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Abstract
Species distribution models have great potential to efficiently guide management for 
threatened species, especially for those that are rare or cryptic. We used MaxEnt to 
develop a regional-scale model for the koala Phascolarctos cinereus at a resolution 
(250 m) that could be used to guide management. To ensure the model was fit for 
purpose, we placed emphasis on validating the model using independently-collected 
field data. We reduced substantial spatial clustering of records in coastal urban areas 
using a 2-km spatial filter and by modeling separately two subregions separated by the 
500-m elevational contour. A bias file was prepared that accounted for variable survey 
effort. Frequency of wildfire, soil type, floristics and elevation had the highest relative 
contribution to the model, while a number of other variables made minor contribu-
tions. The model was effective in discriminating different habitat suitability classes 
when compared with koala records not used in modeling. We validated the MaxEnt 
model at 65 ground-truth sites using independent data on koala occupancy (acoustic 
sampling) and habitat quality (browse tree availability). Koala bellows (n = 276) were 
analyzed in an occupancy modeling framework, while site habitat quality was indexed 
based on browse trees. Field validation demonstrated a linear increase in koala occu-
pancy with higher modeled habitat suitability at ground-truth sites. Similarly, a site 
habitat quality index at ground-truth sites was correlated positively with modeled 
habitat suitability. The MaxEnt model provided a better fit to estimated koala occu-
pancy than the site-based habitat quality index, probably because many variables were 
considered simultaneously by the model rather than just browse species. The positive 
relationship of the model with both site occupancy and habitat quality indicates that 
the model is fit for application at relevant management scales. Field-validated models 
of similar resolution would assist in guiding management of conservation-dependent 
species.

K E Y W O R D S

detectability, ground-truth, MaxEnt, species distribution models

www.ecolevol.org
http://orcid.org/0000-0002-3991-3865
http://creativecommons.org/licenses/by/4.0/
mailto:brad.law@dpi.nsw.gov.au


7476  |     LAW et al.

1  | INTRODUCTION

Distribution modeling provides effective tools for spatially-explicit 
mapping of relationships between species occurrences and biophysi-
cal variables over broad extents (e.g., Yost, Petersen, Gregg, & Miller, 
2008). Predictive models of species distributions have become increas-
ingly important conservation tools for guiding and informing on-ground 
management, especially for threatened species that are difficult to 
reliably survey (Dickson et al., 2014; Liu, White, Newell, & Griffioen, 
2013). However, models relying on “presence only” records are influ-
enced by detection issues and sampling bias, and there is a need to 
ensure they are fit for purpose (e.g., predicting relative site suitability; 
Guillera-Arroita et al., 2015). Such limitations reinforce the need for in-
dependent field validation of models as a key step when implementing 
species distribution models for management purposes (Hirzel, Le Lay, 
Helfer, Randin, & Guisan, 2006; Latif, Saab, Mellen-Mclean, & Dudley, 
2015; Loehle, Irwin, Manly, & Merrill, 2015). Field validation can as-
sess the accuracy of modelled predictions and their potential benefit 
to conservation planning management, although frequently this step is 
not undertaken or possible (Araújo, Pearson, Thuiller, & Erhard, 2005).

One impediment with field validation is confident identification of 
varying habitat quality and establishing whether it is occupied, and par-
ticularly, to avoid false absences by accounting for imperfect detection 
when estimating occupancy (MacKenzie et al., 2002; Wintle, Kavanagh, 
McCarthy, & Burgman, 2005). Both the fit and relationship of predicted 
occupancy values against a model’s output allow field validation based 
on ground-truth data. As an alternative to occupancy, given that not all 
habitats of rare species are likely to be occupied, habitat quality can be 
assessed independently based on the known habitat or dietary prefer-
ences of the focal species (e.g., browse species). This approach is limited 
by available knowledge on the importance of different browse species 
and how this varies across a species range or in association with co-
occurring browse species, soil type, moisture, disturbance, etc.

The koala (Phascolarctos cinereus) is an iconic arboreal marsupial 
occurring in eucalypt forests and woodlands across eastern Australia 
(Martin, Handasyde, & Krockenburger, 2008). The species is in decline 
(e.g., Adams-Hosking, Grantham, Rhodes, McAlpine, & Moss, 2011) and 
is listed as an endangered species. A recent Australian Senate inquiry 
(Commonwealth of Australia, 2011) recommended the implementation 
of habitat mapping to assist in the management of the koala, highlight-
ing the need for reliable distribution models for this species. Regional, 
coarse resolution models have been produced for koalas that map 
likelihood of records (Predavec et al., 2015) or that predict suitability 
based on a variety of data-layers (Santika, McAlpine, Lunney, Wilson, & 
Rhodes, 2014; Sequeira, Roetman, Daniels, Baker, & Bradshaw, 2014). 
In comparison, fine-resolution maps (i.e., 25 m) of koala distribution 
based on associations between fecal pellet counts and floristic as-
sociations have been restricted to local scales (e.g., Callaghan et al., 
2011; Lunney, Phillips, Callaghan, & Coburn, 1998). Regional models 
prepared at a scale suitable for management maximize the usefulness 
of koala habitat maps for land managers, especially where a complex 
mosaic of habitat quality in local areas can be expected. Finer resolu-
tion models would also allow management actions to target the most 

appropriate areas for conservation (Razgour, Hanmer, & Jones, 2011), 
such as guiding tree retention levels in high-quality koala habitat in 
timber production forests (Predavec et al., 2015).

