	than	3	times

Categorical

Sea Density	of	sealed	roads	(m	
of	road	per	km2)

Continuous

Topographic variables

DEM Digital	elevation	model	(m) Continuous

Slo Slope	(degree) Continuous

Top Topographic	position	
index

Continuous

Tor Topographic	roughness	
(m)

Continuous

Soil variables

Asc Australian	soil	classifica-
tion: 
Class1	=	Anthroposols;	
Class2	=	Calcarosols;	
Class3	=	Chromosols;	
Class4	=	Dermosols;	
Class5	=	Ferrosols;	
Class6	=	Hydrosols;	
Class7	=	Kandosols;	
Class8	=	Kurosols;	
Class9	=	Organosols;	
Class10	=	Podosols;	
Class11	=	Rudosols;	
Class	12	=	Sodosols;	
Class13	=	Tenosols;	
Class14	=	Vertosols

Categorical

Awc Available	water	capacity	
(%)

Continuous

Dep Soil	depth	(m) Continuous

Oc Organic	carbon	(%) Continuous

Tp Total	phosphorus	(%) Continuous

TABLE  1  (Continued)
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2.3 | Bias file

Many	koala	records	were	collected	via	community	surveys	and	so	are	
biased	to	locations	frequently	visited	by	people,	especially	along	the	
coast	where	urban	centers	are	 located.	To	reduce	the	effect	of	this	
bias,	a	bias	file	was	created	to	account	for	sampling	effort	of	records	
held	 in	a	public	database.	Following	Predavec	et	al.	 (2015),	we	esti-
mated	sampling	intensity	using	the	aggregation	of	occurrences	for	ar-
boreal	mammal	species	(taxonomic	groups:	Petauridae,	Phalangeridae,	
Phascolarctidae,	 and	 Pseudocheiridae)	 that	 are	 likely	 to	 reflect	 de-
tectability	of	 the	koala.	A	gaussian	kernel	density	map	of	koala	and	
arboreal	mammal	occurrences	was	generated	and	 rescaled	 to	1–30	
(Fourcade	 et	al.,	 2014).	 Values	 in	 the	 resulting	map	were	 higher	 in	
densely	 sampled	 areas	 indicating	 higher	 sampling	 effort	 (e.g.,	 near	
urban	centers).

2.4 | MaxEnt modeling

Koala	habitat	suitability	in	subregion	1	and	subregion	2	was	modeled	
separately	using	MaxEnt.	For	each	run,	hinge	feature	type	was	used	
(after	Phillips	&	Dudik,	2008),	and	maximum	number	of	iteration,	con-
vergence	 threshold,	 regularization	 multiplier,	 maximum	 number	 of	
background	 points	were	 set	 to	 1,000,	 10−5,	 2,	 and	 10,000,	 respec-
tively.	Optimal	regularization	was	selected	by	comparing	alternatives	
in	ENMTOOLS.	We	modeled	the	five	spatially	filtered	sample	sets	of	
koala	 records	 separately	 by	 running	 20	 replicates	 for	 each	 set	 (i.e.,	
random	partitions	of	75%	training	and	25%	testing	data)	and	retain-
ing	 the	mean	 predicted	 habitat	 suitability.	 Finally,	we	 averaged	 the	
mean	predicted	habitat	suitability	for	each	of	the	five	sample	sets	to	
generate	the	final	koala	habitat	suitability	map.	Each	pixel	in	MaxEnt	
logistic	output	is	assigned	with	a	value	ranging	from	0	to	1	represent-
ing	the	relative	occurrence	rate	of	suitable	environmental	conditions	
for	the	target	species	(habitat	suitability).	We	used	the	receiver	oper-
ating	characteristic	(ROC)	curve	on	test	data	to	evaluate	the	model’s	
performance.	The	area	under	the	ROC	curve	(AUC)	provides	a	single	
indicator	of	model	performance	(Phillips	et	al.,	2006),	with	AUC	>	0.7	
indicating	good	discriminatory	power	(Hosmer	&	Lemeshow,	1989).

We	 analyzed	 the	 relationship	 between	 koala	 records	 (n	=	3,116)	
that	were	not	used	in	the	MaxEnt	analysis	(see	section	“Study area and 
species occurrence records”)	and	the	predictive	habitat	suitability	model	
output.	These	records	were	neither	filtered	nor	adjusted	based	on	sur-
vey	effort.	Finally,	we	analyzed	the	response	curves	of	the	predictor	
variables	to	assess	their	influence	on	the	prediction.	Response	curves	
show	how	predicted	suitability	of	a	model	built	using	only	one	variable	
changes	as	it	is	varied.

