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Abstract Cell heterogeneity may be caused by stochastic or deterministic effects. The

inheritance of regulators through cell division is a key deterministic force, but identifying

inheritance effects in a systematic manner has been challenging. Here, we measure and analyze cell

cycles in deep lineage trees of human cancer cells and mouse embryonic stem cells and develop a

statistical framework to infer underlying rules of inheritance. The observed long-range intra-

generational correlations in cell-cycle duration, up to second cousins, seem paradoxical because

ancestral correlations decay rapidly. However, this correlation pattern is naturally explained by the

inheritance of both cell size and cell-cycle speed over several generations, provided that cell

growth and division are coupled through a minimum-size checkpoint. This model correctly predicts

the effects of inhibiting cell growth or cycle progression. In sum, we show how fluctuations of cell

cycles across lineage trees help in understanding the coordination of cell growth and division.

Introduction
Cells of the same type growing in homogeneous conditions often have highly heterogeneous cycle

lengths (Smith and Martin, 1973). The minimal duration of the cell cycle will be determined by the

maximal cellular growth rate in a given condition (Kafri et al., 2016). However, many cells, in partic-

ular, in multicellular organisms, do not grow at maximum rate, and their cycle length appears to be

set by the progression of regulatory machinery through a series of checkpoints (Novak et al., 2007).

While much is known about the molecular mechanisms of cell-cycle regulation, we have little quanti-

tative understanding of the mechanisms that control duration and variability of the cell cycle.

Recently, extensive live-cell imaging data of cell lineages have become available, characterizing,

for example, lymphocyte activation (Mitchell et al., 2018; Duffy et al., 2012; Hawkins et al., 2009),

stem cell dynamics (Filipczyk et al., 2015), cancer cell proliferation (Spencer et al., 2013;

Barr et al., 2017; Ryl et al., 2017), or nematode development (Du et al., 2015). Such studies across

many cell types have found that cycle lengths are similar in sister cells, which may be due to the

inheritance of molecular regulators across mitosis (Spencer et al., 2013; Mitchell et al., 2018;

Yang et al., 2017; Barr et al., 2017; Arora et al., 2017). By contrast, ancestral correlations in cycle

length fade rapidly, often disappearing between grandmother and granddaughter cells, or already

between mother and daughter cells.

Remarkably, however, the cycle lengths of cousin cells are found to be correlated, indicating that

the grandmothers exert concealed effects through at least two generations. High intra-generational

correlations in the face of weak ancestral correlations have been observed in cells as diverse as bac-

teria (Powell, 1958), cyanobacteria (Yang et al., 2010), lymphocytes (Markham et al., 2010) and

mammalian cancer cells (Staudte et al., 1984; Sandler et al., 2015; Chakrabarti et al., 2018). The

ubiquity of this puzzling phenomenon suggests that it may help reveal basic principles that control

cell-cycle duration.
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Theoretical work has shown that more than one heritable factor is required to generate the

observed cell-cycle correlations in T cell lineage trees, while the nature of these heritable factors has

remained unclear (Markham et al., 2010). Stimulated by the idea of circadian gating of the cell cycle

in cyanobacteria (Mori et al., 1996; Yang et al., 2010), recent comprehensive analyses of cell line-

age trees across different species have proposed circadian clock control as a source of cell-cycle var-

iability that can produce the observed high intra-generational correlations (Sandler et al., 2015;

Mosheiff et al., 2018; Martins et al., 2018; Py et al., 2019); such a model also reproduced

observed cycle correlations in colon cancer cells during chemotherapy (Chakrabarti et al., 2018).

However, in proliferating mammalian cells in culture, the circadian clock has been found to be

entrained by the cell cycle (Bieler et al., 2014; Feillet et al., 2014). Moreover, the circadian clock is

strongly damped or even abrogated by oncogenes such as MYC (Altman et al., 2015;

Shostak et al., 2016) yet MYC-driven cancer cells retain high intra-generational correlations

(Ryl et al., 2017).

Ultimately, the cell cycle must coordinate growth and division in order to maintain a well-defined

cell size over many generations. Yeast species have long served as model systems. Here, it is

assumed that growth drives cell-cycle progression, although molecular mechanisms of size sensing

remain controversial (Facchetti et al., 2017; Schmoller and Skotheim, 2015). By contrast, animal

cells can grow very large without dividing (Conlon and Raff, 2003), and recent precise measure-

ments suggest that growth control involves both modulation of growth rate and cell-cycle length

(Sung et al., 2013; Tzur et al., 2009; Cadart et al., 2018; Ginzberg et al., 2018; Liu et al., 2018).

A minimal requirement for maintaining cell size is that cells reach a critical size before dividing, which

can be achieved by delaying S phase (Shields et al., 1978).

Here, we present a systematic approach to learning mechanisms from measured correlation pat-

terns of cell cycles in deep lineage trees. First, we develop an unbiased statistical framework to iden-

tify the minimal model capable of accounting for our experimental data. We then propose a

biological realization of this abstract model based on growth, inheritance and a size checkpoint, and

experimentally test specific predictions of the biological model.

Results

Lineage trees exhibit extended intra-generational correlations
To study how far intra-generational cell-cycle correlations extend within cell pedigrees, we gener-

ated extensive lineage trees by imaging and tracking TET21N neuroblastoma cells for up to ten gen-

erations during exponential growth (Figure 1A, Figure 1—video 1, Figure 1—source data 1 and

Figure 1—figure supplement 1A). Autonomous cycling of these cells is controlled by ectopic

expression of the MYC-family oncogene MYCN, overcoming the restriction point and thus mimicking

the presence of mitogenic stimuli (Ryl et al., 2017). High MYCN also downregulated circadian clock

genes (Figure 1—figure supplement 2). The distribution of cycle lengths (Figure 1B and Figure 1—

figure supplement 1B) was constant throughout the experiment (Figure 1C and Figure 1—figure

supplement 1C) and similar across lineages (Figure 1—figure supplement 1D), showing absence of

experimental drift and of strong founder cell effects, respectively. To determine cycle-length correla-

tions without censoring bias caused by finite observation time (Figure 1—figure supplement 3A;

Sandler et al., 2015), we truncated all trees after the last generation completed by the vast majority

(>95%) of lineages. The resulting trees were 5–7 generations deep, enabling us to reliably calculate

Spearman rank correlations between relatives up to second cousins (Figure 1D,E and Figure 1—fig-

ure supplement 3B).

Cycle-length correlations of cells with their ancestors decreased rapidly with each generation

(Figure 1E). However, the correlations increased again when moving down from ancestors along

side-branches—from the grandmother toward the first cousins and also from the great-grandmother

toward the second cousins (Figure 1E). The correlations among second cousins varied somewhat

between replicates (we will show below that we can control these correlations experimentally by

applying molecular perturbations). If cell-cycle length alone were inherited (e.g. by passing on regu-

lators of the cell cycle to daughter cells), causing a correlation coefficient of �md between mother

and daughter cycle lengths, and sisters are correlated by �ss, then first and second cousins would be

expected to have cycle length correlation �ss�
2
md and �ss�

4
md, respectively (Staudte et al., 1984). The
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actually observed cousin correlations are much larger, confirming previous observations on first

cousins as summarized in Sandler et al. (2015) and extending them to second cousins. This discrep-

ancy between simple theoretical expectation and experimental data was not due to spatial inhomo-

geneity or temporal drift in the data (Figure 1; Figure 1—figure supplement 3C-E). Thus, the

lineage trees show long-ranging intra-generational correlations that cannot be explained by the

inheritance of cell-cycle length.

Correlation patterns are explained by long-range memories of two
antagonistic latent variables
We used these data to search for the minimal model of cell-cycle control that accounts for the

observed correlation pattern of lineage trees (Materials and methods and Appendix 2). To be unbi-

ased, we assumed that cycle length t is controlled jointly by a yet unknown number d of cellular

quantities that are inherited from mother to daughter, x ¼ ðx1; . . . ; xdÞ
T , such that t ¼ tð

Pd
l¼1

alxlÞ,

with positive weights a. We take x to be a Gaussian latent variable and, generalizing previous work

(Cowan and Staudte, 1986), describe its inheritance by a generic model accounting for inter-
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Figure 1. Cell-cycle lengths and their correlations captured by live-cell imaging. (A) Live-cell microscopy of neuroblastoma TET21N cell lineages.

Sample trees shown with cells marked that were lost from observation (dot) or died (cross). (B) Distribution of cycle lengths, showing median length

(and interquartile range). (C) Cycle length over cell birth time shows no trend over the duration of the experiment. (D) Lineage tree showing the relation

of cells with a reference cell (red); ancestral lineage (light blue), first side-branch (dark blue) and second side branch (green). (E) Spearman rank

correlations of cycle lengths between relatives (with bootstrap 95%-confidence bounds) of three independent microscopy experiments. Color code as in

D. B and C show replicate rep3.

The online version of this article includes the following video, source data, and figure supplement(s) for figure 1:

Source data 1. Overview of all time-lapse experiments displayed in the manuscript.