Being an obligate folivore, koalas are typically associated with 
particular species of Eucalyptus that provide palatable foliage (DECC 
2008; Phillips, Callaghan, & Thompson, 2000), although browse spe-
cies preference may vary because of differences in site productivity or 
because the availability of more desirable tree species varies (Crowther, 
McAlpine, Lunney, Shannon, & Bryant, 2009; Moore, Lawler, Wallis, 
Beale, & Foley, 2010; Phillips & Callaghan, 2000). In addition to avail-
ability of preferred Eucalyptus species, koala habitat is likely to be in-
fluenced by other factors such as habitat loss and fragmentation (e.g., 
McAlpine et al., 2006; Rhodes et al., 2006). The combined effect of 
environmental factors (e.g., topography, climate) and disturbances (e.g., 
fire) results in a spatially complex array of tree species within Australian 
eucalypt forests (Coops & Catling, 2000) and, consequently, a mosaic 
of suitable and less suitable conditions for koalas. Coarse resolution 
koala habitat models (e.g., 5 km) may not adequately capture the level 
of spatial complexity needed to provide suitable information for local-
scale management. This can occur where there is a mismatch between 
the resolution of the model and the key environmental features deter-
mining habitat quality (Guerrero, Mcallister, Corcoran, & Wilson, 2013; 
Hermoso & Kennard, 2012), leading to limited implementation of the 
model for management purposes (Tulloch et al., 2016).

In this study, we modeled the potential habitat of koalas at a res-
olution suitable for land management (i.e., 250 m) across northeast-
ern NSW using the Maximum Entropy Approach (MaxEnt, Phillips, 
Anderson, & Schapire, 2006). MaxEnt is a powerful machine learning 
technique that models “presence only” records (Elith et al., 2011) to 
produce environmental niche and species distribution maps (hereaf-
ter habitat suitability models). Our aim was to develop and validate a 
predictive habitat suitability model that would be useful for managing 
the species in the context of forest management, especially timber 
harvesting. To achieve this, our objective was to ensure the model’s 
resolution was fine enough to map habitat suitability for the species 
at a forest subcompartment scale (250-m grid cell). Rather than rely 
on cross-validation approaches that have problems related to data de-
pendence (Roberts et al. 2016), we field validated our koala model by 
relating modeled habitat suitability to two different, although comple-
mentary, independent datasets at ground-truth sites. The first dataset 
of koala occupancy was estimated using acoustic sensors set over a 
seven night period, allowing detectability to be accounted for. The 
second was an index of koala habitat quality based on browse species 
availability. For model validation purposes, we predicted an increase in 
koala occupancy and the habitat quality index with modeled habitat 
suitability across all ground-truth sites.

2  | METHODS

2.1 | Study area and koala occurrence records

The analysis focused on northeastern New South Wales. The study area 
(~8.5 million ha) consisted of two subregions: subregion 1 (areas below 
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500 m above sea level (ASL)) and subregion 2 (areas above 500 m ASL) 
(Fig. 1). This subdivision was chosen because it was considered likely 
that different drivers of koala habitat operated in coastal areas com-
pared to uplands (McAlpine et al., 2008). We acquired reliable locations 
(n = 7,997, <100-m accuracy) where koalas have been recorded (1990–
2015) from the New South Wales National Parks and Wildlife Service 
Wildlife Atlas. Records dating back to 1990 were used because exten-
sive forest surveys were undertaken for the koala in the early 1990s 
that have not been repeated, and inclusion of these records better 
represents koala distribution than relying on only more recent records. 
All records located within cleared areas were removed reducing the 
number of suitable records to 5,558 (4,238 in Subregion 1 and 1,320 in 
Subregion 2). In order to reduce spatial aggregation in our records (e.g., 
Fourcade, Engler, Rödder, & Secondi, 2014; Kramer-Schadt et al., 2013), 
we randomly selected koala occurrences that were separated by a mini-
mum distance of 2 km. We replicated this filtering process five times 
and generated five random sets of records for each subregion. The 
number of records in the five sets ranged from 1,078 to 1,090. Records 
(n = 3,116) that were not included in the five filtered sets were retained 
and used for model evaluation (see Section 2.4) prior to field validation.

2.2 | Environmental variables

We trialed 30 gridded (250 m) environmental variables for their poten-
tial influence on koala habitat suitability (Table 1). These were selected 

from published relationships between koalas and their environments, 
such as the influence of vegetation, browse trees, topography, fire, 
climate, and primary productivity on the distribution of koalas (Lunney, 
Gresser, O’Neill, Matthews, & Rhodes, 2007; Van Dyck and Strahan, 
2008; Moore et al., 2010; Sequeira et al., 2014; Briscoe, Kearney, 
Taylor, & Wintle, 2016). Variables included both biotic (e.g., floristic 
composition) and abiotic (e.g., climate, soil) factors and were produced 
at a 250-meter spatial resolution (i.e., pixel size = 250 m).

Four broad floristic categories (1 = primary browse species, 2 = sec-
ondary browse species, 3 = tertiary browse species, and 4 = unsuitable 
habitat) were derived from available floristic maps (i.e., Comprehensive 
Regional Assessment Aerial Photographic Interpretation, CRAFTI; 
NSW National Parks and Wildlife Service, 2001a,b). Categorization 
was based on prevalence of tree species in each forest type and the im-
portance of tree species to koalas as listed in the NSW Koala Recovery 
Plan (Department of Environment and Climate Change, 2008) and sup-
plemented by expert opinion. Additionally, we calculated the percent-
age cover of Class 1 and Class 2 (CRAFTI) combined within a 1-km 
radius of each pixel to account for the coverage of primary and sec-
ondary browse species at a broader scale. Four topography-related 
variables were used (Table 1) together with the density of sealed roads 
(m of road per km2) to account for anthropogenic disturbance.

