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Guanylin peptides (GPs) family includes guanylin (GN), uroguanylin (UGN), lymphoguanylin, and recently discovered
renoguanylin. This growing family is proposed to be intestinal natriuretic peptides. After ingestion of a salty meal, GN and UGN
are secreted into the intestinal lumen, where they inhibit sodium absorption and induce anion and water secretion. At the same
conditions, those hormones stimulate renal electrolyte excretion by inducing natriuresis, kaliuresis, and diuresis and therefore
prevent hypernatremia and hypervolemia after salty meals. In the intestine, a well-known receptor for GPs is guanylate cyclase C
(GC-C) whose activation increases intracellular concentration of cGMP. However, in the kidney of GC-C-deficient mice, effects of
GPs are unaltered, which could be by new cGMP-independent signaling pathway (G-protein-coupled receptor).This is not unusual
as atrial natriuretic peptide also activates two different types of receptors: guanylate cylcase A and clearance receptor which is also
G-protein coupled receptor. Physiological role of GPs in other organs (liver, pancreas, lung, sweat glands, and male reproductive
system) needs to be discovered. However, it is known that they are involved in pathological conditions like cystic fibrosis, asthma,
intestinal tumors, kidney and heart failure, obesity, and metabolic syndrome.

1. Introduction

The physiological importance of digestive system is not only
to digest and absorb nutrients but also to prepare the body
for an increase in blood concentrations of glucose, amino
acids, electrolytes, and water. It is well known that several
hormones secreted by intestine after a meal, like gastrin,
secretin, cholecystokinin, and especially gastric inhibitory
peptide increase insulin production even before the concen-
trations of glucose and amino acids significantly increase
in the blood. Lennane et al. in 1975 showed that salt taken
per os will increase secretion of electrolyte and water by
the kidneys more than the same amount of the salt given
intravenously, proposing the existence of intestinal hormones
that regulate kidney function [1]. After a salty meal, intestinal
natriuretic peptides also known as guanylin peptides (GPs)
are secreted by intestine where the inhibit sodium absorp-
tion from intestinal lumen by inhibiting sodium/hydrogen
exchange (NHE), increase bicarbonate and chloride secre-
tion, inhibit water absorption [2, 3], and increase renal
sodium and potassium secretion [4–6]. Effects of GPs on
sodium transport in the intestine and the kidneys prevent

postprandial hypernatremia, gastric inhibitory peptide has a
major role in decreasing postprandial increase in plasmatic
glucose concentration as well. The growing family of GPs
has, up to date, four members: guanylin (GN), uroguanylin
(UGN), lymphoguanylin, and renoguanylin. GNwas the first
GP isolated first from rat intestine [7]. A year later, the
most abundant GP present in the urine, UGN was isolated
from opossum urine [8]. The other two members of the GPs
family: lymphoguanylin isolated from opossum lymphatic
tissues [9] and renoguanylin found in eels [10]. Mammalian
isoform of renoguanylin is not discovered yet. However, the
last two members of guanylin peptide family are up to date
les investigated and their physiological functions yet need to
be discovered.

The importance of GPs in maintaining the homeostasis
of water and electrolyte homeostasis working together with
other natriuretic peptides (like atrial natriuretic peptide)
and opposite to rennin-angiotensin-aldosterone system and
arginine vasopressin seems to be very relevant since GPs
appeared early in evolution as they are found in all examined
animals (mammals, birds, and fishes).

http://dx.doi.org/10.5402/2013/813648
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Figure 1: Structure and synthesis of human guanylin peptides. Guanylin and uroguanylin have 3 exons and 2 introns. Human preproguanylin
has 115, proguanylin 94, and guanylin 15 amino acids. Human preprouroguanylin has 112, prouroguanylin 86, and uroguanylin 16 amino acids.
Structures of human guanylin and uroguanylin are compared to the structure of heat-stable enterotoxin of E. coli (STa) at the bottom of the
figure. Open circles show identical amino acids in both peptides. Solid circles represent amino acids responsible for peptide sensitivity to
chymotrypsin.

2. Structure and Metabolism of
Guanylin Peptides

Genes for natriuretic peptides secreted by the heart (atrial
natriuretic peptide (ANP) and brain natriuretic peptide
(BNP)) and by intestine (GN and UGN) are located at the
first human chromosome and the fourthmouse chromosome
[11]. Since GPs are by structure peptide hormones, they are
synthesized as preprohormone, prohormone, and hormone
(Figure 1). GN and UGN have 3 exons and 2 introns [12, 13].
Human pre-pro-GN has 115 amino acids. Is it cleaved to pro-
GN which has 94 amino acids. The active hormone GN has
15 amino acids [14]. The production of human UGN is the
same. Human pre pro-UGN has 112 amino acids and it is
cleaved to pro-UGN with 86 amino acids. Active human
UGN has 16 amino acids [15, 16]. However, it is suggested
that the circulating form of UGNhas 24 amino acids [17].The
difference in the function of those two types of UGN needs
to be established.

GN and UGN have two disulfide bonds between cysteins
which are essential for their activity (Figure 1) [14, 16, 22].
Today,we know thatmain receptor forGPswas first described
as receptor for the heat-stable enterotoxin of Escherichia coli
(STa) [23]. STa has 19 amino acids and three disulfide bonds
which could be the reason for its stronger and unregulated
activation on the GPs receptor. Stronger activation of GPs
receptor by STa leads to more potent secretion of electrolyte
and water into the intestinal lumen which caused secretory
diarrhea [24, 25]. Since the discovery of receptors/binding
sites for STa which is exogenous enterotoxin, in intestine as
well as other extraintestinal tissue like kidneys, we started
to look for endogenous ligands and first discovered GN and
soon after UGN.