2.5 | Validation of model using independent 
field data

2.5.1 | Site selection

To	ground-	truth	the	koala	MaxEnt	Model,	we	established	65	sites	in	
different	land	tenures	(including	timber	production	landscapes)	across	

the	study	area	from	the	coast	to	over	1,000	m	in	altitude	(Appendix	
S1).	 Sites	 with	 a	 recent	 history	 of	 logging	 or	 fire	 (<5	years)	 were	
avoided	as	recent	disturbance	would	influence	model	validation	if	ko-
alas	were	absent.	Allocation	of	sites	was	stratified	using	four	habitat	
quality	classes	(very	high,	high,	moderate,	low)	derived	from	a	prelimi-
nary	version	of	the	koala	habitat	suitability	model	(Law	et	al.,	unpubl.).	
Ground-	truth	sites	were	evenly	spread	between	lower	slopes	(n	=	28)	
and	upper	slopes	(n	=	32)	with	a	small	sample	from	midslopes	(n	=	5).	
Areas	 with	 unsuitable	 habitat	 for	 koalas,	 such	 as	 heath	 or	 swamp,	
were	not	included	as	ground-	truth	sites.

2.5.2 | Koala occupancy

Koala	males	emit	loud	bellows	during	the	breeding	season	(Ellis	et	al.,	
2011)	 allowing	 this	 behavior	 to	 be	 used	 for	 estimating	 koala	 occu-
pancy.	At	each	ground-	truth	site,	we	deployed	one	SongMeter	(SM2	
–	Wildlife	Acoustics)	to	record	koala	bellows.	SongMeters	were	pro-
grammed	 to	 record	 from	 one	 hour	 before	 sunset	 until	 sunrise	 for	
seven	consecutive	nights.	Two	of	the	65	SongMeters	failed	to	record	
data,	leaving	us	with	occupancy	data	for	63	sites	(441	sample	nights).	
The	distance	at	which	koala	calls	can	be	detected	is	likely	to	vary	with	
environmental	 conditions,	but	bellows	are	considered	 to	be	detect-
able	by	SongMeters	up	to	at	least	100	m	(W.	Ellis	personal	communi-
cation).	All	SongMeter	sampling	was	undertaken	in	the	koala	mating	
season	across	three	trips	in	2015;	one	trip	in	October/November,	one	
in	late	November,	and	one	in	December.

2.5.3 | Analysis of koala calls

Recordings	were	scanned	by	acoustic	software	and	a	koala	recogniser	
(Towsey,	Planitz,	Nantes,	Wimmer,	&	Roe,	2012).	Recordings	matched	
by	 the	 koala	 recogniser	were	 checked	 for	 false	 positives	 by	manu-
ally	visualizing	spectrograms	of	the	audio	and	listening	to	recordings,	
while	 random	 checks	were	 carried	 out	 for	 false	 negatives.	 A	 single	
koala	call	was	made	up	of	multiple	event	triggers.	We	defined	a	koala	
call	as	sequential	event	triggers	that	were	<60	s	apart.	The	number	of	
koala	calls	was	manually	tallied	to	give	the	total	number	of	koala	calls	
per	site	per	night.

2.5.4 | Occupancy analysis and validation method

We	used	an	occupancy	modeling	framework	to	account	for	imperfect	
detection	of	koala	bellows	at	sites	and	estimate	probability	of	site	oc-
cupancy	(MacKenzie	et	al.,	2002).	We	used	data	from	seven	consecu-
tive	nights	of	 sampling	 to	estimate	 the	probability	of	detection	and	
used	this	to	calculate	probability	of	occupancy	in	PRESENCE	version	
10.5	(Hines,	2006).	For	the	validation	of	the	MaxEnt	model,	probabil-
ity	of	occupancy	per	site	was	estimated	by	incorporating	the	MaxEnt	
modeled	habitat	suitability	for	each	ground-	truth	site	as	a	covariate	
(predictor)	 in	 a	 regression	 relationship.	 The	 fit	 of	 this	 relationship	
against	 koala	 occupancy	was	 compared,	 via	model	 selection	 proce-
dures,	 with	 other	 potentially	 important	 site	 covariates.	 Competing	
models	were	ranked	using	Akaike	Information	Criterion	(AIC),	which	
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measures	the	trade-	off	between	model	complexity	(number	of	param-
eters)	and	precision	(fit)	of	the	models.	The	difference	between	each	
model’s	 AIC	 value	 and	 the	 best-	fitting	 model	 was	 calculated,	 with	
models	of	delta	AIC	<	2	from	the	best	model	considered	to	have	sub-
stantial	support.

Modeling	followed	a	multistaged	process.

1. We	 identified	 the	 importance	 of	 possible	 covariates	 for	 koala	
detectability	 to	 improve	 the	 accuracy	 of	 occupancy	 estimates.	
Daily	 rainfall	 (p(rainfall)),	 month	 of	 sampling	 trip	 (p(trip)),	 and	
topographic	position	(p(topo))	were	compared	against	a	null	model	
with	 constant	 detectability	 (p(.)).