Soil types were derived from the National Soil Data provided by 
the Australian Collaborative Land Evaluation Program ACLEP (http://
www.clw.csiro.au/aclep/, last accessed February 2017). Additionally, 
we acquired soil depth (m), organic carbon (%), total phosphorus (%), 
and available water capacity (%) from The Soil and Landscape Grid 
of Australia (http://www.clw.csiro.au/aclep/soilandlandscapegrid/
ProductDetails-SoilAttributes.html, accessed April 2016) to charac-
terize soil fertility, which is thought to be an important influence on 
browse quality (Moore et al., 2010). We also derived site greenness 
from remote-sensing variables, calculating normalized difference 
vegetation index (NDVI, Rouse, Haas, Schell, & Deering, 1974) values 
using MODIS MOD13Q1 granules acquired in January, April, July, 
and October from 2000 to 2015. For each month, all NDVI data were 
averaged to provide spectral values in the central month of summer 
(NDVI_su), autumn (NDVI_au), winter (NDVI_wi), and spring (NDVI_
sp). Three additional vegetation-related variables were included in 
the analysis: (1) above ground biomass (Mg Ha−1) was acquired from 
NSW Office of Environment and Heritage (ALOS Woody biomass, 
Lucas et al., 2010), (2) foliage projective cover (%) was acquired from 
NSW Office of Environment and Heritage (http://www.environment.
nsw.gov.au/research/AncillaryVegetationProductsDataInventory.
htm, last accessed February 2017), and (3) net primary productiv-
ity (NPP, kg C/m2) was extracted from MODIS data (MOD17A3). 
MOD17A3 annual NPP was averaged from 2000 to 2015 to calculate 
mean annual NPP. A number of bioclimatic factors were investigated 
for their potential influence on the distribution of koalas. Bioclim 
(Houlder, Hutchinson, Nix, & McMahon, 2009) was used to produce 
10 bioclimatic parameters based on long-term meteorological data 
and a digital elevation model (DEM). Finally, we used wildfire history 
data (1970–2015) acquired from NSW Rural Fire Service for the po-
tential influence of this disturbance on koala habitat suitability. A 

F IGURE  1 Map of northeast NSW with the locations of 5,558 
koala records within the two subregions

http://www.clw.csiro.au/aclep/
http://www.clw.csiro.au/aclep/
http://www.clw.csiro.au/aclep/soilandlandscapegrid/ProductDetails-SoilAttributes.html
http://www.clw.csiro.au/aclep/soilandlandscapegrid/ProductDetails-SoilAttributes.html
http://www.environment.nsw.gov.au/research/AncillaryVegetationProductsDataInventory.htm
http://www.environment.nsw.gov.au/research/AncillaryVegetationProductsDataInventory.htm
http://www.environment.nsw.gov.au/research/AncillaryVegetationProductsDataInventory.htm
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fire frequency map was calculated by classifying the data into four 
categories (Table 1).

An essential step in habitat modeling is to avoid overfitting using 
too many variables, especially those that are highly intercorrelated. To 
minimize multicollinearity, the number of continuous variables was 
reduced by eliminating highly correlated (R > 0.75) predictors and re-
taining the variable with the most interpretable biological response 
(Kramer-Schadt et al., 2013).

TABLE  1 List of the 30 environmental variables trialed in the 
MaxEnt predictive modeling

Variable name Variable description Variable type

Climatic variables

Bio01 Annual mean temperature 
(°C)

Continuous

Bio08 Mean temperature of 
wettest quarter (°C)

Continuous

Bio09 Mean temperature of 
driest quarter (°C)

Continuous

Bio10 Mean temperature of 
warmest quarter (°C)

Continuous

Bio11 Mean temperature of 
coldest quarter (°C)

Continuous

Bio12 Annual precipitation (mm) Continuous

Bio14 Precipitation of driest 
period (mm)

Continuous

Bio17 Precipitation of driest 
quarter (mm)

Continuous

Bio20 Annual mean radiation 
(Mj/m2/day)

Continuous

Bio28 Annual mean moisture 
index

Continuous

Vegetation variables

Biomass Above ground biomass 
(Mg Ha−1)

Continuous

Cra CRAFTI floristic groups: 
Class 1: Primary browse 
species 
Class 2: Secondary 
browse species 
Class 3: Tertiary browse 
species 
Class 4: Unsuitable 
habitat

Categorical

Cra% Percentage cover of 
primary and secondary 
CRAFTI-based browse 
species

Fpc Foliage projective cover 
(%)

Continuous

NDVI_au Normalized difference 
vegetation index in 
autumn

Continuous

NDVI_sp Normalized difference 
vegetation index in spring

Continuous

NDVI_su Normalized difference 
vegetation index in 
summer

Continuous

NDVI_wi Normalized difference 
vegetation index in 
winter

Continuous

NPP Net primary productivity 
(kg C/m2)

Continuous

(Continues)

Variable name Variable description Variable type

Disturbance variables

Fire Wildfire frequency 
(1970–2015): 
Class 0: areas that never 
burned and that are 
considered not 
flammable (e.g., 
rainforests) 
Class 1: areas that never 
burned 
Class 2: areas that burned 
1–3 times 
Class 3: areas that burned 
more than 3 times