Human GN is known as guanylate cyclase activating
peptide-1; GCAP-1 consists of 15 amino acids and possesses
two disulfide bonds between two cysteins (between 4–12
and 7–15 positions) (Figure 1) [14, 22]. From 15 amino acids,
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Table 1: Sequences of guanylin and uroguanylin in different species.

Guanylin
Eel Y D E C E I CM F A A C T G C
Opossum S H T C E I C A F A A C A G C
Human P G T C E I C A Y A A C T G C
Rat/mouse P N T C E I C A Y A A C T G C
Pig P S T C E I C A Y A A C A G C
Guinea pig P S T C E I C A Y A A C A G C

Uroguanylin
Eel P D P C E I C A N A AC T G C L
Opossum Q E D C E L C I N V AC T G C
Human N D D C E L C V N V AC T G C L
Rat/mouse T D E C E L C I N V AC T G C
Pig G D D C E L C V N V AC T G C S
Guinea pig N D E C E L C V N I AC T G C

Identical amino acids in these proteins of different species are indicated in
bold.

human GN shares similarity in 10 amino acids with GN
from eel, opossum, rat, pig, and guinea pig with the highest
similarity to pig GN with a difference only in 2 amino acids
(Table 1). GN is present in the plasma mostly as its pro GN
form in concentration of 30–40 pM [26, 27].

Human UGN is also known as guanylate cyclase activat-
ing peptide-2, GCAP-2. UGN has 16 amino acids and has two
disulfide bonds between 4–12 and 7–15 positions similar to
GN (Figure 1) [16]. Eel and pig isoforms of UGN also have
16 amino acids while opossum, rat, and guinea pig UGNs
have 15 amino acids while they are missing the last amino
acid. UGNs from all listed species (Table 1) share 9 amino
acids at particular positions [28]. In both GN and UGN
structures cysteins are preserved which are necessary for the
development of disulfide bonds and activity of GPs.

In contrast to GN, 60–90% of circulating UGN in the
plasma is in the form of active hormone in a concentration
of 5–7 pM [29, 30]. However, those findings are still in
dispute. Recently, circulating plasma pro-UGNwas suggested
to mediate enterorenal signaling. It is suggested that filtrated
pro-UGN is cut by proteases present in the tubular lumen
to the active form of UGN [31, 32]. Structural differences
between GN and UGN in different species are given in
Table 1.

The structural difference between GN and UGN which
lies in their sensitivity towards proteases is especially impor-
tant for the physiological role of the GPs in the kidney.
GN has a tyrosine as its ninth amino acid which makes it
sensitive to proteases, mostly chymotrypsin. UGN has an
asparagine as its ninth amino acid and is therefore protected
form proteases present in tubular lumen. However, in the
kidney filtrated pro-UGN is not protected and could be cut
by tubular proteases [33, 34]. Therefore, GN is degraded
by chymotrypsin present in different parts of the kidney
nephrons [4, 35] and is consequently not present in urine.

After a salty meal, the intestine is producing GPs in
the gut lumen (inhibition of the water and electrolyte
absorption). At the same time, intestine produces GPs into

the blood. It is proposed that GPs secreted form intestine
induced natriuresis, kaliuresis, and diuresis in the kidney
after glomerular filtration. Intestinal GPs when located in the
tubular lumen act on receptors located at apical membrane
of tubular cells. Even the proteins with ten times higher
molecular weight, like myoglobin, are filtrated through
glomerular membrane almost as easy as water (filterability is
75% of water), suggesting that even pro-GPs present in the
plasma could be sufficiently filtrated and present in the lumen
of different nephron segments. However, recent research
suggests that in addition to endocrine function of the GPs
secreted from the intestine, the other source of GPs and
their precursors in tubular lumen could be released from the
kidney cells. Kidney secretes GPs only locally into the tubular
lumen where they act as paracrine peptides but not in the
blood [20].

mRNA for GPs could be found in other organs as well,
like adrenal glands, reproductive system, lung, and pancreas,
where the importance of GPs secretion is, as far as we known,
local regulation of membrane transport systems, and it is still
not very well understood [36–38]. Although the mRNA for
GPs is present in numerous tissues, the intestine is considered
to be the only source for GPs present in the blood [29, 39, 40].

Both endocrine and paracrine secretion of the GPs via
intestine are stimulated by parasympathetic system via acti-
vation of n.vagus [41, 42]. This vagal stimulation could have
importance in UGN function in the stomach while UGN is
produced by enterochromaffin-like cells where acetylcholine
also regulates production of histamine which regulates HCl
production of the stomach [43]. Interestingly, it is known
that in patients with Zn2+ deficiency have secretory diarrhea.
Cousins laboratory showed when Zn2+ deficiency is induced
in rats, unregulated expression of UGN in enterocytes
increased, which could explain secretory diarrhea in humans
[44–47].

3. Signaling Pathways of Guanylin
Peptides in the Intestine

Expression of GN and UGN in intestine is well regulated by
salt ingestion. High-salt diet leads to the secretion of GN and
UGN into the intestinal lumen. On the other hand, low salt
intake decreases mRNA levels of GN and UGN in the rat
digestive tract [3, 48], which is suggested to be a protective
mechanism in how to spare sodium during periods of salt
restriction in the food.