Source data 2. Raw cell cycle data for lineage trees in TET21N replicates rep1-3.

Figure supplement 1. Temporal drift analysis of time-lapse imaging data.

Figure supplement 2. Expression of the circadian clock module depends on MYCN level.

Figure supplement 3. Censoring bias and spatial trend analysis.

Figure 1—video 1. Time-lapse movie of dividing TET21N cells (replicate rep3).

https://elifesciences.org/articles/51002#fig1video1
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generational inheritance as follows: In any given cell i, xi is composed of an inherited component,

determined by x in the mother, and a cell-intrinsic component that is uncorrelated with the mother.

The inherited component is specified by an inheritance matrix A, such that the mean of xi condi-

tioned on the mother’s x is hxijxi ¼ Ax (Figure 2A). The cell-intrinsic component causes variations

around this mean with covariance hðxi � AxÞðxi � AxÞT jxi ¼ I, where, with appropriate normalization

of the latent variables, I is the unit matrix. Additional positive correlations in sister cells may arise

due to inherited factors accumulated during, but not affecting, the mother’s cycle (Arora et al.,

2017; Barr et al., 2017; Yang et al., 2017); additional negative correlations may result from parti-

tioning noise (Sung et al., 2013). These are captured by the cross-covariance between the intrinsic

components in sister 1 and 2, hðx1 � AxÞðx2 � AxÞT jxi ¼ gI. In total, dðd þ 1Þ parameters can be
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Figure 2. Bifurcating autoregressive inheritance models. (A) Coupled inheritance of d Gaussian latent variables xl
and cell-intrinsic fluctuations generate cycle lengths. (B) Relative model evidences calculated for d ¼ 1; 2, for the

indicated inheritance matrices A ¼ ½alm� and sister coupling g. Although Model VII is the most parsimonious for

replicates rep2 and rep3 (blue and gray bars), only Model V with unidirectionally coupled inheritance explains all

data well, including rep1 (bordeaux bars). Error bars from Monte-Carlo integration. (C) Model fits for rep1. Single-

variable inheritance (Model II) and pure cross-inheritance (VII) fails to generate strong intra-generational

correlations; uncoupled inheritance (III) fails to generate low ancestral correlations; Model V fits the data best.

Rank correlations of the data shown with bootstrap 95%-confidence bounds (black bars). Model prediction bands

(colored bars) were generated from the range of the parameter sets with likelihood higher than 15% of the best fit,

corresponding to a Gaussian 95% credible region. (D) Model V, best-fit ancestral autocorrelation functions, for

cycle lengths t and latent variables. Long-range memory in the latent variables is anticorrelated and masked in

observed cycle times.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Gaussian model predictions of correlations for all three replicates.
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adjusted to fit the correlation pattern of the lineage trees: the components alm of the inheritance

matrix A, the weights al and the sister correlation g. Together, these inheritance rules specify bifur-

cating first-order autoregressive (BAR) models for multiple latent variables governing cell-cycle

duration.

To determine the most parsimonious BAR model supported by the experimental data, we

employed a standard Bayesian model selection scheme. Selection is based on the Bayesian evi-

dence, which rewards fit quality while naturally penalizing models of higher complexity (defined as

being able to fit more diverse data sets; for details see Appendix 2, Evidence calculation). Specifi-

cally, we evaluated the likelihood of the measured lineage trees for a given BAR model, used it to

compute the Bayesian evidence, and ranked BAR models accordingly (Figure 2B).

The simplest model that generated high intra-generational correlations was based on the inde-

pendent inheritance of two latent variables (Model III; Figure 2C, cyan dots), whereas one-variable

models failed to meet this criterion (Model II, Figure 2C, blue dots and Model I). However, Model III

consistently overestimated ancestral correlations and hence its relative evidence was low (<10% for

all data sets). To allow additional degrees of freedom, we accounted for interactions of latent varia-

bles. The most general two-variable model with bidirectional interactions (Model VI), overfitted the

experimental data and consequently had low evidence. The models best supported by the data had

unidirectional coupling, such that x2 in the mother negatively influenced x1 inherited by the daugh-

ters, that is with a12<0 and a21 ¼ 0 (Figure 2B, Models IV, V and VII). Among these, Model VII, with a

single inheritance parameter a12, is simplest, but was not compatible with experimental replicate

rep1 as it could not generate second-cousin correlations (Figure 2B,C). Both Models IV and V were

compatible with all replicates; however, Model V with only one self-inheritance parameter for both

variables (a11 ¼ a22>0Þ was preferred (Model V, Figure 2B,C, orange dots). Model V produced a

remarkable inheritance pattern (Figure 2D): Individually, both latent variables had long-ranging

memories, with ~50% decay over 2–3 generations. However, the negative unidirectional coupling

cross-correlated the variables negatively along an ancestral line, resulting in cycle-length correlations

that essentially vanished after one generation. Nevertheless, strong intra-generational correlations

were reproduced by the model due to long-range memories of latent variables together with posi-

tive sister-cell correlations (g>0). We conclude that the coexistence of rapidly decaying ancestral cor-

relations and extended intra-generational correlations can be explained by the inheritance of two

latent variables, one of which inhibits the other.

Cell size and speed of cell-cycle progression are antagonistic heritable
variables
During symmetric cell division, both cell size and regulators of cell-cycle progression are passed on

from the mother to the daughter cells (Spencer et al., 2013; Yang et al., 2017; Arora et al., 2017;

Barr et al., 2017). We now show that simple and generic inheritance rules for these two variables

provide a physical realization for BAR Model V.

To divide, cells need to both grow to a minimum size (Shields et al., 1978) and receive license to

progress through the cell cycle from the regulatory machinery (Novak et al., 2007). Indeed, growth

and cell-cycle progression can be separately manipulated experimentally in mammalian cells

(Fingar et al., 2002). In particular, cells continue to grow in size when regulatory license is withheld,

for example in the absence of mitogens, and growth is not otherwise constrained, for example by

mechanical force or growth inhibitors (Fingar et al., 2002; Conlon and Raff, 2003).

While growth and cell-cycle progression are separable and heritable processes, they also interact.

At the very least, the length of the cell cycle needs to ensure that cells grow to a sufficient size for

division. This interaction alone implies an effect of one inherited variable, cycle progression, on the

other, cell growth, that anti-correlates subsequent cell cycles (as required by BAR model V): If a

delayed regulatory license prolongs the mother’s cell cycle, it will grow large. By size inheritance, its

daughters will be large at birth, reach a size sufficient for division quickly and hence may have

shorter cell cycles. Thus, despite inheritance of growth and cell-cycle regulators mothers and daugh-

ters may have very different cycle lengths due to this interaction.

Based on these ideas, we formulated a simple quantitative model of growth and cell-cycle pro-

gression on cell lineage trees. We introduced the variables ‘cell size’ s, measuring metabolic, enzy-

matic and structural resources accumulated during growth, and p, characterizing the progression of

the cell-cycle regulatory machinery. Unlike the latent variables of the BAR model x1 and x2, their
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mechanistic counterparts s and p, respectively, are governed by rules reflecting basic biological

mechanisms (Figure 3A, Appendix 3). Size s grows exponentially and is divided equally between the

daughters upon division. We found that under some experimental conditions generating long cell

cycles (downregulation of MYCN, see below), stable cell size distributions required feedback regula-

tion of growth rate, as seen experimentally (Sung et al., 2013; Tzur et al., 2009); we implemented

this as a logistic limitation of growth rate at large sizes for these conditions. The progression variable

p determines the time taken for the regulatory machinery to complete the cell cycle, which is con-

trolled by the balance of activators and inhibitors of cyclin-dependent kinases. These regulators are

inherited across mitosis (Spencer et al., 2013; Yang et al., 2017; Arora et al., 2017; Barr et al.,

2017) and hence the value of p is passed on to both daughter cells with some noise. Cells divide

when they have exceeded a critical size, requiring time tg, and the regulatory machinery has
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Figure 3. The growth-progression model. (A) Scheme of the growth-progression model with heritable variables relating to cell size s and cycle

progression timing p. (B) Measured and simulated cell-cycle length distributions (upper). Model distribution resolved by the division-limiting process

(lower). (C) Measured and modeled correlation pattern with Spearman rank correlation coefficient and bootstrap 95%-confidence bounds. (D)

Proportion of simulated cells limited by growth or progression. (E) Correlation of simulated mother-daughter cycle lengths colored by their division

limitation: both by tg (black), both by tp (green), mother tp – daughter tg (magenta), mother tg – daughter tp (cyan). Percentage of cells in each

subgroup and their correlation coefficients are shown. (F) Correlation of simulated cousin-cousin cycle length colored by the limitation of the common

grandmother: by tg (orange) or tp (blue). (G) Autocorrelations along ancestral line of cycle length t, growth time tg and the progression time tp, and the

cross-correlation tptg.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Best-fit parameter values of the growth-progression model for all experiments shown, obtained from ABC-simulations.