2. Using	results	for	detectability	(Step	1),	we	compared	the	strength	
of	the	relationship	between	koala	occupancy,	the	MaxEnt	modeled	
habitat	suitability,	 the	site	habitat	quality	 index	 (see	2.5.5),	and	a	
null	model	 of	 constant	 site	 occupancy	 (Psi(.)).We	 also	 included	 a	
selection	of	other	potential	predictors	of	koala	habitat	(NPP,	topo-
graphic	position,	elevation,	and	wildfire	 frequency)	 that	were	ex-
tracted	for	the	250-m	pixel	for	each	of	the	ground-truth	sites.

2.5.5 | Site habitat quality

The	second	approach	for	field	validation	was	a	site-	based	assessment	
of	habitat	potential	 for	koalas.	To	quantitatively	assess	browse	tree	
availability	at	each	site,	a	200-	m	transect	was	established	and	at	every	
20-	m	 interval,	 the	Point-	Quarter	 technique	 (Pollard,	1971)	was	em-
ployed	to	measure	the	distance	to	the	nearest	tree	(>20-	cm	diameter	
at	breast	height,	dbh)	 in	each	quadrant.	Each	 tree	was	 identified	 to	
species	where	possible,	and	its	diameter	was	measured	and	height	es-
timated.	This	resulted	in	data	on	40	trees	from	10	points	along	each	
transect.	 The	 Point-	Quarter	 technique	 was	 then	 used	 to	 estimate	
stem	density	and	when	multiplied	by	 the	%	occurrence	of	different	
species	and	their	mean	diameter,	we	were	able	to	calculate	the	basal	
area	(to	account	for	tree	size)	for	the	different	species	measured.	An	
index	of	habitat	quality	for	koalas	at	each	ground-	truth	site	was	cal-
culated	based	on	browse	tree	basal	area	and	diversity	(Appendix	S1).

3  | RESULTS

3.1 | MaxEnt modeling

A	 large	 number	 of	 continuous	 variables	 were	 highly	 correlated	
(R	>	0.75)	and	were	therefore	excluded	from	MaxEnt	modeling.	Some	
of	 the	 continuous	 variables	 initially	 retained	 (i.e.,	water-	holding	 ca-
pacity,	 organic	 carbon	 and	 phosphorus,	 and	 sealed	 roads;	 Table	1)	
were	also	discarded	after	exploratory	analysis	showed	their	response	
curves	 lacked	 realism	 and	 ecological	 sense.	 Therefore,	 the	 models	
for	subregion	1	and	subregion	2	were	built	on	a	total	of	14	predic-
tors:	three	categorical	variables	(soil	type	(Asc),	vegetation	type	(Cra),	
and	 wildfire	 frequency	 (Fire;	 Table	1))	 and	 11	 continuous	 variables	
(climatic	variables	(Bio14,	Bio28),	vegetation	quantity	(Biomass,	Fpc,	
local	landscape	extent	of	preferred	vegetation	types	(Cra%),	elevation	

(DEM),	 soil	 depth	 (Dep),	 site	 productivity	 (NPP),	 and	 topography	
(Slo,	Top	and	Tor;	Table	1)).	AUC	ranged	from	0.736	to	0.752	(n	=	5,	
mean	±	SE =	0.741	±	0.006)	for	subregion	1	and	from	0.786	to	0.801	
(n	=	5,	mean	±	SE	=	0.796	±	0.006)	 for	 subregion	2.	 For	 both	 subre-
gions,	Asc,	Cra,	DEM,	and	Fire	provided	the	greatest	contribution	to	
the	model	(Fig.	2).

The	response	curves	of	Asc,	Cra,	Fire,	and	DEM	(Fig.	3a,b)	showed	
some	differences	 between	 the	 two	 subregions.	 Predicted	 suitability	
of	Asc	was	 higher	 for	Class	 10	 (Podosols)	 in	 subregion	1	 and	Class	
12	(Sodosols)	 in	subregion	2,	while	Class	13	(Tenosols)	and	Class	11	
(Rudosols)	showed	the	lowest	probability	values	for	subregion	1	and	
subregion	2,	 respectively.	Predicted	suitability	of	Cra	was	higher	 for	
Class	1	and	decreased	gradually	from	Class	2	to	Class	4	in	both	sub-
regions.	Predicted	 suitability	of	 Fire	 showed	 similar	values	 for	Class	
0,	Class	1,	and	Class	2	(~36%,	~53%,	and	~44%,	respectively)	in	both	
subregions.	However,	Class	3	 (high	 frequency	of	wildfire)	 showed	a	
markedly	higher	predicted	suitability	in	subregion	2	(~49%)	when	com-
pared	to	subregion	1	(~24%).	The	response	curve	of	DEM	showed	a	
similar	pattern	 in	both	 subregions	as	predicted	suitability	decreased	
for	higher	values.	High	predicted	suitability	<100	m	and	between	500	
and	600	m	elevation,	reflect	a	concentration	of	koala	records	at	those	
elevations.