GN is mainly present in goblet and epithelial cells of
the colonic mucosa while UGN presents in enterochromaffin
cells of the small intestine [2, 3, 49, 50]. mRNA for GN
is located from duodenum to distal colon from lower to
higher expression along the intestine (Figure 2) [51, 52]. UGN
is present along the gastrointestinal tract with the highest
expression in the duodenum [18, 38, 49, 51, 53, 54, 77].

Proximal part of the digestive system, mainly duodenum,
developed powerful mechanisms to protect epithelial cells
against acid secretion from stomach. A well-know mecha-
nism is inhibition of gastric emptying with intestinal hor-
mones. Cholecystokinin is released from the jejunummucosa
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Figure 2: Distribution of mRNA for guanylin (black columns)
and uroguanylin (white columns) in digestive system. Guanylin is
present in all parts of gastrointestinal tract with highest expression
in the distal parts of the tract. In contrast, uroguanylin is mostly
present in proximal parts where it could play a role in regulating
pH after emptying stomach content. PJ: proximal jejunum,DJ: distal
jejunum, I: ileum, C: cecum, PC: proximal colon, DC: distal colon
(modified fromWhitaker et al. [18]).

as response to the presence of the fatty acids in intestinal
lumen. Secretin is secreted in duodenum as a response to
low pH duodenal content, and in addition to inhibition
of stomach emptying it also induces pancreatic secretion
rich in bicarbonate. UGN could play a significant role in
epithelial protection by increasing pH of duodenal lumen
via inhibition of hydrogen secretion (by NHE inhibition)
and increase in bicarbonate secretion. The very important
mechanism in those protective effects is pH sensitivity of
GPs action. The effects of GN and UGN on concentration of
intracellular cGMPafter activation of their receptor guanylate
cyclase C (GC-C) is pH dependent (Figure 3).The increase in
intracellular concentration of cGMP after UGN stimulation
is higher at pH 5 compared to pH 8. In opposition to that
increase in cGMP, concentration induced by GN is higher
at pH 8. Those findings correspond to the expression of the
UGN in proximal part of digestive tract where pH is lower
than in distal part where is more alkaline andGN is produced
more, which potentiate effects of GPs via GC-C-, cGMP-
dependent signaling pathway. Furthermore, pH sensitivity of
UGN intracellular cGMP accumulation is also important in
the duodenum. To neutralize the low pH after stomach empt-
ing in addition to pancreatic secretion, duodenum secretes
bicarbonate. This secretion is cGMP dependent and could be
a result of UGN action which is even more potentiated at low
pH conditions. It was suggested by Hamra et al. (1997) that
this pH dependence affects the ligand/receptor interaction
depending on the N terminal ends of the UGN and GN
molecules (Figure 1) [19].

As you can see at Figure 4. UGN increases bicarbonate
secretions viaCFTR, cGMP-dependentmechanism involving
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Figure 3: Guanylin (GN) and uroguanylin (UGN) increasing the
intracellular concentration of cGMP are pH dependent. GN is more
potent at pH 8.0, and UGN is more potent at pH 5.0 (modified from
Hamra et al. [19]).

members of Slc26 transporter family. The Slc26 family has
up to date 11 members. It exchanges Cl− with sulfate, iodide,
formate, oxalate, hydroxyl ion, and bicarbonate, whereas
other function as Cl− channels. Slc26a3 (DRA), Slc26a6
(PAT-1, CFEX), and Slc26a9 are involved in bicarbonate
secretion in digestive tract and pancreas via CFTR-dependent
pathway. Recently, Slc26a4 (pendrin) was suggested as target
for UGN-dependent electrolyte transport in intercalated cells
of kidney cortical collecting duct (see later) [55]. In the future,
additional research should be done to investigate the possible
effects of GPs on other members of Slc26 family in the
way to determine existence of CFTR-independent signaling
pathway for GPs. Furthermore, UGN inhibits H+ secretion
via inhibition of sodium/proton exchanger (NHE) and there-
fore decreases H+ concentration in the duodenum [19]. As
described above, this cGMP/GC-C-dependent UGN effects
are more pronounced at acidic pH after gastric emptying,
inducing stronger bicarbonate secretion, and inhibition of
hydrogen secretion, which helps to lower the concentration
of hydrogen ions delivered from the stomach.

In stomach, UGN is produced by enterochromaffin-like
cells. Those cells are major source of histamine after stim-
ulation with gastrin and acetylcholine. Histamine regulates
HCl production of the stomach [43]. The physiological and
pathophysiological roles of UGN are the stomach are still
not known; we can assume that UGN is involved in the
protection of stomach from HCl by secreting bicarbonate in
stomach lumen. Furthermore, GN is produced by parietal
cells. After intravenous application ofGN, those cells increase
the production of protective mucus, which is one more
protective mechanism in the stomach [56, 57].
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Figure 4: GC-C-dependent signaling pathway of guanylin peptides in the intestine. Guanylin (GN), uroguanylin (UGN), and heat-stable
enterotoxin of E. coli (STa) activate GC-C which increases intracellular concentration of cGMPwhich in the enterocytes causes the following:
inhibits the Na+/H+ exchanger type 2 (NHE2) and activates protein kinase G type II (PKG II), activates protein kinase A (PKA) directly
or indirectly by inhibition of phosphodiesterase III (PDE III) followed by increase in intracellular cAMP concentration. PKA and PKG II
activate Cl− and HCO

3

− secretion via activation of cystic fibrosis transmembrane regulator (CFTR) followed by an activation of the member
of Slc26 family which exchanges bicarbonate for chloride.

Table 2: Expression of cytoplasmic and membrane-bound guanylate cyclases.