Categorical

Sea Density of sealed roads (m 
of road per km2)

Continuous

Topographic variables

DEM Digital elevation model (m) Continuous

Slo Slope (degree) Continuous

Top Topographic position 
index

Continuous

Tor Topographic roughness 
(m)

Continuous

Soil variables

Asc Australian soil classifica-
tion: 
Class1 = Anthroposols; 
Class2 = Calcarosols; 
Class3 = Chromosols; 
Class4 = Dermosols; 
Class5 = Ferrosols; 
Class6 = Hydrosols; 
Class7 = Kandosols; 
Class8 = Kurosols; 
Class9 = Organosols; 
Class10 = Podosols; 
Class11 = Rudosols; 
Class 12 = Sodosols; 
Class13 = Tenosols; 
Class14 = Vertosols

Categorical

Awc Available water capacity 
(%)

Continuous

Dep Soil depth (m) Continuous

Oc Organic carbon (%) Continuous

Tp Total phosphorus (%) Continuous

TABLE  1  (Continued)
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2.3 | Bias file

Many koala records were collected via community surveys and so are 
biased to locations frequently visited by people, especially along the 
coast where urban centers are located. To reduce the effect of this 
bias, a bias file was created to account for sampling effort of records 
held in a public database. Following Predavec et al. (2015), we esti-
mated sampling intensity using the aggregation of occurrences for ar-
boreal mammal species (taxonomic groups: Petauridae, Phalangeridae, 
Phascolarctidae, and Pseudocheiridae) that are likely to reflect de-
tectability of the koala. A gaussian kernel density map of koala and 
arboreal mammal occurrences was generated and rescaled to 1–30 
(Fourcade et al., 2014). Values in the resulting map were higher in 
densely sampled areas indicating higher sampling effort (e.g., near 
urban centers).

2.4 | MaxEnt modeling

Koala habitat suitability in subregion 1 and subregion 2 was modeled 
separately using MaxEnt. For each run, hinge feature type was used 
(after Phillips & Dudik, 2008), and maximum number of iteration, con-
vergence threshold, regularization multiplier, maximum number of 
background points were set to 1,000, 10−5, 2, and 10,000, respec-
tively. Optimal regularization was selected by comparing alternatives 
in ENMTOOLS. We modeled the five spatially filtered sample sets of 
koala records separately by running 20 replicates for each set (i.e., 
random partitions of 75% training and 25% testing data) and retain-
ing the mean predicted habitat suitability. Finally, we averaged the 
mean predicted habitat suitability for each of the five sample sets to 
generate the final koala habitat suitability map. Each pixel in MaxEnt 
logistic output is assigned with a value ranging from 0 to 1 represent-
ing the relative occurrence rate of suitable environmental conditions 
for the target species (habitat suitability). We used the receiver oper-
ating characteristic (ROC) curve on test data to evaluate the model’s 
performance. The area under the ROC curve (AUC) provides a single 
indicator of model performance (Phillips et al., 2006), with AUC > 0.7 
indicating good discriminatory power (Hosmer & Lemeshow, 1989).

We analyzed the relationship between koala records (n = 3,116) 
that were not used in the MaxEnt analysis (see section “Study area and 
species occurrence records”) and the predictive habitat suitability model 
output. These records were neither filtered nor adjusted based on sur-
vey effort. Finally, we analyzed the response curves of the predictor 
variables to assess their influence on the prediction. Response curves 
show how predicted suitability of a model built using only one variable 
changes as it is varied.

2.5 | Validation of model using independent 
field data

2.5.1 | Site selection

To ground-truth the koala MaxEnt Model, we established 65 sites in 
different land tenures (including timber production landscapes) across 

the study area from the coast to over 1,000 m in altitude (Appendix 
S1). Sites with a recent history of logging or fire (<5 years) were 
avoided as recent disturbance would influence model validation if ko-
alas were absent. Allocation of sites was stratified using four habitat 
quality classes (very high, high, moderate, low) derived from a prelimi-
nary version of the koala habitat suitability model (Law et al., unpubl.). 
Ground-truth sites were evenly spread between lower slopes (n = 28) 
and upper slopes (n = 32) with a small sample from midslopes (n = 5). 
Areas with unsuitable habitat for koalas, such as heath or swamp, 
were not included as ground-truth sites.

2.5.2 | Koala occupancy

Koala males emit loud bellows during the breeding season (Ellis et al., 
2011) allowing this behavior to be used for estimating koala occu-
pancy. At each ground-truth site, we deployed one SongMeter (SM2 
– Wildlife Acoustics) to record koala bellows. SongMeters were pro-
grammed to record from one hour before sunset until sunrise for 
seven consecutive nights. Two of the 65 SongMeters failed to record 
data, leaving us with occupancy data for 63 sites (441 sample nights). 
The distance at which koala calls can be detected is likely to vary with 
environmental conditions, but bellows are considered to be detect-
able by SongMeters up to at least 100 m (W. Ellis personal communi-
cation). All SongMeter sampling was undertaken in the koala mating 
season across three trips in 2015; one trip in October/November, one 
in late November, and one in December.

2.5.3 | Analysis of koala calls

Recordings were scanned by acoustic software and a koala recogniser 
(Towsey, Planitz, Nantes, Wimmer, & Roe, 2012). Recordings matched 
by the koala recogniser were checked for false positives by manu-
ally visualizing spectrograms of the audio and listening to recordings, 
while random checks were carried out for false negatives. A single 
koala call was made up of multiple event triggers. We defined a koala 
call as sequential event triggers that were <60 s apart. The number of 
koala calls was manually tallied to give the total number of koala calls 
per site per night.