Habitat	 suitability	 values	 ranged	 from	 0	 to	 0.88	
(mean	±	SE	=	0.39	±	0.15)	and	were	classified	into	nine	categories	cor-
responding	to	0.1	increments	(Fig.	4).	Most	of	the	areas	characterized	
by	high	frequency	of	koala	records	(Fig.	5)	were	correctly	modeled	and	

F IGURE  2 Percent	contribution	of	the	14	predictor	variables	in	
(a)	subregion	1	and	(b)	subregion	2.	See	Table	1	for	environmental	
variables	description
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F IGURE  3 Response	curves	from	MaxEnt	modeling	of	koala	records	for	(a)	subregion	1	and	(b)	subregion	2.	See	Table	1	for	environmental	
variables	description
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F IGURE  3  (Continued)
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assigned	with	high	or	very	high	suitability	classes.	Koala	records	less	
frequently	fell	 in	areas	modeled	as	moderate	suitability	and	rarely	in	
low	suitability	habitat.

We	analyzed	the	frequency	of	the	3,116	koala	records	that	were	
excluded	 from	MaxEnt	 analysis	within	 the	 nine	 modeled	 suitability	
classes.	The	frequency	of	 the	nine	classes	was	unimodal	with	>75%	
of	the	study	area	recording	habitat	suitability	values	≤0.5	(Fig.	6).	The	
distribution	was	unequal	across	the	classes,	and	~50%	of	the	records	
were	located	in	areas	with	habitat	suitability	>0.6,	representing	~8%	of	
the	study	area.	The	highest	frequency	of	records	(~34%)	was	recorded	
between	0.6	and	0.7.	Only	~7%	of	the	records	were	located	in	areas	
with	suitability	<0.4,	yet	this	constituted	~51%	of	the	study	area.

3.2 | Field validation using koala occupancy

A	total	of	276	koala	bellows	were	recorded	on	46	out	of	441	nights	of	
sampling	at	29%	of	sites.	A	high	number	(>20)	of	koala	calls	were	re-
corded	at	the	following	sites:	Braemar	State	Forest,	Wild	Cattle	Creek	
State	 Forest,	Chichester	 State	 Forest,	 Pine	Creek	State	 Forest,	 and	
Yabbra	State	Forest.

Modeling	of	detection	probability	 indicated	that	constant	detec-
tion	was	 the	best	 supported	model	 (Table	2),	with	 a	 low	probability	
of	detection	per	night	of	0.32.	However,	varying	detectability	by	trip	
fell	within	two	AIC	points	of	the	top	model	and	so	was	also	supported	

(although	 with	 half	 the	 AIC	 weight).	 Koala	 detectability	 declined	
slightly	 from	 0.43	 in	 October/November	 to	 0.36	 in	 late	 November	
to	0.30	in	December.	Neither	daily	rainfall	nor	a	topographic	position	
index	influenced	detectability.

Modeling	of	occupancy	per	site	against	the	MaxEnt	modeled	hab-
itat	 suitability	 calculated	 at	 the	250-	m	pixel	 scale	 surrounding	 each	
ground-	truthed	 site	 revealed	 a	 near	 linear	 relationship	 between	 fit-
ted	values	of	 site	occupancy	and	 the	MaxEnt	model	output	 (Fig.	7).	
In	other	words,	an	increase	in	model	output	was	correlated	positively	
with	 koala	 occupancy	 (df	=	62,	 r	=	0.681,	p	<	0.001).	The	 data	were	
considered	to	be	a	good	fit	to	this	model	as	assessed	by	the	Pearson	
chi-	squared	 statistic	 (chi-	square	=	338.349,	p = 0.10,	 chat	=	1.5781).	
A	similar	pattern	was	evident	when	the	two	subregions	were	validated	
separately.

3.3 | Field validation using the site habitat quality  
index

The	MaxEnt	model	was	 significantly	 correlated	with	 site	quality	 for	
koalas	at	ground-	truth	sites	as	represented	by	the	site	habitat	quality	
index	derived	from	browse	tree	availability.	The	site	index	increased	
positively	with	 the	MaxEnt	output	 in	both	subregions	 (Subregion	1:	
r2 = 0.29; p	=	0.0039;	Subregion	2:	 r2	=	0.15,	p	=	0.017)	 (Fig.	8).	The	
relationship	was	weaker,	although	still	significant,	for	the	high	eleva-
tion	subregion	2,	where	 there	was	more	scatter	and	 fewer	ground-	
truth	sites.	Some	of	the	variability	in	the	relationship	can	be	attributed	
to	a	group	of	rainforest	sites	that	are	potentially	overpredicted	by	the	
model	 (Fig.	8).	These	were	typically	small	patches	 in	close	proximity	
to	eucalypt	forest.