Cyclases Tissue distribution Agonists
Cytoplasmic Skeletal muscle, platelets, lung, liver, kidney, heart, and CNS NO, CO
GC-A Smooth muscle, kidney, adrenal gland, heart, and CNS ANP, BNP
GC-B Fibroblasts, heart, and CNS CNP
GC-C Intestine, adrenal gland, CNS, lung, reproductive glands, and kidney STa, GN, and UGN
GC-D Olfactory cells GN, UGN
GC-E Retina Unknown
GC-F Retina Unknown
GC-G Skeletal muscle, lung, intestine, and kidney Unknown
ANP: atrial natriuretic peptide, BNP: brain natriuretic peptide, CNP: C-type natriuretic peptide, CNS: central nervous system, CO: carbon monoxide, NO:
nitric oxide, STa: heat-stable enterotoxin of Escherichia coli, GN: guanylin, and UGN: uroguanylin.

In more details, when secreted in the gut lumen, GPs
stimulate enterocytes via the membrane-bound guanylate
cyclase C (GC-C) located at the apical membrane of the
enterocytes. Activation of GC-C produces cGMP from GTP
[7, 8]. The increase in cGMP as second messenger activates
the protein kinaseG II (PKG II) [58, 59] and inhibits the phos-
phodiesterase III (PDE III). Phosphodiesterases are divided
into types concerning regulatory mechanism and substrate.
PDE type III is responsible for the degradation of cAMP;
therefore, inhibition of PDE III by cGMP leads to increase of
intracellular concentration of cAMPwhich follows activation
of cAMP-specific protein kinase A (PKA) [59–61]. Further-
more, cGMPpartially inhibits Na+ absorption from intestinal
lumen into the blood by inhibiting apical Na+/H+ exchanger
type 2 (NHE2) and therefore preventing fast increase in
blood sodium concentrations after the consumption of the
salty meal [62, 63]. PKG II and PKA increase the secretion
of Cl− via the cystic fibrosis transmembrane conductance
regulator (CFTR) followed by an activation of the member
of Slc26 family which exchanges bicarbonate for chloride
resulting in bicarbonate secretion. Two different opinions

on how bicarbonate secretion occurs in intestine lumen as
well as in other organs exist. Some researchers believe that
bicarbonate is transported by CFTR itself. Since GPs still
stimulate bicarbonate secretion in CFTR-deficient mice, it
is reasonable to believe that the CFTR has a regulatory role
while bicarbonate secretion is due to activation of members
of Slc26 family [64]. Changes which follow GC-C activation
in the intestine increase the amount of electrolyte in the
intestinal lumen, which slows down the absorption of the
water from intestinal lumen to the blood which could not
be quickly excreted from the organism by the kidneys and
protect from drastic increase in blood volume (Figure 4)
[60, 65–67].

4. GC-C-Dependent Signaling Pathway

STa-specific binding sites are found in intestine and colon of
mammals including human. Interestingly, binding sites are
also found in extraintestinal tissue like gallbladder, trachea,
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testis, kidney, and opossum kidney cell line (OK cells) [68–
70]. Since 1978, it is known that STa increased intracellular
concentration of cGMP in intestine [24]; however, until 1990
and Schulz discovery the receptor responsible for STa effects
in the gut was not known [23]. The discovered receptor was
named guanylate cyclase C because it increases intracellular
cGMP concentration and it is discovered after guanylate
cyclase A (GC-A) and guanylate cyclase B (GC-B) receptors
for atrial natriuretic peptides. Furthermore, CaCo-2 and
T84 cell lines are intestinal human carcinoma cell lines.
Intracellular concentration of cGMP increases in both cell
lines after GPs stimulations via guanylate cycles C, and it
is a well-established model for investigation of this main
signaling pathway for GPs.

MainGPs receptor, GC-C, belongs to the family of guany-
late cyclases. There are 2 major types of guanylate cyclases:
soluble or cytoplasmatic guanylate cyclase which is receptor
for NO and CO and membrane-bound guanylate cyclases
which are receptors for natruretic peptides (Table 2). Soluble
guanylate cyclases are widely spread (muscles, platelets, lung,
liver, kidney, heart, and CNS) and recently well investigated
as receptors of NO. Up to date, 6membrane-bound guanylate
cyclases are known. GC-A (also known as natriuretic peptide
receptor type A, NPR-A) is receptor for atrial natriuretic
peptide (ANP); it is a kidney isoform urodilatin and brain
natriuretic peptide (BNP) and is involved in electrolyte and
water homeostasis by heart. GC-A is also present in numerous
tissue as well as soluble guanylate cyclase (smooth muscle,
kidney, adrenal gland, heart, and CNS). GC-B or natriuretic
peptide receptor type B, NPR-B, has a high affinity towards
CNP. It is located at fibroblasts, heart, and CNS and plays
more important role in the physiology of bones and cartilage.
A splice variant of this receptor, NPR-Bi, is a truncated form
expressed in human tissues, also binds CNP but lacks GC-
function (it does not produce cGMP as secondmessenger but
acts as a tyrosine kinase) [71, 72]. A fourth type of receptor,
the natriuretic peptide receptors type C (NPR-C) is clearance
receptor and binds all four natriuretic peptides.This receptor
is G-protein-coupled receptor which is missing guanylate
cyclase domain and guanylate cyclase activity.

Guanylate cyclases D, E, and F (GC-D, GC-E, and GC-F)
are located in sensory organs. Recently, GC-D was proposed
to be a GPs receptor in olfactory system [73]. Guanylate
cyclase G (GC-G or GC-1) is an orphan receptor present in
the skeletal muscle, lung, intestine, testis, and kidney [74–
76]. This orphan receptor could play important role in GPs
signaling mechanism instead of GC-C in the kidney (see
later).