Figure supplement 1. Parameterized growth-progression model generates long-range memory.

Kuchen et al. eLife 2020;9:e51002. DOI: https://doi.org/10.7554/eLife.51002 6 of 25

Research article Computational and Systems Biology

https://doi.org/10.7554/eLife.51002


progressed through the cycle, which takes an approximately log-normally distributed time

(Ryl et al., 2017; Mitchell et al., 2018) modeled as tp ¼ expðpÞ. Hence the cycle length is

t ¼ maxðtg; tpÞ. Apart from requiring a minimum cell size for division, the growth-progression model

does not implement a drive of the cell cycle by growth and thus allows cells to grow large during

long cell cycles. By this mechanism, the cell size variable s is influenced by cycle progression, analo-

gous to the BAR variable x1. By contrast, the progression variable p is not influenced by cell size,

analogous to the variable x2 in the BAR model.

We fitted this model to the measured lineage trees by Approximate Bayesian Computation (Fig-

ure 3—figure supplement 1A and Figure 3—source data 1). The parameterized model yielded a

stationary cell size distribution (Figure 3—figure supplement 1B) and reproduced the cycle-length

distribution (Figure 3B and Figure 3—figure supplement 1C) as well as the ancestral and intra-gen-

erational correlations (Figure 3C and Figure 3—figure supplement 1D). Thus, the dynamics of cell

growth and cell-cycle progression, coupled only through a minimum-size requirement, account for

the intricate cycle-length patterns in lineage trees.

To gain intuition on the inheritance patterns of cycle length, we first considered ancestral correla-

tions, focusing on mother-daughter pairs. Individual cell cycles in the model are either growth-lim-

ited, that is division happens upon reaching the minimum size, or progression-limited, that is the cell

grows beyond the minimum size until the cycle is completed (Figure 3D and Figure 3—figure sup-

plement 1E). If both mother and daughter are progression-limited (i.e., the threshold size is

exceeded by both), their cycles are positively correlated (Figure 3E, green dots). As in this case size

inheritance is inconsequential, this positive correlation is explained by the inheritance of the cell-

cycle progression variable p alone. By contrast, all mother-daughter pairs that involve at least one

growth limitation show near-zero (Figure 3E, cyan dots) or negative correlations (Figure 3E,

magenta and black dots). This pattern is explained by the anti-correlating effect that daughters of

longer-lived and hence larger mother cells require on average shorter times to reach the size thresh-

old. Next, we considered intra-generational correlations, focusing on first cousins (Figure 3F). While

cousins are positively correlated overall, this correlation is carried specifically by cousins that

descend from a grandmother with a progression-limited cell cycle (Figure 3F, blue dots), whereas

cousins stemming from a growth-limited grandmother are hardly correlated (Figure 3F, orange

dots). Since progression-limited cells can grow large, this observation indicates that cousin correla-

tions are mediated by inheritance of excess size, as is confirmed by conditioning cousin correlations

on grandmother size (Figure 3—figure supplement 1F). Size inheritance over several generations is

also evident in the autocorrelation of the time required to grow to minimum size, tg (Figure 3G and

Figure 3—figure supplement 1G, black dots). The autocorrelation of the progression time tp is also

positive (but less long-ranging; Figure 3G and Figure 3—figure supplement 1G, green squares),

while the negative interaction with growth is reflected in the negative cross-correlation (Figure 3G

and Figure 3—figure supplement 1G, red triangles). In sum, the long-range memories of cell-cycle

progression and cell growth are masked by negative coupling of these processes, causing rapid

decay of cell-cycle length correlations along ancestral lines (Figure 3G and Figure 3—figure supple-

ment 1G, orange triangles). These inheritance characteristics of the growth-progression model mir-

ror those of BAR model V (see Figure 2D).

Effects of molecular perturbations on cell-cycle correlations are
correctly predicted by the model
If the growth-progression model captures the key determinants of the cell-cycle patterns in lineage

trees, it should be experimentally testable by separately perturbing growth versus cell-cycle progres-

sion. We first derived model predictions for these experiments. Intuitively, if growth limitation were

abolished by slowing cell-cycle progression, only progression would be inherited and therefore

mother-daughter correlations of cycle time could no longer be masked. As a result, we expect intra-

generational correlations to be reduced relative to ancestral correlations when inhibiting cycle pro-

gression; conversely, inhibiting growth (and thereby increasing growth limitation) should raise them.

Indeed, using the model to simulate perturbation experiments (Figure 3—source data 1), we found

that growth inhibition increased cousin correlations relative to mother-daughter correlations,

whereas slowing cell-cycle progression decreased these correlations (Figure 4A).
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To test this prediction, we slowed cell-cycle progression experimentally by reducing MYCN,

exploiting the doxycycline-tunable MYCN gene integrated in the TET21N cells. Cells grew to larger

average size (Figure 4B, blue lines) over longer and more variable cell cycles (Figure 4C). These

data show that lowering MYCN slowed cell-cycle progression while allowing considerable cell

growth. Further consistent with this phenotype, expression of mTOR, a central regulator of metabo-

lism and growth (Fingar et al., 2002), was not lowered (Figure 4—figure supplement 1A). In a sep-

arate experiment, we inhibited cell growth by applying the mTOR inhibitor rapamycin, which

reduced cell size by a small but reproducible amount (Figure 4B, red lines). This treatment also

lengthened the cell cycle slightly (Figure 4C) but without changing MYCN protein levels (Figure 4—

figure supplement 1B). Thus, lowering MYCN and inhibiting mTOR are orthogonal perturbations

that act on cell-cycle progression and cell growth, respectively. As predicted by the growth-progres-

sion model, these perturbations resulted in markedly different cycle-length correlation patterns

within lineage trees (Figure 4D,E and Figure 4—figure supplement 1C,D): Lowering MYCN

decreased intra-generational correlation and, in particular, removed second-cousin correlations. By

contrast, rapamycin treatment strongly increased intra-generational correlations and caused ances-

tral correlations to decline only weakly. Collectively, these findings support the growth-progression

model of cell-cycle regulation.
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Figure 4. Targeted perturbation of growth and cell-cycle progression. (A) Predictions for changes in the ratio �c=�md of cousin to mother-daughter

correlations, when slowing growth or cycle progress compared to the best-fit parameters (control). �c1 ¼ first cousins, �c2 ¼ second cousins. (B–F)

Experimental perturbations of cycle progress and growth by MYCN inhibition and rapamycin treatment, respectively. (B) Cell size distribution. Areal

forward scatter measured experimentally by flow cytometry for control high-MYCN, MYCN-inhibited and rapamycin-treated (40 nM) TET21N

neuroblastoma cells; shown are two biological replicates, indicated by solid and dashed lines, that were measured with the same FACS settings. (C)

Measured and best-fit model cycle length distributions. Median and interquartile range are indicated. (D) Measured (black) and best-fit correlation

pattern of MYCN-inhibited and rapamycin-treated cells with Spearman rank correlation coefficient and 95%-confidence bounds. (E) Measured cousin/

mother daughter correlation ratios. (F) Proportion of simulated cells limited by growth or progression, using best-fit parameters for MYCN inhibition or

rapamycin-treatment.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Raw cell cycle data for lineage trees in perturbed TET21N replicates -myc1-2 and rap1-2.

Figure supplement 1. Growth-progression and BAR models fitted to perturbation data.

Figure supplement 2. Logistic growth-progression model fitted to all control, rapamycin-treated and embryonic stem cell datasets.
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Cousin correlations reflect active cell-size checkpoint
We then asked whether the cycle-length correlation patterns experimentally observed in lineage

trees contain information about the underlying regulation. To this end, we fitted the BAR and

growth-progression models to MYCN and rapamycin perturbation data. We again obtained good

agreement with the data (Figure 4C,D and Figure 4—figure supplement 1C–E,G–J). MYCN knock-

down cells grew larger; to obtain a stable cell-size distribution for the corresponding model fits, we

implemented logistic regulation of growth rate at large cell sizes. When we applied, for comparison,

this regulation to the control and rapamycin treatment data, the model fits (Figure 4—figure sup-

plement 2) were not noticeably affected compared to purely exponential growth. This result indi-

cates that growth rate regulation affecting large cells, as found experimentally (Ginzberg et al.,

2018), is compatible with long-range intra-generational correlations in cell-cycle length.