3.4 | Koala occupancy versus MaxEnt model, habitat 
quality index, and other predictors

The	MaxEnt	model	 was	 a	 better	 predictor	 of	 koala	 occupancy	 than	
the	 site	 habitat	 quality	 index	 that	was	based	 solely	on	browse	 trees	
(Table	3).	When	 assessed	 individually,	 other	 site	 attributes	 including	
NPP,	 topographic	 position,	 elevation,	 and	 the	 frequency	 of	wildfires	
were	also	poorer	predictors	of	koala	occupancy	than	the	MaxEnt	model.

4  | DISCUSSION

We	demonstrate	the	value	of	field-	validated	species	distribution	mod-
eling	for	conservation-	dependent	species,	using	the	 iconic,	koala,	as	
a	case	study.	Our	spatially-	explicit	model	of	koala	habitat	at	a	250	m	
resolution	is	suitable	for	guiding	management	of	koalas	in	timber	pro-
duction	forests	and	other	land-	uses	or	managing	wildfire.	For	exam-
ple,	forestry	compartments	(~200	ha)	form	the	basic	planning	unit	for	
timber	harvesting	and	a	model	of	habitat	suitability	at	the	resolution	
of	a	subcompartment	scale	(~6	ha)	would	allow	efficient	targeting	of	
management	actions	(e.g.,	browse	tree	retention)	to	areas	modeled	as	
high	suitability	and	avoid	areas	modeled	as	low	suitability.	However,	
we	 also	 urge	 that	 such	 applications	 are	 coupled	 with	 an	 adaptive	

F IGURE  4 Koala	habitat	suitability	map	from	MaxEnt	modeling	in	
northern	NSW.	Nine	categories	of	habitat	suitability	are	shown.	Areas	
cleared	of	native	vegetation	(i.e.,	gray)	were	not	modeled
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management	 process	 so	 that	 the	 effectiveness	 of	management	 for	
target	species	is	carefully	monitored.

Our	model	corrected	for	the	high	spatial	bias	in	the	distribution	of	
koala	records	and	was	evaluated	statistically	as	a	good	fit	to	existing	

koala	 records.	 Most	 importantly,	 independent	 ground-	truthing	 data	
demonstrated	that	the	model	was	reliable	for	predicting	both	poten-
tial	 habitat	 quality	 and	 koala	 occupancy.	 Previous	 large-	scale	 maps	
of	koala	likelihood	have	been	produced	at	a	much	coarser	resolution	
(e.g.,	10	km)	 (Predavec	et	al.,	2015),	which	may	be	more	difficult	 for	
managers	to	apply	at	local	scales,	although	such	maps	could	work	in	
concert	with	habitat	suitability	maps	at	finer	scales.	About	1.66	million	
ha	were	 predicted	 to	 support	moderate-		 to	 high-	quality	 habitat	 for	
koalas	in	northeast	NSW.	Such	a	large	area	could	support	a	substan-
tial	koala	population	given	relatively	high	occupancy	 levels	 recorded	
during	ground-	truthing.

4.1 | Model drivers

Our	model	identified	areas	of	high	habitat	suitability	for	koala	as	those	
with	 low	 wildfire	 frequency	 over	 the	 past	 45	years.	 High-	intensity	
fires	burn	the	canopy	and	can	cause	death	or	 injury	to	koalas	and	a	

F IGURE  5 Examples	of	four	areas	of	
koala	habitat	suitability	characterized	by	
high	record	density

F IGURE  6 Distribution	of	area	coverage	(%)	and	koala	records	
(%)	within	nine	ranges	of	habitat	suitability	classes.	Koala	records	are	
those	not	used	in	model	development
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temporary	 reduction	 in	 the	 availability	 of	 foraging	 habitat	 (Lunney	
et	al.,	2007).	The	north	coast	region	of	NSW	has	had	the	second	high-
est	number	of	 fires	of	 any	 region	 in	NSW	 (behind	Sydney)	 (Bryant,	
2008),	although	it	is	unknown	whether	fire	severity	is	higher	in	that	
region.	Fire	severity	affected	the	occurrence	of	arboreal	mammals	in	
Victorian	 forests,	with	gullies	and	unburnt	 forest	 serving	as	 refuges	
(Chia	et	al.,	2015).	One	 implication	of	 the	 importance	of	wildfires	 is	
that	while	an	area	may	support	a	suitable	suite	of	conditions	for	koa-
las,	such	habitat	may	be	unoccupied	due	to	mortality	from	fire.	Other	
historical	factors	or	current	threats	including	fragmentation	by	urbani-
sation,	 predation	by	dogs,	 or	 extreme	 climatic	 events	 (e.g.,	 drought	
and	heat	waves—Lunney,	Stalenberg,	Santika,	&	Rhodes,	2014)	may	
similarly	reduce	koala	occupation	levels	in	suitable	habitat.	The	effect	
of	 logging	 on	 habitat	 suitability	 for	 koalas	warrants	 further	 investi-
gation	 (Kavanagh,	Debus,	Tweedie,	&	Webster,	1995;	Smith,	2004),	
although	in	our	study	ground-	truth	sites	with	many	bellows	all	had	a	
long	history	of	logging.