GC-C is widely spread, localized in tissues expressing
other parts of GP signaling pathway like CFTR (adrenal
glands, brain, the embryonic or regenerating but not adult
liver, placenta, testis, airways, spleen, thymus, and lymphatic
nodes) [77–79]. GC-C expression is increased in infants and
prematureswhich could explain higher sensitivity to presence
of STa in intestine andmore pronounced diarrhea in children
[80]. Like other GCs, GC-C has extracellular, juxtamembrane
domain, kinase homology, and catalytic domain (Figure 5).

As any other transmembrane receptor, extracellular
domain is responsible for ligand binding. Juxtamembrane

domain is bound to extracellular domain by transmembrane
domain and it is located near the cell membrane.This domain
has similar structure to parts of IGF (insulin-like growth
factor) and EGF (epidermal growth factor) receptors which
are responsible for binding the G-proteins [81, 82]. Kinase
homology domain is similar to catalytic domain of PDGF
(platelet-derived growth factor) receptors. Catalytic domain
converts GTP to cGMP after ligand binding to extracellular
domain. For pronounced guanylate cyclase activity of GC-
C kinase, homology domain should be phosphorylated. C-
terminal tail of the GC-C is unique and it is involved
in binding the GC-C to cytoskeleton and important for
endocytosis of ligand-receptor complexes [83].

Protein kinase C (PKC) is a well-established regulator of
GC-C activity. PKC phosphorylates C-terminal tail of GC-C
which leads to 70% increase in intracellular concentration of
cGMPafter STa stimulation compared to control [84–88]. For
the full activity of GC-C, Mg2+-ATP should be present [89].

5. GC-C-Independent Signaling Pathway

The evidence of the presence of additional receptors and
signaling pathways for GPs exist and it is found mostly in
the kidney but also in other tissues like intestine. Further
research should be done to determine physiological and
pathophysiological roles of all GPs signaling pathways in all
organic systems that are expressing GPs.The first evidence of
existing a GC-C-independent signaling pathway was given in
intestine where was shown that localization of GC-C mRNA
and binding sites for STa and GPs in the intestine are not
identical [90]. Since STa is amore potent activator of GC-C, it
is reasonable to believe that it could activate all GPs receptors
which is later shown in the kidneys.

Two populations of binding sites for STa in the intestine
have been identified: high affinity receptors not coupled to
the guanylate cyclase (only 5% of binding sites) and low
affinity binding sites coupled to the guanylate cyclase (95%
of binding sites) [91]. Those 2 types of binding sites could
occur because of regulation of activity of GC-C itself or could
present two different receptor types for GPs. Furthermore,
GC-C-independent binding sites are located at the basolateral
membrane of colonocytes [92], and those receptors and
signaling pathways are still not identified. GC-C-deficient
mice are resistant to intestinal secretion produced by STa
[93–95]; however, 10% of the STa intestinal binding sites are
still present possibly involving Ca2+ signaling pathway with
activation of PKC [96, 97].

Necessity of further research for GC-C-independent sig-
naling pathway for GP became more evident when renal
effects were still observed in GC-C-deficient mice [5]. GN,
UGN, and STa still change membrane potential via changes
in membrane conductances of principal cells in isolated
cortical collecting ducts of GC-C-deficient mice [99]. G-
protein coupled receptor which activates phospholipase A

2

was suggested to be a part of cGMP-independent signaling
pathway in the mouse and human kidney [98, 99]. After
activation of this receptor, intracellular concentration of
arachidonic acid increased and changed cell conductances
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Figure 5: Guanylate cyclase C: extracellular domain is responsible
for ligand binding. Juxtamembrane domain is located near the cell
membrane and it is responsible for binding the G-proteins. Kinase
homology domain needs to be phosphorylated for pronounced
guanylate cyclase activity. Catalytic domain converts GTP to cGMP
after ligand binding to extracellular domain. C-terminal tail of
the GC-C is unique and it is involved in binding the GC-C to
cytoskeleton.

for ions which could lead to natriuresis, kaliuresis, and
diureis present in GC-C-deficient mice. Additional signaling
pathway is investigated in more detail in different parts of
mouse and human kidney nephron segments (see later).
Furthermore, GC-C knock-out animals have normal blood
pressure. If the GC-C is the only receptor for GPs, UGN-
deficient mice should have the normal blood pressure as well
which is not the case. Surprisingly, UGN-deficient mice are
developing hypertension [100, 101], suggesting the effects of
UGN on blood pressure via GC-C-independent signaling
pathway. Further research should be done to investigate
the importance of GC-C-independent signaling pathway in
physiology and pathophysiology in extrarenal tissues and
blood pressure regulation.

6. Signaling Pathways of Guanylin
Peptides in the Kidney

The main physiological function of GP is to increase salt
excretion via kidneys after increased per os intake. However,
the effects of the GN and UGN on the kidney nephron
segments are slightly different assuming more important
physiological role of UGN inmaintaining sodium homeosta-
sis. Humans consuming the diet with high amount of salt
(10 g/day) excretemoreUGN in the urine compared to people
at low-salt diet (7 g/day) [29]. In rats on high-salt diet, also
increased excretion of UGN as well as cGMP in the urine
compared to normally fed animals, suggesting involvement of

cGMP signaling pathway in UGN action in the kidney [102].
Furthermore, inUGN-deficientmice natriuresis produced by
oral salt load is decreased [100].