In terms of fit parameters of the model, MYCN inhibition caused considerable slowing of cycle

progression and also a moderate decrease in growth rate (Figure 3—figure supplement 1A, param-

eters � and k, respectively). As a result, the vast majority of cell cycles were progression-limited

(Figure 4F and Figure 4—figure supplement 1F). For the rapamycin-treated cells, we estimated

growth rates that were lower than for the control experiments on average, as expected (Figure 3—

figure supplement 1A, parameter k). Also, correlations in cell-cycle progression increased in

mother-daughter and sister pairs (parameters a and g, respectively). This is consistent with rapamy-

cin inhibiting mTOR and hence growth, but not affecting drivers of the cell cycle, ERK and PI3K

(Adlung et al., 2017), since then lengthening of the cell cycle due to slower growth may allow pro-

longed degradation of cell-cycle inhibitors, which would increase inheritance of cell-cycle length

(Smith and Martin, 1973). Taken together, rapamycin treatment increased the fraction of growth-

limited cell cycles (Figure 4F and Figure 4—figure supplement 1F) and inheritance of cell-cycle

progression speed, thus causing increased ancestral and intra-generational correlations.

We hypothesized that growth may be limiting primarily for rapidly proliferating cell types, even

without specific growth inhibition. We analyzed time-lapse microscopy data of non-transformed

mouse embryonic stem cells (Filipczyk et al., 2015) that proliferate much faster than the neuroblas-

toma cells (Figure 5A and Figure 5—figure supplement 1A). Side-branch correlations of cycle

length were again large (Figure 5B Figure 5—figure supplement 1B), as seen in the previous data

except for the MYCN-inhibited cells. Interestingly, the strength of the intra-generational correlations

was most similar to the much more slowly dividing rapamycin-treated cells (cf. Figure 4D). As

before, the BAR model required two negatively coupled variables to account for these data

(Figure 5C, Figure 5—figure supplement 1D,E). Fitting the growth-progression model to the data

(Figure 5A,B), we found that the majority (~60%) of cell cycles were limited by growth (Figure 5D,

Figure 5—figure supplement 1C), indicating that cycle length of fast proliferating mammalian cells

is, to a large extent, controlled by growth.

Discussion
Here, we showed that the seemingly paradoxical pattern of cell-cycle lengths in lineage trees, with

rapidly decaying ancestral and long-range intra-generational correlations, can be accounted for by

the inheritance of two types of quantities: resources accumulated during the cell cycle (cell ‘size’)

and regulators governing the speed of cell-cycle progression. The fact that these are fundamental

processes in dividing cells may help explain the ubiquity of the paradoxical cell-cycle pattern. Tar-

geted experimental perturbations of cell growth and cell-cycle progression support our model.

As an alternative mechanism underlying the observed cell-cycle variability and cousin correlations,

modulation of the cell cycle by the circadian clock has been suggested, with strongest experimental

evidence to date for cyanobacteria (Sandler et al., 2015; Mosheiff et al., 2018; Py et al., 2019).

Unlike cyanobacteria, proliferating mammalian cells show entrainment of the circadian clock to the

cell cycle with periods well below 24 hr (Bieler et al., 2014; Feillet et al., 2014). Whether in this set-

ting the circadian clock could still influence cell-cycle correlations remains to be studied.

Our proposed mechanism for cycle length correlations was motivated by Bayesian model selec-

tion. All data sets which displayed long-range correlation patterns (control replicate rep1 and rapa-

mycin treatment of neuroblastoma cells as well as ESCs) selected a BAR model featuring long-range

inheritance of two memory variables, which is masked in mother-daughter pairs by an anticorrelating

interaction between them. The growth-progression model shares these essential features. Size
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inheritance is predicted to be particularly long-range by the fits of the growth-progression model to

the experimental data. This memory emerges because growth does not force cell-cycle progression,

allowing cells to grow large in progression-limited cycles and then pass on size over several genera-

tions. Such weak coupling between concurrent processes echoes recent work in E. coli on timing of

cell division (Micali et al., 2018) and on the existence of two parallel adder processes for replication

and division (Witz et al., 2019). Of note, the latter paper also utilizes a statistical framework for sys-

tematic model selection against experimentally observed correlation patterns akin to our approach.

Our findings raise the question of the mechanistic modes by which cells coordinate cell cycle and

growth, which has been a long-standing problem; see Shields et al. (1978) for historical references

and Ho et al. (2018) for a recent review. Recent work on this problem has shown the existence of

negative feedback of cell size on growth rate (Ginzberg et al., 2018). We have found that our

results remain robust when implementing a simple form of such a feedback (logistic dependence of

growth rate on size) in the growth-progression model. Another recent study has shown that growth

of many mammalian cells during the cell cycle adds a volume that only weakly increases with cell vol-

ume at birth (termed near-adder behavior, Cadart et al., 2018). This behavior appears to be caused

by a combination of growth-rate regulation and cell-size effects on cell-cycle progression. We expect

that factoring in the cell-cycle length correlations studied here will help uncover the mechanistic

details of cell size regulation. Refining our model in this direction may also help capture yet more

detail of the correlation structure, such as the apparent increasing trend from aunt to first cousins

and greataunt to second cousins. Moreover, we envisage that our inference approach could be

extended to include finely resolved data on cell-cycle phases (Chao et al., 2019) as well as multiple

cell fates via asymmetric division and differentiation (Duffy et al., 2012).
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Figure 5. Rapid cell cycle of embryonic stem cells are frequently growth-limited. (A) Cycle length distribution of

data (black) and growth-progression model (purple). (B) Measured (black) and modeled (purple) correlation

pattern using the growth-progression model. (C) Model evidences of the BAR model, version numbering as in

Figure 2B. (D) Proportion of simulated cells limited by growth or progression. Data from Filipczyk et al. (2015)

reanalyzed for cell-cycle duration.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Growth-progression and BAR models fitted to embryonic stem cell data.

Kuchen et al. eLife 2020;9:e51002. DOI: https://doi.org/10.7554/eLife.51002 10 of 25

Research article Computational and Systems Biology

https://doi.org/10.7554/eLife.51002


Materials and methods

Experimental methods
MYCN-tunable mammalian neuroblastoma SH-EP TET21N (RRID:CVCL_9812) cells were cultured as

in Lutz et al. (1996). These TET21N cells were obtained from Dr. Frank Westermann (German Can-

cer Research Center, DKFZ) whose lab generated this line. This cell line is regularly authenticated by

an in-house DKFZ service using STR profiling. Mycoplasma contamination testing was negative.

MYCN and mTOR were inhibited using 1 mg/ml doxycycline or 20–40 nM rapamycin (Calbiochem,

553210–100 UG), respectively. Cells were grown on ibidi m-slides and phase contrast images (Nikon

Ti-E) acquired every 6–15 min for up to 7 days under controlled growth conditions. The presented

data consists of independent biological and technical replicates with n = 3 for untreated TET21N

cells, n = 2 for MYCN-inhibited and rapamycin-treated cells. Cells were tracked in Fiji (version 1.48d)

using the tracking plugin MTrackJ (Meijering et al., 2012). For flow cytometry, cells were stained

with MYCN primary antibody (Santa Cruz Biotechnology, Cat# sc-53993; RRID:AB_831602), second-

ary fluorescence-conjugated antibody goat anti-mouse Alexa Fluor 488 IgG (Life Technologies

Cat#A-11001; RRID:AB_2534069) and measured on a Miltenyi VYB MACSQuant Analyser. See

Appendix 1 for details.

Data analysis
MATLAB (R2016b) was used for all data analyses. Correlations represent Spearman rank correlations

or, for the BAR model, Pearson correlation coefficients between the Gaussian-transformed cycle

times. The difference between these two methods was far smaller than the experimental error. Error

bounds were estimated by bootstrap re-sampling on the level of lineage trees. Censoring bias was

avoided by truncating lineage trees after the last generation completed by all lineages within the

experiment (see e.g. Sandler et al., 2015 and Appendix 1), truncating the trees to 7, 6 and 5 gener-

ations for the three MYCN amplified experiments. MYCN-inhibited and rapamycin-treated trees

were five generations deep.

Bifurcating autoregressive (BAR) model
We constructed BAR models of cell-cycle inheritance, as described in detail in Appendix 2. Briefly,

the cell state is determined by a vector of Gaussian (latent) variables which are inherited from the

mother to the daughter cells by a linear map plus a cell-intrinsic noise term, which is correlated

between daughters. The model is thus a Gaussian latent-variable model, where inheritance takes the

form of an autoregressive vector-AR(1) process defined on a lineage tree. The cycle time is then cal-

culated by an data-derived (approximately exponential) function of a weighted sum of the cellular

state. We calculated whole-lineage tree log-likelihood functions analytically and used them to evalu-

ate Bayesian Evidences (Bayes factors) that quantify the relative support from the data for various

model variants.