Koalas	also	had	a	 lower	 likelihood	of	occurrence	on	Tenosol	and	
Rudosol	soils.	Tenosols	are	generally	sandy	with	very	low	productivity	
and	 chemical	 fertility,	 poor	 structure,	 and	 low	water-	holding	 capac-
ity	 (Northcote	et	al.,	1960–1968).	Rudosols	 tend	to	be	shallow	with	
little	soil	development	and	are	often	gravely	or	 rocky.	Podosols	and	
Sodosols	 were	 predicted	 to	 have	 higher	 suitability	 for	 koalas,	 and	

these	soils	have	high	organic	matter	and	occur	either	in	coastal	areas	
(Podosols)	or	in	areas	with	poor	drainage	(Sodosols),	yet	both	are	con-
sidered	to	be	relatively	infertile.	As	an	example,	many	koala	records	in	
the	Port	Stephens	area	occurred	on	Podosol	soils,	which	are	likely	to	
be	associated	with	Swamp	Mahogany,	Eucalyptus robusta,	a	preferred	
browse	species	in	this	and	other	coastal	areas	(Phillips	et	al.,	2000).	A	
direct	measure	of	soil	fertility	was	not	supported	during	model	build-
ing,	possibly	because	better	quality	soils	have	been	selectively	cleared	
for	agriculture	and	these	were	masked	from	our	modeling	process.

Floristic	composition	was	the	third	important	variable	contributing	
to	the	koala	model.	Habitat	suitability	was	higher	on	areas	mapped	with	
primary	 browse	 species,	 including	 red	 gum	 species	 (e.g.,	 Eucalyptus 
tereticornis),	Tallowwood	(E. microcorys)	and	Swamp	Mahogany	(E. ro-
busta)	 and	 lower	 in	 areas	 typed	 as	 unsuitable	 habitat	 (e.g.,	Banksia 
heath,	 rainforest	 with	 no	 eucalypt	 emergents).	 The	 two	 intermedi-
ate	 floristic	 classes	 for	 koala	 suitability	 had	 less	 discriminating	 abil-
ity,	probably	because	many	of	the	constituent	forest	types	are	broad	
classifications	 of	 forest	 that	 support	 varying	 frequencies	 of	 browse	
species.	For	example,	Blackbutt	Eucalyptus pilularis	and	Spotted	Gum	
Corymbia variegata	 types	 are	widespread	 and	 not	 considered	 highly	
suitable	for	koalas	(e.g.,	Phillips	et	al.,	2000),	although	the	frequency	of	
Tallowwood	and	Grey	Gum	Eucalyptus punctata,	two	primary	browse	
species,	is	highly	variable	in	these	forest	types.

Elevation	was	 the	 fourth	 important	variable	 in	 the	 koala	model.	
Habitat	suitability	was	predicted	to	be	higher	at	low	elevations	in	sub-
region	1,	but	it	was	also	predicted	to	be	high	at	500–600	m	in	subre-
gion	2.	Elevations	of	200–500	m	and	>800	m	were	predicted	to	have	
lower	suitability,	although	with	other	factors	modifying	this	effect.	This	
pattern	of	a	low	and	midelevation	peak	for	koalas	is	related	to	the	ex-
tensive	number	of	records	in	coastal	areas	and	in	the	Dorrigo	plateau	
and	adjacent	to	Comboyne	plateau.	An	association	with	low	elevations	
has	long	been	known	(e.g.,	Kavanagh	et	al.,	1995;	Phillips	et	al.,	2000;	
Smith,	 2004);	 however,	 high	 habitat	 suitability	 at	 midelevation	 and	
even	some	high	elevations	(e.g.,	Nowendoc)	appears	to	be	less	widely	
appreciated	 (but	 see	 Krockenberger,	 1993;	 Kavanagh	 &	 Stanton,	
1995;	Braithwaite,	1996).	Notably,	the	New	England	Tablelands	(and	
the	north	coast	NSW)	are	predicted	to	provide	climate	refugia	for	koa-
las	under	climate	change	scenarios	(Briscoe	et	al.,	2016).