2.5.4 | Occupancy analysis and validation method

We used an occupancy modeling framework to account for imperfect 
detection of koala bellows at sites and estimate probability of site oc-
cupancy (MacKenzie et al., 2002). We used data from seven consecu-
tive nights of sampling to estimate the probability of detection and 
used this to calculate probability of occupancy in PRESENCE version 
10.5 (Hines, 2006). For the validation of the MaxEnt model, probabil-
ity of occupancy per site was estimated by incorporating the MaxEnt 
modeled habitat suitability for each ground-truth site as a covariate 
(predictor) in a regression relationship. The fit of this relationship 
against koala occupancy was compared, via model selection proce-
dures, with other potentially important site covariates. Competing 
models were ranked using Akaike Information Criterion (AIC), which 
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measures the trade-off between model complexity (number of param-
eters) and precision (fit) of the models. The difference between each 
model’s AIC value and the best-fitting model was calculated, with 
models of delta AIC < 2 from the best model considered to have sub-
stantial support.

Modeling followed a multistaged process.

1.	 We identified the importance of possible covariates for koala 
detectability to improve the accuracy of occupancy estimates. 
Daily rainfall (p(rainfall)), month of sampling trip (p(trip)), and 
topographic position (p(topo)) were compared against a null model 
with constant detectability (p(.)).

2.	 Using results for detectability (Step 1), we compared the strength 
of the relationship between koala occupancy, the MaxEnt modeled 
habitat suitability, the site habitat quality index (see 2.5.5), and a 
null model of constant site occupancy (Psi(.)).We also included a 
selection of other potential predictors of koala habitat (NPP, topo-
graphic position, elevation, and wildfire frequency) that were ex-
tracted for the 250-m pixel for each of the ground-truth sites.

2.5.5 | Site habitat quality

The second approach for field validation was a site-based assessment 
of habitat potential for koalas. To quantitatively assess browse tree 
availability at each site, a 200-m transect was established and at every 
20-m interval, the Point-Quarter technique (Pollard, 1971) was em-
ployed to measure the distance to the nearest tree (>20-cm diameter 
at breast height, dbh) in each quadrant. Each tree was identified to 
species where possible, and its diameter was measured and height es-
timated. This resulted in data on 40 trees from 10 points along each 
transect. The Point-Quarter technique was then used to estimate 
stem density and when multiplied by the % occurrence of different 
species and their mean diameter, we were able to calculate the basal 
area (to account for tree size) for the different species measured. An 
index of habitat quality for koalas at each ground-truth site was cal-
culated based on browse tree basal area and diversity (Appendix S1).

3  | RESULTS

3.1 | MaxEnt modeling

A large number of continuous variables were highly correlated 
(R > 0.75) and were therefore excluded from MaxEnt modeling. Some 
of the continuous variables initially retained (i.e., water-holding ca-
pacity, organic carbon and phosphorus, and sealed roads; Table 1) 
were also discarded after exploratory analysis showed their response 
curves lacked realism and ecological sense. Therefore, the models 
for subregion 1 and subregion 2 were built on a total of 14 predic-
tors: three categorical variables (soil type (Asc), vegetation type (Cra), 
and wildfire frequency (Fire; Table 1)) and 11 continuous variables 
(climatic variables (Bio14, Bio28), vegetation quantity (Biomass, Fpc, 
local landscape extent of preferred vegetation types (Cra%), elevation 

(DEM), soil depth (Dep), site productivity (NPP), and topography 
(Slo, Top and Tor; Table 1)). AUC ranged from 0.736 to 0.752 (n = 5, 
mean ± SE = 0.741 ± 0.006) for subregion 1 and from 0.786 to 0.801 
(n = 5, mean ± SE = 0.796 ± 0.006) for subregion 2. For both subre-
gions, Asc, Cra, DEM, and Fire provided the greatest contribution to 
the model (Fig. 2).

The response curves of Asc, Cra, Fire, and DEM (Fig. 3a,b) showed 
some differences between the two subregions. Predicted suitability 
of Asc was higher for Class 10 (Podosols) in subregion 1 and Class 
12 (Sodosols) in subregion 2, while Class 13 (Tenosols) and Class 11 
(Rudosols) showed the lowest probability values for subregion 1 and 
subregion 2, respectively. Predicted suitability of Cra was higher for 
Class 1 and decreased gradually from Class 2 to Class 4 in both sub-
regions. Predicted suitability of Fire showed similar values for Class 
0, Class 1, and Class 2 (~36%, ~53%, and ~44%, respectively) in both 
subregions. However, Class 3 (high frequency of wildfire) showed a 
markedly higher predicted suitability in subregion 2 (~49%) when com-
pared to subregion 1 (~24%). The response curve of DEM showed a 
similar pattern in both subregions as predicted suitability decreased 
for higher values. High predicted suitability <100 m and between 500 
and 600 m elevation, reflect a concentration of koala records at those 
elevations.