The growth-progression model
Cell-cycle progression is modeled by a fluctuating, centered Gaussian heritable variable q, analogous

to version II of the BAR model. Variables were scaled and shifted, p ¼ spqþ �, yielding log-normal

progression durations tp ¼ expðpÞ. Size accumulation was modeled by exponential growth or for

MYCN inhibition logistic growth. The normalized critical cell size sth fluctuates slightly and indepen-

dently in each cell as sth ¼ 1þ z with z ~Nð0; s2

gÞ. The growth-progression model was implemented

in Matlab (R2016b), R (3.4.3) and OCaml (4.06) and 30 trees of 7 generations simulated, correspond-

ing to the experimental dataset sizes. The simulation was repeated 100 times to generate confi-

dence bounds. Parameters were fitted using Approximate Bayesian Computation independently for

each dataset. See Appendix 3 for details.
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Höfer T. 2017. Cell-Cycle position of single MYC-Driven Cancer cells dictates their susceptibility to a
chemotherapeutic drug. Cell Systems 5:237–250. DOI: https://doi.org/10.1016/j.cels.2017.07.005, PMID: 2
8843484

Sandler O, Mizrahi SP, Weiss N, Agam O, Simon I, Balaban NQ. 2015. Lineage correlations of single cell division
time as a probe of cell-cycle dynamics. Nature 519:468–471. DOI: https://doi.org/10.1038/nature14318,
PMID: 25762143

Schmoller KM, Skotheim JM. 2015. The biosynthetic basis of cell size control. Trends in Cell Biology 25:793–802.
DOI: https://doi.org/10.1016/j.tcb.2015.10.006, PMID: 26573465

Shields R, Brooks RF, Riddle PN, Capellaro DF, Delia D. 1978. Cell size, cell cycle and transition probability in
mouse fibroblasts. Cell 15:469–474. DOI: https://doi.org/10.1016/0092-8674(78)90016-8, PMID: 569024

Shostak A, Ruppert B, Ha N, Bruns P, Toprak UH, Eils R, Schlesner M, Diernfellner A, Brunner M, ICGC MMML-
Seq Project. 2016. MYC/MIZ1-dependent gene repression inversely coordinates the circadian clock with cell
cycle and proliferation. Nature Communications 7:11807. DOI: https://doi.org/10.1038/ncomms11807,
PMID: 27339797

Smith JA, Martin L. 1973. Do cells cycle? PNAS 70:1263–1267. DOI: https://doi.org/10.1073/pnas.70.4.1263,
PMID: 4515625

Spencer SL, Cappell SD, Tsai FC, Overton KW, Wang CL, Meyer T. 2013. The proliferation-quiescence decision is
controlled by a bifurcation in CDK2 activity at Mitotic exit. Cell 155:369–383. DOI: https://doi.org/10.1016/j.
cell.2013.08.062, PMID: 24075009

Staudte RG, Guiguet M, d’Hooghe MC. 1984. Additive models for dependent cell populations. Journal of
Theoretical Biology 109:127–146. DOI: https://doi.org/10.1016/S0022-5193(84)80115-0, PMID: 6471866

Sung Y, Tzur A, Oh S, Choi W, Li V, Dasari RR, Yaqoob Z, Kirschner MW. 2013. Size homeostasis in adherent cells
studied by synthetic phase microscopy. PNAS 110:16687–16692. DOI: https://doi.org/10.1073/pnas.
1315290110, PMID: 24065823

Tzur A, Kafri R, LeBleu VS, Lahav G, Kirschner MW. 2009. Cell growth and size homeostasis in proliferating
animal cells. Science 325:167–171. DOI: https://doi.org/10.1126/science.1174294, PMID: 19589995

Wasserman L. 2000. Bayesian model selection and model averaging. Journal of Mathematical Psychology 44:92–
107. DOI: https://doi.org/10.1006/jmps.1999.1278, PMID: 10733859

Kuchen et al. eLife 2020;9:e51002. DOI: https://doi.org/10.7554/eLife.51002 14 of 25

Research article Computational and Systems Biology

https://doi.org/10.1016/j.cels.2017.08.015
http://www.ncbi.nlm.nih.gov/pubmed/28988800
https://doi.org/10.7554/eLife.26947
http://www.ncbi.nlm.nih.gov/pubmed/29595474
http://www.ncbi.nlm.nih.gov/pubmed/8761302
https://doi.org/10.1098/rsif.2009.0488
https://doi.org/10.1073/pnas.1811309115
http://www.ncbi.nlm.nih.gov/pubmed/30409801
https://doi.org/10.1016/B978-0-12-391857-4.00009-4
http://www.ncbi.nlm.nih.gov/pubmed/22264535
https://doi.org/10.1126/sciadv.aau3324
http://www.ncbi.nlm.nih.gov/pubmed/30417095
https://doi.org/10.1073/pnas.1715639115
http://www.ncbi.nlm.nih.gov/pubmed/29514960
https://doi.org/10.1073/pnas.93.19.10183
http://www.ncbi.nlm.nih.gov/pubmed/8816773
https://doi.org/10.1103/PhysRevX.8.021035
https://doi.org/10.1038/ncb0707-724
http://www.ncbi.nlm.nih.gov/pubmed/17603504
https://doi.org/10.1099/00221287-18-2-382
http://www.ncbi.nlm.nih.gov/pubmed/13525657
https://doi.org/10.1101/765669
https://doi.org/10.1093/biostatistics/kxm030
http://www.ncbi.nlm.nih.gov/pubmed/17728317
https://doi.org/10.1016/j.cels.2017.07.005
http://www.ncbi.nlm.nih.gov/pubmed/28843484
http://www.ncbi.nlm.nih.gov/pubmed/28843484
https://doi.org/10.1038/nature14318
http://www.ncbi.nlm.nih.gov/pubmed/25762143
https://doi.org/10.1016/j.tcb.2015.10.006
http://www.ncbi.nlm.nih.gov/pubmed/26573465
https://doi.org/10.1016/0092-8674(78)90016-8
http://www.ncbi.nlm.nih.gov/pubmed/569024
https://doi.org/10.1038/ncomms11807
http://www.ncbi.nlm.nih.gov/pubmed/27339797
https://doi.org/10.1073/pnas.70.4.1263
http://www.ncbi.nlm.nih.gov/pubmed/4515625
https://doi.org/10.1016/j.cell.2013.08.062
https://doi.org/10.1016/j.cell.2013.08.062
http://www.ncbi.nlm.nih.gov/pubmed/24075009
https://doi.org/10.1016/S0022-5193(84)80115-0
http://www.ncbi.nlm.nih.gov/pubmed/6471866
https://doi.org/10.1073/pnas.1315290110
https://doi.org/10.1073/pnas.1315290110
http://www.ncbi.nlm.nih.gov/pubmed/24065823
https://doi.org/10.1126/science.1174294
http://www.ncbi.nlm.nih.gov/pubmed/19589995
https://doi.org/10.1006/jmps.1999.1278
http://www.ncbi.nlm.nih.gov/pubmed/10733859
https://doi.org/10.7554/eLife.51002


Witz G, van Nimwegen E, Julou T. 2019. Initiation of chromosome replication controls both division and
replication cycles in E. coli through a double-adder mechanism. eLife 8:e48063. DOI: https://doi.org/10.7554/
eLife.48063, PMID: 31710292

Yang Q, Pando BF, Dong G, Golden SS, van Oudenaarden A. 2010. Circadian gating of the cell cycle revealed in
single cyanobacterial cells. Science 327:1522–1526. DOI: https://doi.org/10.1126/science.1181759, PMID: 202
99597

Yang HW, Chung M, Kudo T, Meyer T. 2017. Competing memories of mitogen and p53 signalling control cell-
cycle entry. Nature 549:404–408. DOI: https://doi.org/10.1038/nature23880, PMID: 28869970

Kuchen et al. eLife 2020;9:e51002. DOI: https://doi.org/10.7554/eLife.51002 15 of 25

Research article Computational and Systems Biology

https://doi.org/10.7554/eLife.48063
https://doi.org/10.7554/eLife.48063
http://www.ncbi.nlm.nih.gov/pubmed/31710292
https://doi.org/10.1126/science.1181759
http://www.ncbi.nlm.nih.gov/pubmed/20299597
http://www.ncbi.nlm.nih.gov/pubmed/20299597
https://doi.org/10.1038/nature23880
http://www.ncbi.nlm.nih.gov/pubmed/28869970
https://doi.org/10.7554/eLife.51002


Appendix 1

Experimental methods

Cell culturing and treatment
MYCN-tunable mammalian neuroblastoma SH-EP TET21N (TET21N, RRID: CVCL_9812)

(Lutz et al., 1996) cells were cultured in RPMI 1640 medium supplemented with 10% fetal calf

serum and 1% penicillin/streptomycin at 37˚C 5% CO2 and 88% humidity. Versene was used

for harvesting. TET21N cells were originally isolated from a female patient. Cell lines are

authenticated by the German Cancer Research Center in house facility every half-year. MYCN-

inhibited populations were established by incubating cells with 1 mg/ml doxycycline for 48–72

hr prior to further analysis. Growth-inhibited populations were generated by treating cells with

the mTOR inhibitor rapamycin (Calbiochem, 553210–100 UG) at 20 nM or 40 nM rapamycin

dissolved in DMSO. Cells were treated with rapamycin or the same concentration of DMSO for

72 hr prior to harvesting for flow cytometry or live-cell microscopy.