Other	variables	made	minor	contributions	to	the	koala	model,	such	
as	a	greater	likelihood	of	koalas	on	flatter	terrain	and	where	soil	depth,	
primary	productivity,	biomass,	and	Fpc	were	higher.	The	contributions	
of	variables	differed	somewhat	between	subregions,	such	as	a	greater	
importance	 in	 subregion	1	 than	 subregion	2	 for	precipitation	 in	 the	

F IGURE  7 Model	validation	results	from	63	ground-	truth	sites.	
The	graph	shows	the	relationship	between	the	fitted	probability	
of	koala	occupancy	(after	accounting	for	detectability)	against	the	
MaxEnt	modeled	habitat	suitability	at	a	250-	m	pixel	scale.	Values	
are	the	mean	fitted	values	±	95%	confidence	intervals	(i.e.,	predicted	
from	the	MaxEnt	model)
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TABLE  2 Model	selection	results	for	ground-	truth	sites	comparing	the	null	model	(constant	detection)	with	alternative	models	that	allow	
koala	detectability	to	covary	with	daily	rainfall,	month	of	survey	(trip),	and	topographic	position

Model AIC Delta AIC AIC weight Model likelihood No. parameters −2*Log likelihood

psi(.),p(.) 238.74 0.00 0.6657 1.0000 2 234.74

psi(.),p(trip) 240.22 1.48 0.3176 0.4771 2 236.22

psi(.),p(rainfall) 246.12 7.38 0.0166 0.0250 2 242.12

psi(.),p(topo) 253.2 14.46 0.005 0.0007 2 249.2
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driest	quarter.	A	landscape	effect	of	the	surrounding	area	of	preferred	
forest	types	had	less	influence	in	subregion	1	where	there	were	many	
koala	 records	 in	 fragmented	 forest.	 Although	 such	 variables	 made	
minor	contributions	to	the	model	over	the	entire	region,	their	omission	
resulted	in	localized,	substantial	changes	to	the	model	output	justify-
ing	their	inclusion.

4.2 | Model validation and performance

Our	process	of	validation	gave	emphasis	to	field	validation	over	cross-	
validation	and	the	resulting	AUC	score,	although	the	two	approaches	
produced	consistent	results.	The	AUC	score	indicated	the	model	had	
good	discriminatory	ability	and	this	was	confirmed	by	field	validation	
at	ground-	truth	sites.	Koala	occupancy	(adjusted	for	detectability)	at	
ground-	truth	sites	increased	in	a	near	linear	pattern	as	MaxEnt	mod-
eled	 habitat	 suitability	 output	 values	 increased.	 The	MaxEnt	model	
output	at	a	250-	m	scale	was	a	stronger	performer	than	larger	spatial	
scales	(authors	unpubl.	data),	indicating	that	more	extensive	areas	of	

higher	habitat	suitability	than	a	250-	m	pixel	were	not	better	predictors	
of	koala	occupancy.	This	is	consistent	with	the	fact	that	the	landscape	
variable,	percentage	cover	of	primary	and	secondary	CRAFTI	 forest	
types,	was	a	minor	contributor	 to	 the	MaxEnt	model.	Such	a	 result	
contrasts	with	local	studies	in	fragmented	rural	areas	that	have	identi-
fied	the	importance	of	landscape	context,	patch	size,	fragmentation,	
and	connectivity	(McAlpine	et	al.,	2006),	although	variations	in	thresh-
old	values	for	landscape	variables	differ	among	regions	(Rhodes	et	al.,	
2008).	This	suggests	that	occupancy	in	modeled	high-	quality	habitat	
may	be	lower	than	expected	where	the	local	landscape	is	fragmented.

The	MaxEnt	 model	 clearly	 outperformed	 a	 site-	based	 habitat	
quality	index	calculated	from	browse	tree	availability	and	diversity	
at	 ground-	truth	 sites	 when	 predicting	 koala	 occupancy	 at	 those	
sites.	This	is	consistent	with	the	view	that	the	determinants	of	koala	
habitat	are	likely	to	include	a	range	of	features	including	tree	spe-
cies,	soil	type,	moisture,	topography,	elevation,	and	especially	dis-
turbance	variables	such	as	wildfire	frequency	(Lunney	et	al.,	2007),	
all	 of	 which	 are	 accounted	 for	 by	 the	 model.	 In	 addition,	 there	

F IGURE  8 Model	validation	using	the	
relationships	between	a	habitat	quality	
index	based	on	browse	tree	availability	and	
diversity	with	each	MaxEnt	model	output	
for	65	ground-	truth	sites.	Ground-	truth	
sites	for	each	of	two	subregions	are	shown	
separately
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TABLE  3 Model	selection	results	comparing	the	null	model	(constant	occupancy)	with	models	allowing	koala	occupancy	at	ground-	truth	
sites	to	covary	with	the	250-	m	scale	MaxEnt	model	output	(psi	250	m),	habitat	quality	index	(psi	habitat	quality),	and	other	site	attributes	
calculated	for	each	ground-	truth	site.	Detectability	was	held	constant