Habitat suitability values ranged from 0 to 0.88 
(mean ± SE = 0.39 ± 0.15) and were classified into nine categories cor-
responding to 0.1 increments (Fig. 4). Most of the areas characterized 
by high frequency of koala records (Fig. 5) were correctly modeled and 

F IGURE  2 Percent contribution of the 14 predictor variables in 
(a) subregion 1 and (b) subregion 2. See Table 1 for environmental 
variables description
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F IGURE  3 Response curves from MaxEnt modeling of koala records for (a) subregion 1 and (b) subregion 2. See Table 1 for environmental 
variables description
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F IGURE  3  (Continued)
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assigned with high or very high suitability classes. Koala records less 
frequently fell in areas modeled as moderate suitability and rarely in 
low suitability habitat.

We analyzed the frequency of the 3,116 koala records that were 
excluded from MaxEnt analysis within the nine modeled suitability 
classes. The frequency of the nine classes was unimodal with >75% 
of the study area recording habitat suitability values ≤0.5 (Fig. 6). The 
distribution was unequal across the classes, and ~50% of the records 
were located in areas with habitat suitability >0.6, representing ~8% of 
the study area. The highest frequency of records (~34%) was recorded 
between 0.6 and 0.7. Only ~7% of the records were located in areas 
with suitability <0.4, yet this constituted ~51% of the study area.

3.2 | Field validation using koala occupancy

A total of 276 koala bellows were recorded on 46 out of 441 nights of 
sampling at 29% of sites. A high number (>20) of koala calls were re-
corded at the following sites: Braemar State Forest, Wild Cattle Creek 
State Forest, Chichester State Forest, Pine Creek State Forest, and 
Yabbra State Forest.

Modeling of detection probability indicated that constant detec-
tion was the best supported model (Table 2), with a low probability 
of detection per night of 0.32. However, varying detectability by trip 
fell within two AIC points of the top model and so was also supported 

(although with half the AIC weight). Koala detectability declined 
slightly from 0.43 in October/November to 0.36 in late November 
to 0.30 in December. Neither daily rainfall nor a topographic position 
index influenced detectability.

Modeling of occupancy per site against the MaxEnt modeled hab-
itat suitability calculated at the 250-m pixel scale surrounding each 
ground-truthed site revealed a near linear relationship between fit-
ted values of site occupancy and the MaxEnt model output (Fig. 7). 
In other words, an increase in model output was correlated positively 
with koala occupancy (df = 62, r = 0.681, p < 0.001). The data were 
considered to be a good fit to this model as assessed by the Pearson 
chi-squared statistic (chi-square = 338.349, p = 0.10, chat = 1.5781). 
A similar pattern was evident when the two subregions were validated 
separately.

3.3 | Field validation using the site habitat quality  
index

The MaxEnt model was significantly correlated with site quality for 
koalas at ground-truth sites as represented by the site habitat quality 
index derived from browse tree availability. The site index increased 
positively with the MaxEnt output in both subregions (Subregion 1: 
r2 = 0.29; p = 0.0039; Subregion 2: r2 = 0.15, p = 0.017) (Fig. 8). The 
relationship was weaker, although still significant, for the high eleva-
tion subregion 2, where there was more scatter and fewer ground-
truth sites. Some of the variability in the relationship can be attributed 
to a group of rainforest sites that are potentially overpredicted by the 
model (Fig. 8). These were typically small patches in close proximity 
to eucalypt forest.

3.4 | Koala occupancy versus MaxEnt model, habitat 
quality index, and other predictors

The MaxEnt model was a better predictor of koala occupancy than 
the site habitat quality index that was based solely on browse trees 
(Table 3). When assessed individually, other site attributes including 
NPP, topographic position, elevation, and the frequency of wildfires 
were also poorer predictors of koala occupancy than the MaxEnt model.

4  | DISCUSSION

We demonstrate the value of field-validated species distribution mod-
eling for conservation-dependent species, using the iconic, koala, as 
a case study. Our spatially-explicit model of koala habitat at a 250 m 
resolution is suitable for guiding management of koalas in timber pro-
duction forests and other land-uses or managing wildfire. For exam-
ple, forestry compartments (~200 ha) form the basic planning unit for 
timber harvesting and a model of habitat suitability at the resolution 
of a subcompartment scale (~6 ha) would allow efficient targeting of 
management actions (e.g., browse tree retention) to areas modeled as 
high suitability and avoid areas modeled as low suitability. However, 
we also urge that such applications are coupled with an adaptive 

F IGURE  4 Koala habitat suitability map from MaxEnt modeling in 
northern NSW. Nine categories of habitat suitability are shown. Areas 
cleared of native vegetation (i.e., gray) were not modeled
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management process so that the effectiveness of management for 
target species is carefully monitored.

Our model corrected for the high spatial bias in the distribution of 
koala records and was evaluated statistically as a good fit to existing 

koala records. Most importantly, independent ground-truthing data 
demonstrated that the model was reliable for predicting both poten-
tial habitat quality and koala occupancy. Previous large-scale maps 
of koala likelihood have been produced at a much coarser resolution 
(e.g., 10 km) (Predavec et al., 2015), which may be more difficult for 
managers to apply at local scales, although such maps could work in 
concert with habitat suitability maps at finer scales. About 1.66 million 
ha were predicted to support moderate-  to high-quality habitat for 
koalas in northeast NSW. Such a large area could support a substan-
tial koala population given relatively high occupancy levels recorded 
during ground-truthing.