Live-cell microscopy
103 cells were grown on 8-well ibidi m-slides coated with collagen IV (Cat# 80822) in RPMI

1640 medium and imaged every 6–15 min for up to 7 days under controlled growth conditions

at 37˚C, 5% CO2 and 80% humidity (Pecon incubator P). Growth media was changed every 2–3

days. Phase contrast images were acquired with an inverted widefield microscope (Nikon Ti-E)

using an EMCCD camera (Andor iXON3 885) and a 10x (CFI Planfluor DL-10x, NA 0.3) or 20x

lense (CFI Plan Apochromat DM 20x, NA 0.75). Cells were tracked in Fiji (version 1.48d) using

the manual tracking plugin MTrackJ (Meijering et al., 2012). The presented imaging data

consists of independent biological and technical replicates with n = 3 for untreated TET21N

cells, n = 2 for MYCN-inhibited cells and n = 2 for rapamycin-treated cells.

Flow cytometry and antibody staining
106 cells were fixed with 4% paraformaldehyde for 15 min at room temperature.

Permeabilization was performed in 90% ice-cold methanol for at least 24 hr at �20˚C. Cells

were washed in staining buffer (1% BSA, 0.1% TritonX in PBS), and incubated with 0.5–1 mg

per sample of MYCN primary antibody (Santa Cruz Biotechnology, Cat# sc-53993; RRID:AB_

831602) for 1 hr at room temperature. Cells were washed 3x with staining buffer and

incubated with a secondary flouresence-conjugated antibody, goat anti-mouse Alexa Fluor

488 IgG (Life Technologies Cat#A-11001; RRID:AB_2534069), again for 1 hr at room

temperature. Cells were washed 3x with staining buffer and DNA content staining was

performed with FxCycle Violet Stain (Thermo Fischer Scientific). A Miltenyi VYB MACSQuant

Analyser was used for measurements and data was analysed using FlowJo software.

Transcriptomics
mTOR mRNA expression data in TET21N cells under control and MYCN-inhibited conditions

was obtained from RNA-Seq measurements by Ryl et al. (2017) deposited at GEO

(GSE98274).

Data analysis
MATLAB (R2016b) was used for all data analysis steps.
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Correlation coefficients
Correlation patterns of lineage trees of data and the growth-progression model represent

Spearman rank correlations. For the bifurcating autoregressive (BAR) model, Pearson

correlation coefficients are calculated between the Gaussian-transformed cycle times. These

are the same as Gaussian rank correlations between cycle times. In practice, the differences

between Gaussian rank correlations and Spearman rank correlations were much smaller than

experimental error bounds on either, so we did not differentiate between the measures.

Confidence bounds on correlation coefficients were estimated by bootstrap resampling on the

level of lineage trees; resampling on the level of individual pairs of related cells would neglect

the correlations between cells of the same tree and thus underestimate variability. Trees that

did not contain information on the cell pair under analysis were removed prior to

bootstrapping. At each bootstrap repeat, family trees were randomly drawn with replacement

up to the number of trees in the original dataset. From the resulting bootstrap sample all cell

pairs were used to calculate the sample correlation coefficient. This process was repeated

10,000 times. From the resulting distribution of correlation coefficients the 95% quantiles were

used as confidence bounds.

Exponential growth
For each experiment, an exponential growth model of the form Nt ¼ N0 expðktÞ was fitted to

cell counts over time by performing a maximum likelihood estimation using the trust-region

algorithm in MATLAB.

Cell-cycle length distribution over time
At each time point, the moving-window median was calculated from all cells born within a

window of 10 hr before or after this point.

Randomization
All cells within a dataset were randomly paired with each other and correlation of the resulting

sample calculated. This procedure was repeated 10,000 times. From the resulting distribution

the mean and the 95% quantiles are given.

Censoring
Censoring bias resulting from a finite observation time can lead to an overrepresentation of

faster cells. To demonstrate this effect, we generated trees using a toy model with

independent normally distributed cycle lengths. The trees were truncated at various total

observation times and Spearman rank correlation coefficients between all related cells within

the observation time window were sampled. As Figure 1—figure supplement 3A shows,

short observation times strongly distort the sampled mother-daughter and sibling correlations

away from their true value 0. The same basic effect persists for more distant relationships and

can be further enhanced if cycle lengths are inherited. This censoring bias can be avoided by

truncating lineage trees not after a given observation time, but after the last generation

completed by all lineages within the experiment, uniformly over all trees (see e.g.

Sandler et al., 2015). In this way slower and faster-cycling lineages are represented equally.

Because some cells were inevitably lost from the field of view by migration, and a small

percentage of cells showed extremely slow cycles, such a strict cut-off was unfeasible in our

experiments. We assumed that cell loss by migration is not correlated to cycle length, so

migrating cells were not counted as missing from otherwise complete trees. Within the

remaining tree, we then determined the last generation to be included in our analysis by the

following procedure: We first counted the number of cells naliveðGÞ within each generation G

that were still alive at the end of the observation period. The last generation Glast to be

included was then determined as the maximum generation such that
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PGlast

G¼1
naliveðGÞ

P

¥

G¼1
naliveðGÞ

� 5%: (1)

All further generations were removed from the dataset. This procedure truncated the trees

to 7, 6 and 5 generations, respectively for the three replicate experiments using our MYCN

amplified cell line. MYCN-inhibited and rapamycin-treated trees were 5 generations deep.

Spatial trend
To assess potential spatial biases related to locally variable conditions, cells were divided into

a 4 � 4 grid according to their position at division. The cycle length distribution of cells within

each grid region (containing � 5 cells) was compared to the distribution (1) within every other

grid region and (2) of the whole dataset at a 5% significance level using a two-sided

Kolmogorov-Smirnov test and correcting for multiple testing using the Benjamini-Hochberg

procedure (using functions ks.test and p.adjust in R). Note also that because cells are motile

they experience a range of local environments during their lifetime.
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Appendix 2

Bifurcating autoregressive model for cycle inheritance

Setup
In order to explore systematically which simple local inheritance schemes can generate the

experimentally observed cycle length correlations, we study a class of Gaussian latent variable

models of adjustable complexity. In the models, the cycle length t of a cell is obtained from a

standard normal variable ‘ by a nonlinear transformation t ¼ gð‘Þ. In our data, cell cycle

lengths are roughly log-normally distributed, so g is approximately a shifted exponential

function. To simplify and make the model more robust to outliers, we determine g empirically,

such that its inverse g�1 transforms the cell cycle length into a standard normal variate. That is,

we choose gð‘Þ ¼ c�1

ex ðcgaussð‘ÞÞ where cgauss is the cumulative distribution function (CDF) of a

standard normal distribution, and cex is the empirical CDF of the experimental data. This

transformation discards all information about the shape and mean value of the cycle length

distribution; the set of ‘ variables then purely reflect the strength of correlations between cell

cycles. The (Pearson) moment correlation coefficients between the variables ‘ are identical to

the so-called Gaussian rank correlation coefficients (Boudt et al., 2010) between the

corresponding cycle lengths t, which are similarly robust to outliers as the more common

Spearman rank correlation.