Model AIC Delta AIC AIC weight Model likelihood No. parameters −2*Log likelihood

psi(250	m),p(.) 236.25 0.00 0.5152 1.0000 3 230.25

psi(.),p(.) 238.74 2.49 0.1483 0.2879 2 234.74

psi(npp),p(.) 239.76 3.51 0.0891 0.1729 3 233.76

psi(topo),p(.) 240.07 3.82 0.0763 0.1481 3 234.07

psi(elevation),p(.) 240.55 4.3 0.06 0.1165 3 234.55

psi(fire),p(.) 240.69 4.44 0.056 0.1086 3 234.69

psi(habitat	quality),p(.) 240.07 3.82 0.0551 0.1481 3 234.07
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was	 considerable	uncertainty	 in	how	 to	 allocate	 tree	 species	 into	
different	 classes	of	browse	quality	 (Appendix	S1).	More	quantita-
tive	data	on	koala	diet	would	be	required	to	more	reliably	allocate	
tree	species	to	different	classes	and	to	set	appropriate	weights	 in	
developing	 such	 a	 habitat	 quality	 index.	This	 has	 implications	 for	
directing	 conservation	actions	or	management	mitigations	 for	 ko-
alas.	 Identification	of	 sites	based	solely	on	browse	 tree	species	 is	
likely	to	be	less	accurate	than	habitat	models	that	consider	a	suite	
of	variables.

4.3 | Model limitations

Some	 limitations	 in	 the	MaxEnt	 model	 were	 evident.	 In	 particular,	
ground-	truthing	 identified	 that	 patches	 of	 rainforest,	 which	 do	 not	
contain	browse	species	for	koalas,	may	be	overpredicted	by	the	model	
at	lower	elevations.	Prediction	of	rainforest	as	habitat	was	most	ap-
parent	 for	 smaller	 patches	 surrounded	 by	 otherwise	 suitable	 euca-
lypt	 forest.	As	 an	example,	 one	ground-	truth	 site	within	 a	patch	of	
rainforest	contained	emergent	Eucalyptus saligna,	a	preferred	browse	
species,	and	the	patch	 itself	was	also	 in	close	proximity	 to	eucalypt	
forest.	Koalas	were	recorded	calling	at	this	site,	but	 it	 is	not	known	
whether	the	calls	originated	inside	or	outside	the	patch	of	rainforest.	
Alternatively,	while	large	patches	of	rainforest	do	not	represent	habi-
tat	for	koalas,	their	fringes,	as	well	as	small	patches,	may	be	used	for	
shelter,	such	as	during	hot	weather.

4.4 | Acoustic surveys and occupancy modeling

Another	 key	 result	 of	 field	 validation	 at	 ground-	truth	 sites	 was	
confirmation	 of	 the	 effectiveness	 of	 acoustic	 recorders	 at	 detect-
ing	male	mating	bellows,	 in	 conjunction	with	occupancy	modeling.	
Acoustic	surveys	were	much	more	effective	than	concurrent	pellet	
searches	 (authors’	 unpubl.	 data),	 probably	 because	 pellets	 are	 dif-
ficult	 to	 locate	 in	some	forest	types	 (e.g.,	moist	forests	or	where	a	
dense	understorey	and	litter	is	present).	It	is	well	known	that	koala	
pellet	 detectability	 depends	 on	 ground	 layer	 complexity	 and	 that	
pellet	decay	 rates	vary	within	and	among	vegetation	communities,	
being	 notably	 faster	 in	 moist	 types	 (Cristescu,	 Goethals,	 Banks,	
Carrick,	&	Frère,	2012).

Koalas	were	 recorded	 acoustically	 on	29%	of	 ground-	truth	 sites	
(42%	using	all	methods—acoustics,	 scats,	 and	sightings;	 authors	un-
publ.	data).	This	is	a	relatively	high	level	of	naïve	occupancy	given	that	
a	number	of	these	sites	were	selected	to	test	model	performance	in	
areas	modeled	as	low	suitability,	indicating	naïve	occupancy	in	better	
quality	habitat	would	be	higher.	This	has	 implications	for	the	poten-
tial	of	northeast	NSW	to	support	a	previously	overlooked,	but	 large	
koala	population.	Previous	surveys	for	koalas	in	northern	NSW	have	
recorded	lower	levels	of	detection	than	our	survey.	For	example,	a	re-
gional	 survey	of	northern	NSW	using	playback	and	spot-	lighting	 re-
corded	koalas	at	12%	of	sites	(Kavanagh	et	al.,	1995).	We	suggest	that	
acoustic	 recorders	 represent	an	 innovative	and	efficient	method	 for	
surveying	and	monitoring	koalas	and	that	the	status	of	koalas	in	the	
northeast	forests	warrants	re-	assessment.
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