4.1 | Model drivers

Our model identified areas of high habitat suitability for koala as those 
with low wildfire frequency over the past 45 years. High-intensity 
fires burn the canopy and can cause death or injury to koalas and a 

F IGURE  5 Examples of four areas of 
koala habitat suitability characterized by 
high record density

F IGURE  6 Distribution of area coverage (%) and koala records 
(%) within nine ranges of habitat suitability classes. Koala records are 
those not used in model development
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temporary reduction in the availability of foraging habitat (Lunney 
et al., 2007). The north coast region of NSW has had the second high-
est number of fires of any region in NSW (behind Sydney) (Bryant, 
2008), although it is unknown whether fire severity is higher in that 
region. Fire severity affected the occurrence of arboreal mammals in 
Victorian forests, with gullies and unburnt forest serving as refuges 
(Chia et al., 2015). One implication of the importance of wildfires is 
that while an area may support a suitable suite of conditions for koa-
las, such habitat may be unoccupied due to mortality from fire. Other 
historical factors or current threats including fragmentation by urbani-
sation, predation by dogs, or extreme climatic events (e.g., drought 
and heat waves—Lunney, Stalenberg, Santika, & Rhodes, 2014) may 
similarly reduce koala occupation levels in suitable habitat. The effect 
of logging on habitat suitability for koalas warrants further investi-
gation (Kavanagh, Debus, Tweedie, & Webster, 1995; Smith, 2004), 
although in our study ground-truth sites with many bellows all had a 
long history of logging.

Koalas also had a lower likelihood of occurrence on Tenosol and 
Rudosol soils. Tenosols are generally sandy with very low productivity 
and chemical fertility, poor structure, and low water-holding capac-
ity (Northcote et al., 1960–1968). Rudosols tend to be shallow with 
little soil development and are often gravely or rocky. Podosols and 
Sodosols were predicted to have higher suitability for koalas, and 

these soils have high organic matter and occur either in coastal areas 
(Podosols) or in areas with poor drainage (Sodosols), yet both are con-
sidered to be relatively infertile. As an example, many koala records in 
the Port Stephens area occurred on Podosol soils, which are likely to 
be associated with Swamp Mahogany, Eucalyptus robusta, a preferred 
browse species in this and other coastal areas (Phillips et al., 2000). A 
direct measure of soil fertility was not supported during model build-
ing, possibly because better quality soils have been selectively cleared 
for agriculture and these were masked from our modeling process.

Floristic composition was the third important variable contributing 
to the koala model. Habitat suitability was higher on areas mapped with 
primary browse species, including red gum species (e.g., Eucalyptus 
tereticornis), Tallowwood (E. microcorys) and Swamp Mahogany (E. ro-
busta) and lower in areas typed as unsuitable habitat (e.g., Banksia 
heath, rainforest with no eucalypt emergents). The two intermedi-
ate floristic classes for koala suitability had less discriminating abil-
ity, probably because many of the constituent forest types are broad 
classifications of forest that support varying frequencies of browse 
species. For example, Blackbutt Eucalyptus pilularis and Spotted Gum 
Corymbia variegata types are widespread and not considered highly 
suitable for koalas (e.g., Phillips et al., 2000), although the frequency of 
Tallowwood and Grey Gum Eucalyptus punctata, two primary browse 
species, is highly variable in these forest types.

Elevation was the fourth important variable in the koala model. 
Habitat suitability was predicted to be higher at low elevations in sub-
region 1, but it was also predicted to be high at 500–600 m in subre-
gion 2. Elevations of 200–500 m and >800 m were predicted to have 
lower suitability, although with other factors modifying this effect. This 
pattern of a low and midelevation peak for koalas is related to the ex-
tensive number of records in coastal areas and in the Dorrigo plateau 
and adjacent to Comboyne plateau. An association with low elevations 
has long been known (e.g., Kavanagh et al., 1995; Phillips et al., 2000; 
Smith, 2004); however, high habitat suitability at midelevation and 
even some high elevations (e.g., Nowendoc) appears to be less widely 
appreciated (but see Krockenberger, 1993; Kavanagh & Stanton, 
1995; Braithwaite, 1996). Notably, the New England Tablelands (and 
the north coast NSW) are predicted to provide climate refugia for koa-
las under climate change scenarios (Briscoe et al., 2016).

Other variables made minor contributions to the koala model, such 
as a greater likelihood of koalas on flatter terrain and where soil depth, 
primary productivity, biomass, and Fpc were higher. The contributions 
of variables differed somewhat between subregions, such as a greater 
importance in subregion 1 than subregion 2 for precipitation in the 

F IGURE  7 Model validation results from 63 ground-truth sites. 
The graph shows the relationship between the fitted probability 
of koala occupancy (after accounting for detectability) against the 
MaxEnt modeled habitat suitability at a 250-m pixel scale. Values 
are the mean fitted values ± 95% confidence intervals (i.e., predicted 
from the MaxEnt model)
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TABLE  2 Model selection results for ground-truth sites comparing the null model (constant detection) with alternative models that allow 
koala detectability to covary with daily rainfall, month of survey (trip), and topographic position

Model AIC Delta AIC AIC weight Model likelihood No. parameters −2*Log likelihood

psi(.),p(.) 238.74 0.00 0.6657 1.0000 2 234.74

psi(.),p(trip) 240.22 1.48 0.3176 0.4771 2 236.22

psi(.),p(rainfall) 246.12 7.38 0.0166 0.0250 2 242.12

psi(.),p(topo) 253.2 14.46 0.005 0.0007 2 249.2
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driest quarter. A landscape effect of the surrounding area of preferred 
forest types had less influence in subregion 1 where there were many 
koala records in fragmented forest. Although such variables made 
minor contributions to the model over the entire region, their omission 
resulted in localized, substantial changes to the model output justify-
ing their inclusion.