GN has mostly kaliuretic effects in the kidneys; therefore,
it was reasonable to believe that GN could play a significant
role in potassium secretion after increased dietary potassium
intake. Recently, Oh et al. showed that GN and UGN are
not involved in intestinal sensing of dietary potassium intake
and still unknown hormones stimulate kidney potassium
excretion due to increased potassium intake [103]. As can be
expected by structure containing 3 disulfide bonds (Figure 1),
STa effects in the kidneys are more pronounced compared
to GPs as it is shown for intestine obviously activating all
signaling pathways present [21, 61].

The action of the GPs could be produced by the intes-
tine with distant endocrine effects on the kidneys and/or
paracrine produced locally by the kidney itself. Recent
research implicates paracrine effects of GP in the kidney.
UGN but not GN kidney expression increases after increased
oral salt load. Paracrine production of GP in the kidney is due
to still unknown linkage mechanism between intestine and
kidney. Kuhn’s laboratory suggested that renal UGN expres-
sion is influenced by renal hypertonicity but not by intestinal
sensing of salt intake. Cultured murine M-1 cells, cells with
properties of cortical collecting duct cells, are showing UGN
but not GN expression. UGN expression increases when M-
1 cells were put in hypertonic conditions (using hypertonic
NaCl solution or mannitol). Further investigations should
be done to clarify how increased intestinal sodium load
increases UGN expression in the kidney [20].

Similar to the difference in the axial expression along
the intestine (Figure 2), GN and UGN are not expressed
equally along the different nephron segments suggesting the
similarity in paracrine function between intestine and kidney.
mRNA for GN ismore expressed in the collecting duct (distal
nephron segments), in analogy to GN expression in the colon
while mRNA for UGN is present mostly in the proximal
tubule, again comparable to the higher expression in proxi-
mal intestine (Figure 6) [20]. Goy’s laboratory recently found
pro-UGN (the uroguanylin precursor) in distal nephron
segmentswithmore pronouncednatriuretic effects compared
to UGN itself, but they failed to show expression of GC-C in
the kidney [104, 105].

Expression of GC-C in the kidney is still controversial.
Like in intestine, localization ofmRNA for GC-C differs from
binding site for STa in the kidney. Potthast et al. showed the
expression of GC-C in glomeruli and proximal tubules but
not in Henle’s loop and cortical collecting ducts [20, 21, 98].
Exact localization of GC-C is still not known because Car-
rithers et al. localized GC-C in all parts of rat nephron while
Goy’s laboratory failed to show the expression of GC-C in the
kidney [105, 106]. From other members of GC-C signaling
pathway of GP, PKG II is also expressed in the kidneys.
mRNA for PKG II is located in all nephron segments with the
highest expression in glomeruli and proximal tubules where
the GC-C is also expressed the most [20, 106]. However, the
involvement of cGMP and GC-C in the signaling pathway
of GPs in proximal tubule cells is obviously not present in
the effects of GPs described in GC-C-deficient mice, and
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Figure 6: Relative mRNA expression of (a) guanylin (GN) and (b) uroguanylin (UGN) in different mouse nephron segments. GL:
glomerulus, PT: proximal tubule, TAL: thick ascending limb of Henle’s loop, CD: collecting duct, and GAPDH: glyceraldehyde-3-phosphate
dehydrogenase. Mean values: SEM, 𝑛 = 4. Modified from Potthast et al. [20].

GC-C-independent signaling pathway in the kidneys was
discovered.

Even the GPs are expressed in different parts of the
nephron segments, the most effects of GP are mostly inves-
tigated in proximal tubules and collecting duct. Since GPs
increase the secretion of sodium, potassium, and water in the
kidney without changes in glomerular filtration rate or renal
blood flow, the effects of GPs in glomeruli are still unknown.

7. Signaling Pathways of Guanylin
Peptides in the Proximal Tubules

The first discovered localization of GPs action is proximal
tubule. Proximal tubule cells are specific for their massive
ion and water transport. Each day proximal tubules reabsorb
120 L of filtrated water, 65% filtrated sodium, potassium and
chloride, and almost all filtrated bicarbonate. Small changes
in proximal tubule transport will lead to massive changes in
final urine.

Binding sites for GN, UGN, and STa are located at
opossum and human proximal tubule cells [69, 70, 107, 108].
In rat proximal tubules, binding sites for STa are found at
apical and basolateral cell membranes as well as in basolateral
cell membrane of Henle’s loop and medullar collecting duct
cells [109]. The possible physiological role for receptors for
GPs located at basolateral side of kidney nephron segments is
not clear yet. GPs increase intracellular cGMP concentration
in a proximal tubule cell line of opossum kidney (OK cells),
in kangaroo proximal tubule cells (PtK-2 cells), and in an
immortalized human proximal tubule cell line (IHKE1) [21,
68, 77, 110].

Proximal tubule is responsible for more than 90% of
filtrated bicarbonate reabsorption. For each hydrogen ion
transported via apical membrane, one bicarbonate is reab-
sorbed back into peritubular capillaries. UGN inhibits the
activity ofNa+/H+ exchanger isoform 3 (NHE3) located at the
apical membrane which decreases the secretion of hydrogen
ions and therefore decreases the reabsorption of bicarbonate.
UGN inhibits NHE3 activity via cGMP followed by PKG acti-
vation and cAMP followed by PKA activation, both of which

phosphorylate NHE3 already located at apical membrane of
the cells. UGN also reduces NHE3 surface expression [111].
Recently discovered renoguanylin (eel isoform: A D L C E
I C A F A A C T G C L) also inhibits hydrogen transport
at the apical membrane of proximal tubules in the rat
kidneys. Renoguanylin inhibits NHE as well as H+-ATPase
and is therefore involved in the regulation of hydrogen
and bicarbonate transport as other guanylin peptides [112].
Human isoform of renoguanylin is not discovered yet.