The Gaussian variable ‘ is used to model correlation by inheritance. ‘ is a weighted sum of

d latent, centered Gaussian variables x ¼ ðx1; . . . ; xmÞ
T with positive weights a ¼ ða1; . . .amÞ

T ,

denoted as vectors x and a. That is, ‘ ¼ aT
x ¼

P

l alxl. Inheritance in the model occurs by

passing on latent variables from mother to daughter cells. The basic model equation relation

reads

x
i ¼Axþ b�i þ �b��{: (2)

Here, a superscript i¼ 1;2 denotes a daughter cell, and absence of a superscript refers to

the mother cell. The matrix A implements inheritance: The average of a daughter’s latent

variables, given the mother’s is hxijxi ¼Ax. This linear coupling of latent variables through

inheritance may take any form compatible with the basic stability requirement that its operator

norm must satisfy kAk<1. Since both daughters inherit the same contribution from the mother,

inheritance correlates the daughters’ latent variables positively. Daughter cells are also subject

to random fluctuations which we model by standard normal random vectors �i. These

fluctuations are correlated due to the term �b��{ in Equation 2. Here �{ designates the sister cell

of i, for example �2¼ 1. We parametrize these correlations via

b¼ cosðb=2Þ; �b¼ sinðb=2Þ; g� 2b�b¼ sinb;where�p=2<b<p=2: (3)

The sister correlations conditioned on the mother latent variables then become

hxix�{
T
jxi ¼ gI; hxixi

T
jxi ¼ I; (4)

where I is the d-dimensional unit matrix. Positive sister correlations ðg>0Þ may arise due to

fluctuations that occur within the mother cell after its cycle duration has been fixed and are

shared by the daughters. Negative correlations ðg<0Þ may arise due to partitioning noise upon

inheritance. Note that latent variable fluctuations are correlated between sisters but

uncorrelated between different latent variables. Effectively, our choice of parametrization

partitions all fluctuating cell cycle-relevant processes within the daughter cells into d Gaussian

components that are maximally decorrelated, similar to a principal component decomposition.

Overall, Equation 2 defines an unbiased model with linear, local inheritance of latent

variables, and an output that is a linear combination of latent variables. Its Gaussian form may

be justified as the maximum-entropy distribution (Jaynes, 1957) for this problem, since only

covariance information is used as an experimental input at this stage. Our model is a first-
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order vector autoregressive process, defined on the lineage tree of cells; it is a latent-variable

generalization of the bifurcating autoregressive model already considered by Staudte and

coworkers (Staudte et al., 1984). We remark that in Staudte et al. (1984) the dimensionality

is d ¼ 1, and therefore a is unnecessary.

Stationary exponential growth
Combining Equations 2 and 4 by the law of total variance, the latent covariance satisfies

hxixi
T
i ¼AhxxTiAT þ I: (5)

In stationary exponential growth, averaging over a single lineage forward in time, a

stationary distribution with mean 0 and covariance C¥ is established. Then hxixi
T
i ¼ hxxTi ¼C¥,

and Equation 5 implies

C¥ ¼AC¥A
T þ I¼

X

¥

k¼0

A
k
A

kT : (6)

We take this stationary distribution of latent variables as initial condition for root cells of

lineage trees, assuming they come from an equilibrated growth phase. This assignment is not

strictly correct because the stationary distribution along forward lineages is different from the

distribution of all cells in an exponentially growing population at a given time (Lin and Amir,

2017); however, the difference was small for our parameters when tested numerically (not

shown).

Computation of the likelihood
We aim to compute the probability of generating a lineage tree with given cycle lengths

within the model. We fix a minimum generation number and consider only trees in which

essentially all branches reach this number, thus discarding overhanging cells on some

branches, (see also Sandler et al., 2015). This is crucial since in experiments with finite

duration, selection bias would otherwise be introduced (Cowan and Staudte, 1986).

We begin by indexing cells in a tree by their pedigrees, which are the sequences of sister

indices counting from the root cell, for example I ¼ i1i2 . . . ik for a cell in generation k and Iikþ1

for one of its daughters. Sorting these indices, we can then arrange all Gaussian-transformed

cycle lengths in a tree into a single vector ‘. Since ‘ is Gaussian with mean 0, its log-probability

takes on the simple quadratic form

Pð‘Þ ¼ Pð‘jA;g;aÞ ¼�
1

2
½ logdetð2pC‘Þþ ‘TC�1

‘ ‘�: (7)

To evaluate Equation 7, we need to determine the joint covariance matrix C‘ of Gaussian

cycle lengths over the given tree structure as a function of the parameters A;g;a. We start by

first deriving the joint covariance matrix C of the latent variables x. This is a block matrix with

d� d blocks CIJ that correspond to pairs of cells in well-defined relationships, such as mother-

daughter, cousin-cousin, etc. Since the lineage tree is sampled from stationary growth, CIJ

depends only on the relationship of I and J, that is on their respective ancestral lines up to the

latest common ancestor, and not on the history before. In particular, if I ¼ Jikþ1 . . . then cell I is

a descendant of cell J and we write this as I>J; otherwise we write I≯J. Note that I≯I.

Splitting one cell pedigree as I ¼ Ki, from Equation 2 we derive the relations

hxKixJ
T
i ¼hðAxK þ b�i þ �b��{ÞxJ

T
i ¼

AhxKxJ
T
i J≯K ðiÞ

AhxKxK
T
iAT þgI J ¼K�{ ðiiÞ

(

(8)

Equation 8 lets us compute C
IJ by a recursive procedure, as follows:

. Consider the case I>J. If I ¼ Ki, then J≯K. Now use Equation 8 (i) repeatedly (k times), mov-

ing up the ancestral line, until arriving at the form C
IJ ¼ A

khxJxJ
T
i ¼ A

k
C¥.
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. In the case I ¼ Ki1 . . . ik; J ¼ Kj1 . . . jk0 with j1 ¼ �{1, no cell is a descendant of the other, and
their last common ancestor is K. Use Equation 8 (i) (or its transpose) on both branches

repeatedly until the form A
k�1hxKi1xK�{1

T
iAk0�1

T
is obtained. Then use Equation 8 (ii) to get

C
IJ ¼ A

k
C¥A

k0T þ gAk�1
A

k0�1
T

These two cases cover all possible cell-cell relations, so that the procedure fully determines

the joint latent covariance C for a given tree structure, inheritance matrix A and sister

correlation g.

Finally, to obtain the covariance C‘ of the Gaussian cycle lengths ‘, we project onto a. The

elements of C‘ result as

CIJ
‘ ¼ h‘I‘Ji ¼ aThxIxJ

T
ia¼ aT

C
IJa: (9)

This completes the evaluation of the log-probability P (Equation 7), which is also equal to

the log-likelihood of the model, Pð‘Þ ¼ LðA;g;aÞ. Accounting for the constraint h‘2i ¼ 1 which

we impose to fix the arbitrary normalization of ‘, the full model has d2 þ 1þ d� 1¼ dðdþ 1Þ

adjustable parameters. This number can be reduced by restricting the inheritance matrix to a

specific form, or by setting g¼ 0, as was done for the model variants discussed in the main

text.

As a corollary, the Gaussian rank correlation between cycle lengths of any pair of cells

results as

�gauss
tItJ

¼ �‘I ‘J ¼
CIJ
‘

CII
‘

¼
aT

C
IJa

aTC¥a
: (10)

In the one-dimensional special case d¼ 1, the projection on a becomes irrelevant and

Equation 10 reduces to

�gauss
tI tJ

¼
ak I>J orJ>I

akþk0 þgakþk0�2=c¥ ¼ akþk0�2½a2þgð1� a2Þ� I≯J andJ≯I

�

; (11)

where k;k0 � 1 the distances to the latest common ancestor as in the algorithm above, and a�

A is the 1� 1 inheritance matrix. Some special cases of Equation 11 given already in

Cowan and Staudte (1986) are �gaussss ¼ ½a2þgð1� a2Þ� for sisters and �gaussc1 ¼ a2�gaussss ¼

�gaussmd
2
�gaussss for first cousins. In other words, to compute the correlation between related cells,

one multiplies mother-daughter correlations along the path connecting them, taking a

shortcut via the daughters of the last common ancestor where one instead multiplies with the

sister-sister correlation. Specializing further to g¼ 0, Equation 11 reduces to the well-known

relation �gauss
tItJ

¼ �gaussmd
kþk0

where kþ k0 is the number of cell divisions linking I and J. As detailed

in the main text, these one-dimensional special cases are insufficient to explain our data.

Evidence calculation
To compare different model versions’ ability to explain but not overfit the data, we employed

a standard Bayesian model selection scheme (see e.g. Wasserman, 2000; MacKay, 2003).

Within this framework, model selection is treated on the same grounds as parameter

inference; the task is to assign to each one out of a set M of models its likelihood to have

generated the data. One or several plausible models can then be selected on these grounds.