4.2 | Model validation and performance

Our process of validation gave emphasis to field validation over cross-
validation and the resulting AUC score, although the two approaches 
produced consistent results. The AUC score indicated the model had 
good discriminatory ability and this was confirmed by field validation 
at ground-truth sites. Koala occupancy (adjusted for detectability) at 
ground-truth sites increased in a near linear pattern as MaxEnt mod-
eled habitat suitability output values increased. The MaxEnt model 
output at a 250-m scale was a stronger performer than larger spatial 
scales (authors unpubl. data), indicating that more extensive areas of 

higher habitat suitability than a 250-m pixel were not better predictors 
of koala occupancy. This is consistent with the fact that the landscape 
variable, percentage cover of primary and secondary CRAFTI forest 
types, was a minor contributor to the MaxEnt model. Such a result 
contrasts with local studies in fragmented rural areas that have identi-
fied the importance of landscape context, patch size, fragmentation, 
and connectivity (McAlpine et al., 2006), although variations in thresh-
old values for landscape variables differ among regions (Rhodes et al., 
2008). This suggests that occupancy in modeled high-quality habitat 
may be lower than expected where the local landscape is fragmented.

The MaxEnt model clearly outperformed a site-based habitat 
quality index calculated from browse tree availability and diversity 
at ground-truth sites when predicting koala occupancy at those 
sites. This is consistent with the view that the determinants of koala 
habitat are likely to include a range of features including tree spe-
cies, soil type, moisture, topography, elevation, and especially dis-
turbance variables such as wildfire frequency (Lunney et al., 2007), 
all of which are accounted for by the model. In addition, there 

F IGURE  8 Model validation using the 
relationships between a habitat quality 
index based on browse tree availability and 
diversity with each MaxEnt model output 
for 65 ground-truth sites. Ground-truth 
sites for each of two subregions are shown 
separately
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TABLE  3 Model selection results comparing the null model (constant occupancy) with models allowing koala occupancy at ground-truth 
sites to covary with the 250-m scale MaxEnt model output (psi 250 m), habitat quality index (psi habitat quality), and other site attributes 
calculated for each ground-truth site. Detectability was held constant

Model AIC Delta AIC AIC weight Model likelihood No. parameters −2*Log likelihood

psi(250 m),p(.) 236.25 0.00 0.5152 1.0000 3 230.25

psi(.),p(.) 238.74 2.49 0.1483 0.2879 2 234.74

psi(npp),p(.) 239.76 3.51 0.0891 0.1729 3 233.76

psi(topo),p(.) 240.07 3.82 0.0763 0.1481 3 234.07

psi(elevation),p(.) 240.55 4.3 0.06 0.1165 3 234.55

psi(fire),p(.) 240.69 4.44 0.056 0.1086 3 234.69

psi(habitat quality),p(.) 240.07 3.82 0.0551 0.1481 3 234.07
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was considerable uncertainty in how to allocate tree species into 
different classes of browse quality (Appendix S1). More quantita-
tive data on koala diet would be required to more reliably allocate 
tree species to different classes and to set appropriate weights in 
developing such a habitat quality index. This has implications for 
directing conservation actions or management mitigations for ko-
alas. Identification of sites based solely on browse tree species is 
likely to be less accurate than habitat models that consider a suite 
of variables.

4.3 | Model limitations

Some limitations in the MaxEnt model were evident. In particular, 
ground-truthing identified that patches of rainforest, which do not 
contain browse species for koalas, may be overpredicted by the model 
at lower elevations. Prediction of rainforest as habitat was most ap-
parent for smaller patches surrounded by otherwise suitable euca-
lypt forest. As an example, one ground-truth site within a patch of 
rainforest contained emergent Eucalyptus saligna, a preferred browse 
species, and the patch itself was also in close proximity to eucalypt 
forest. Koalas were recorded calling at this site, but it is not known 
whether the calls originated inside or outside the patch of rainforest. 
Alternatively, while large patches of rainforest do not represent habi-
tat for koalas, their fringes, as well as small patches, may be used for 
shelter, such as during hot weather.

4.4 | Acoustic surveys and occupancy modeling

Another key result of field validation at ground-truth sites was 
confirmation of the effectiveness of acoustic recorders at detect-
ing male mating bellows, in conjunction with occupancy modeling. 
Acoustic surveys were much more effective than concurrent pellet 
searches (authors’ unpubl. data), probably because pellets are dif-
ficult to locate in some forest types (e.g., moist forests or where a 
dense understorey and litter is present). It is well known that koala 
pellet detectability depends on ground layer complexity and that 
pellet decay rates vary within and among vegetation communities, 
being notably faster in moist types (Cristescu, Goethals, Banks, 
Carrick, & Frère, 2012).

Koalas were recorded acoustically on 29% of ground-truth sites 
(42% using all methods—acoustics, scats, and sightings; authors un-
publ. data). This is a relatively high level of naïve occupancy given that 
a number of these sites were selected to test model performance in 
areas modeled as low suitability, indicating naïve occupancy in better 
quality habitat would be higher. This has implications for the poten-
tial of northeast NSW to support a previously overlooked, but large 
koala population. Previous surveys for koalas in northern NSW have 
recorded lower levels of detection than our survey. For example, a re-
gional survey of northern NSW using playback and spot-lighting re-
corded koalas at 12% of sites (Kavanagh et al., 1995). We suggest that 
acoustic recorders represent an innovative and efficient method for 
surveying and monitoring koalas and that the status of koalas in the 
northeast forests warrants re-assessment.
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