GP regulate not only transport of hydrogen and bicar-
bonate in proximal tubules, as shown previusly, also change
sodium and potassium conductances and electrogenic elec-
trolyte transport in IHKE-1 cells which are a human proximal
tubule cell line. GPs are reaching the receptors located at
apical membrane of those cells. GPs show different effects
in the kidney, UGN mostly causing natriuresis while GN
kaliuresis; it was reasonable to expect that the effects on those
hormones on proximal tubule cell line differ as well. GN
mostly activates cGMP-dependent signaling pathway. Since
GPs increase excretion in the urine as well as cGMP due
to high-salt diet which is in contrast to still existing effects
of GPs in GC-C-deficient mice, another guanylate cyclase
could play a role as receptor for GPs in proximal tubules.
Guanylate cyclase present in opossum kidney (OK-GC) has
a 92–95% identity in the catalytic domain but only 55–58%
identity in ligand-binding domain compared with rat, pig,
and human GC-C. Human isoform of this still unidentified
receptor could play a possible role in cGMP-dependent but
GC-C-independent signaling pathway of GPs [110]. In IHKE-
1 cells, UGN and STa activate both cGMP-dependent and
cGMP independent signaling pathway. UGN also activates
both signaling pathway in pig proximal tubule cell line (LLC-
PK1). Which signaling pathway will be activated depends on
concentrations of the hormone and pH. As it was shown for
GC-C in intestine (Figure 3), in proximal tubule cells UGN
activates GC-C and depolarized cells (as well as cGMP) at
pH 5.5. When the pH values change to 8.0, we can assume
that affinity of GC-C for UGN decrease and other GC-C-
independent signaling pathway could be more pronounced
which leads toUGN-dependent hyperpolarization of the cells
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Figure 7: pH dependence of effects of guanylin peptides on
membrane voltages (𝑉

𝑚
) of human proximal tubule cells. Guanylin

(GN) depolarized cells at pH 5.5 as well as pH 8.0. Uroguanylin
(UGN) at pH 5.5, activated GC-C and depolarized cells while at pH
8.0 decreased affinity of GC-C for UGN and GC-C independent, G-
protein-coupled receptor is activated which leads to hyperpolariza-
tion of the cells.Mean values: SEM.Modified from Sindiće et al. [21].

(Figure 7). Could this switch in signaling pathways due to pH
differance play any physiological role in regulation of sodium,
hydrogen, bicarbonate transport versus potassium transport
needs to be established.

Preincubation of IHKE-1 cells with pertussis toxin (PT),
an inhibitor of G-protein coupled receptors, has no effect on
depolarizations neither on cGMP accumulation caused by
GPs. However, hyperpolarization caused byUGN is inhibited
by PT suggesting that the second receptor activated by UGN
and probably also by STa is a PT-sensitive G-protein coupled
receptor [21].

8. Signaling Pathways of Guanylin Peptides in
the Collecting Ducts

Final hormonal regulation of renal electrolyte and water
homeostasis takes place in the collecting duct (CD). They
have at least 2 types of the cells: principal cells which are
responsible for K+ secretion (ROMK channels), Na+, and
water reabsorption (ENaC and aquaporins 2, 3, and 4, resp.)
and intercalated cells responsible for K+ reabsorption via
ATPases. We already discussed the importance of sodium
regulation, but regulation of potassium plasma concentration
is even more important because of its serious consequences
on heart function in hyperkalemic conditions. There are
numerous mechanisms for potassium homeostasis regula-
tion by the kidney from aldosterone to direct regulation
by plasmatic potassium concentration. Due to aldosterone

activation of Na+/K+ ATPase and increased apical membrane
conductances for sodium (ENaC) and potassium (ROMK)
of principal cells, sodium is reabsorbed in the blood and
potassium is secreted in the tubular lumen. To be able to
reabsorb potassium, intercalated cells have H+/K+-ATPase
at the apical membrane which secrete hydrogen ions and
reabsorb potassium. Since GPs at the same time induce
natriuresis and kaliuresis, it is reasonable to believe that
those hormones regulate water and electrolyte transport in
principal cells as well as in intercalated cell of collecting ducts.
Since GN showed more pronounced kaliuresis, its physio-
logical importance in potassium homeostasis in contrast to
aldosterone is suggested and future research should clarify
physiological importance of GN in the kidney.

Collecting ducts are cortical collecting duct (CCD) and
medullary collecting duct (MCD). Even the final regulation of
electrolyte and especially water transport is located at the end
part of the nephron, MCDs; however, most of the research of
GPs signaling pathways in the kidney nephron segments was
done at CCDs.

8.1. Signaling Pathways of Guanylin Peptides in Principal Cells
of CCD. GPs change membrane conductances and therefore
membrane voltages of principal cells of wild-type mice and
human CCD. The same results are presented for principal
cells isolated from CCDs of GC-C-deficient mice which are
in line with the observation that GC-C-deficient mice still
exert natriuresis, kaliuresis, and diuresis upon GPs infusion
[5, 98, 99]. The source of UGN reaching the lumen of the
collecting duct is filtrated from the blood where secreted by
intestine and/or from secretion by proximal tubule cells [20].
It looks like theGNpresent in lumen ofCDs could be secreted
only by local cells since GN is degradated with chymotrypsin
which is located in all parts of the nephron,0 and mRNA for
GN ismost present in the cells of collecting ducts. SinceUGN,
in contrast to GN, is resistant to degradation by luminal
proteases and probably secreted by proximal tubule where the
expression of mRNA for UGN is the highest, UGN will be
concentrated along the nephron due to volume reabsorption
and will be present in the final urine (Figure 8) [33].