Concretely, the scheme proceeds as follows. The probability of model M to generate data ‘ is

obtained by integrating over all parameter values pM , which are distributed over a parameter

space PM with prior distribution pðpM jMÞ:

pð‘jMÞ ¼

Z

PM

pð‘jpM ;MÞpðpmjMÞdpM : (12)

Here, pð‘jpM ;MÞ ¼ exp½Pð‘Þ� ¼ exp½LðpMÞ� is equal to the likelihood function for model M,
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Equation 7. Applying Bayes’ rule, the probability that among M, M was the model that

generated the data, is then

pðMj‘Þ ¼
pðMÞpð‘jMÞ

P

M pðM0Þpð‘jM0Þ
: (13)

When models are equivalent a priori as we assume here, then both the prior belief in a

model, pðMÞ, and the entire denominator in Equation 13 are unimportant constants. Then the

so-called evidence or Bayes factor, obtained by calculating

EðMÞ ¼

Z

PM

pð‘jpM ;MÞdpM ; (14)

is proportional to each model’s probability of having generated the data, Equation 13. We

calculated EðMÞ numerically by Monte-Carlo integration of Equation 14; in the main text we

show the evidences relative to Model V. Conventionally, an advantage in E of a factor of 10 or

more is considered strong support in favor of a model.

We briefly discuss some important features of model selection by evidence. In the

asymptotic case of large samples (not applicable for the present data), the evidence E is

approximated by the well-known Bayes information criterion (BIC), which is an alternative to

the popular Akaike information criterion (AIC). While AIC is constructed to select a model

whose predictions are maximally similar to future repetitions of the same experiment,

evidence and BIC select the model that is most likely to have generated the existing data. BIC

and evidence, but not AIC, have a desirable consistency property: If the models M are

recruited from a hierarchy of nested models which also contains the true model, then the

simplest model in M comprising the true model is always favored for large enough samples

(Wasserman, 2000). This consistency is a manifestation of a general preference of the

evidence for parsimonious models. To illustrate this point, following MacKay (2003), we

expand the log evidence around the maximum a-posteriori estimate p�
M , using Laplace’s

method:

logEðMÞ ’ Lðp�
MÞþ logdet 2pH�1

M�

� �

� logvolðPMÞ ’ Lðp�
MÞþ

X

d

i¼1

log
si

Si
: (15)

Here, HM� ¼ ð q
2L

q
pi
M

q
p
j

M

Þjp�
M
is the Hessian of the log-likelihood, and for simplicity we have

assumed a flat parameter prior pðpMÞ ¼ 1=volðPMÞ. The ith eigenvalue 2p=si of HM� determines

the width si of the peak of the posterior distribution around p�
M , along the ith principal axis. In

the last equality, we have written the parameter space volume volðPMÞ ¼
Q

i Si as a product of

parameter ranges Si along the principal axes. Equation 15 can be interpreted as follows: As

more parameters are added to a model, the fit accuracy, measured by Lðp�
MÞ, generally

improves. However, each new parameter i0 incurs a penalty logðsi0=Si0Þ<0. The more the new

parameter needs to be constrained by the data, the more the evidence is reduced. Thus the

basic mechanism of parsimony in Bayesian model selection is this: Complex models are

characterized by a large number of parameters with wide a priori allowed ranges and sensitive

dependence on the data; in other words, they require the data to pick parameters from a

large set of possibilities. Complex models are penalized and ranked as less likely. Indeed, such

an overly flexible model can be fitted to diverse data, which we should expect to diminish the

support that a particular set of data can give to it.

Numerical efficiency and implementation
The evaluation of L (Equation 7) requires a final numerical inversion of the recursively

assembled covariance C‘ to obtain the stiffness matrix, which costs OðN3Þ operations, where N

is the number of cells in the tree. To reduce this cost, it is possible to devise an equivalent

recursive scheme in which the projected stiffness matrix, not the covariance matrix, is

computed recursively, using efficient block-inverse formulæin each recursive step. The
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computational complexity can then be improved to OðN2Þ. A version of this alternative,

equivalent scheme was implemented in the programming language OCaml and used to obtain

the results presented in the main text.
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Appendix 3

The growth-progression model

Setup
The growth-progression model is based on the idea that the two cell-cycle controlling

processes are cell-cycle progression and cell growth. The state variables of both processes,

namely, the timing of the regulatory license to divide encoded by p, and cell size s,

respectively, are inherited from mother to daughter. The two processes are coupled via

inheritance as detailed in the following.

The cell-cycle progression process
Inheritance of the velocity of cell-cycle progression is modeled by a fluctuating, centered

Gaussian variable q, passed on from mother to daughter, entirely analogous to version II of the

BAR model (see there for additional explanation), according to

qi ¼ aqþ b�iþ �b��{; (16)

where subscript i¼ 1;2 denotes a daughter cell, �{ its sister, and no subscript, the mother. a

with jaj<1, implements inheritance. The intrinsic fluctuation strength and coupling is given by b

and �b; effectively, daughter cells are correlated for given mother by, hqiq�{jqi ¼ g; hq2i jqi ¼ 1;

where g¼ 2b�b. From the centered q variables, shifted and scaled Gaussian variables p¼

spqþ� were generated, finally yielding log-normal regulation cycle durations tp ¼ expðpÞ. The

duration tp is the time elapsed since the last division until regulatory license is given to divide

again. Overall, the progression process has four adjustable parameters, �, sp, a and g.

The growth process
The growth duration tg is defined as the time to grow from an initial size sb to the threshold

size sth. Size accumulation was modeled by exponential growth with the exponential growth

rate

ds

dt
¼ ks: (17)

However, under MYCN inhibition, exponential growth was prone to generate unreasonably

large cells. Here we instead modeled growth by the logistic growth process

ds

dt
¼ k 1�

s

smax

� �

s; (18)

where k is the growth rate constant and smax the maximum cell size. We fixed smax ¼ 20, to

match the approximate cell size at which the growth rate starts to decrease with observations

(Sung et al., 2013; Tzur et al., 2009). The two growth laws Equations 17, 18 yield

tg ¼ k�1 log
sth

sb

� �

(19)

and

tg ¼ k�1 log
sthðsb � smaxÞ

sbðsth � smaxÞ

� �

; (20)

respectively.

The normalized threshold cell size sth fluctuates slightly and independently in each cell as

sth ¼ 1þ z with z ~Nð0; s2

gÞ. At division, the final mother cell size sdiv is halved, with each
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daughter receiving a new size at birth sb ¼ sdiv=2. Effectively, for the subset of cell cycles that

are limited by growth, this process corresponds to a sizer mechanism Facchetti et al. (2017).

The growth process has two adjustable parameters, k and sg.

Coupling progression and growth
The two processes are coupled via a checkpoint which requires both to be completed before

a cell has license to divide. The cell-cycle length is then determined as t ¼ maxðtp; tgÞ. If

division is stalled by insufficient cycle progression, s continues to accumulate until cell division,

so that the final cell size sdiv>sth. Thus, inheritance of the growth process is influenced by the

cycle progression process. In contrast, the progression process is inherited in an autonomous

fashion. This unidirectional inheritance structure recapitulates the unidirectional coupling

between hidden processes found in the preferred BAR models IV and V.

Model simulation
The growth-progression model was implemented in Matlab (R2016b), R (3.4.3) and OCaml

(4.06) (with identical results but increasing execution speed) and lineage trees were simulated.

For each tree, an initial cell was generated with birth size sb ¼ sth=2 and p ¼ � and

subsequently, an unbranched single lineage was simulated for 100 generations for

equilibration. Its final cell was used as founder cell for the tree. For the data shown, 30 trees of

7 generations each were simulated, roughly corresponding to the dataset sizes obtained

experimentally. The simulation was repeated 100 times to generate confidence bounds.

Parameter optimization
Parameters were fitted using Approximate Bayesian Computation independently for each

dataset. In an adaptive procedure, (sometimes non-uniform) prior distributions of model

parameters were first generated. For each parameter set, 500 trees were simulated at a depth

of 7 generations. To compare data D and simulations D̂, we used a set S of summary statistics

composed of the nine correlation coefficients as shown in Figure 3C, and the mean and all

quartiles of the distribution of cell-cycle durations. A squared-distance between data and

simulation summary statistics was calculated as

�2½SðD̂Þ;SðDÞ� ¼
X

N

i¼1

SðDiÞ� SðD̂iÞ

si

� �2

; (21)

where si were calculated based on the data bootstrap confidence (95%) bounds. Samples of

the approximate posterior probability distribution of parameter values (Figure 3–figure

supplement 3A ) were then generated by accepting parameter sets with �2ðSðD̂Þ;SðDÞÞ<�,

weighted by the inverse of the local prior density in parameter space. We used a tolerance �¼

2 but results were not sensitive to the choice of � within the range 1 . . .4. Prior parameter

ranges were extended as far as necessary for accepted sets to converge. The final accepted

ranges of each parameter was used as credible regions, and the medians of each parameter

distribution from these samples were selected as best-fits for further analysis.
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