It is already established that GN and UGN have different
effects on the kidney in in vivo experiments. In mouse and
humanprincipal cells of cortical collecting ducts, they express
slightly different effects which are species specific while differ
in mouse and human principal cells.

In mouse principal cells of CCDs, GPs activate receptors
located at apical membrane similar to effects of GPs in the
intestine. GN mainly depolarized cells while UGN, STa, and
membrane permeable cGMP (8 Br cGMP) hyperpolarized
cells due to changes in potassium conductances (depolariza-
tions due to a decrease, hyperpolarizations due to an increase
in a K+ conductance) suggesting different sensitivities of the
two signaling pathways for GPs. However, hyperpolarizations
caused by GPs (activation of cGMP-dependent signaling
pathway) are still present in principal cells from CCDs
isolated from GC-C-deficient mice. In the same guanylate
cyclase C-deficient mice, GPs still increase the cGMP con-
centration in urine, indicating an involvement of another
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guanylate cyclase than guanylate cyclase C [5]. GC-G is other
type of guanylate cyclase present in mouse collecting duct
which could be responsible for cGMP- and PKG-dependent
signaling pathways of GPs in those cells. It is known that
PKG activates Ca2+-dependent K+ channels which could be
responsible for PKG-dependent hyperpolarizations caused by
GPs. cGMP-independent signaling pathway (depolarizations
caused by GPs) involves G-coupled receptor (could be the
same as already shown in proximal tubule cell line) which
activates phospholipase A

2
and release of arachidonic acid.

Since arachidonic acid inhibits potassium channels, ROMK,
located at apical membrane of principal cells, those channels
could be the target protein of cGMP-independent GPs action
in principal cells [99, 113].

Recently, the first electrophysiology study of principal
cells of human CCDs was performed. Starting membrane
potential of human principal cells is not different from
starting membrane potential of mouse and rat principal cells
which assumes similar potassium conductances between dif-
ferent species. However, only one signaling pathway for GPs
is present in human principal cells. GPs depolarized while
again membrane permeable analog of cGMP hyperpolarized
cells clearly identify signaling pathway for GPs as GC-C and
cGMP independent. Ca2+ andPKCare suggested as a possible
additional and cGMP-independent signaling pathway for
GPs in the intestine but thatwas not the case for principal cells
because the GPs are not changing intracellular concentration
of calcium. As it is shown for mouse, depolarizations of
human principal cells caused by GPs are due to inhibition
of potassium conductances, which consequently leads to
reduction of driving force for sodium reabsorption and
therefore possible natriuresis. The remaining question is if
GPs could inhibit potassium reabsorption in intercalated cells
and therefore induce kaliuresis as well. However, ROMK-
deficient mice show natriuresis, kaliuresis, and diuresis, a
pattern of responses so similar to mice stimulated with GPs

which is still not fully understood [114]. As it was shown
for human principal cells as well as for mouse principal
cells, cGMP-independent signaling pathway for GPs actually
leads to inhibition of ROMK channels by arachidonic acid
therefore, the effects of GPs on kidneys could share the
same mechanisms of natriuresis, kaliuresis, and diuresis as is
present in ROMK-deficient mice [98].

Activation of G-protein coupled receptor which leads to
activation of PLA

2
and increase of intracellular concentration

of arachidonic acid is shown by G-protein coupled receptor
14 (GPR14) [115]. Two types of the cells, human embryonic
cell line (HEK283) cells and Chinese hamster ovary (CHO)
cells overexpressing GPR14 receptor, showed different effects
of GPs. Only HEK293 cells obviously express all necessary
proteins which makes them suitable for this kind of studies
in contrast to CHO cells suggesting the importance of
expression system in investigating possible receptors for GPs.
Depolarization of HEK293-GPR14 cells induced by GPs is
higher compared to WT cells [116]. Whether this is the G-
protein coupled receptor activated by GPs actions in the
different mouse and human nephron segments needs to be
further investigated.

8.2. Signaling Pathways of Guanylin Peptides in Intercalated
Cells of CCD. It is far less known about signaling pathway of
GPs in the intercalated cells. Resent work from Zelinkovic’s
laboratory suggested the effects of UGN on Cl−/HCO

3

−

exchanger, pendrin, located in intercalated cells [55]. In apical
membrane of intercalated cells type non-A, non-B of CCD,
pendrin, functions as Cl−/HCO

3

− exchanger where it is
involved in bicarbonate transport. Pendrin is proposed to be
involved in the functions of aldosterone and angiotensin II.
Even UGN originally works opposite to those hormones, it
could regulate the expression of this anion exchanger. Physi-
ological function of this regulation needs more clarification.

8.3. Signaling Pathways of Guanylin Peptides in MCD. It is
less known about the function of GPs in the last part of the
nephron, medullary CD. GPs decrease the cell volume and
increase the luminal space which suggests secretion of water
and consequently diuresis [109]; however, GPs do not change
water permeability in inner medullary CD cells [117].

9. Cellular Effects of Guanylin
Peptides in Other Organs

Patients with cystic fibrosis have pathological changes in
water and electrolyte transport in the pancreas, the liver, the
lung, and the intestine. It might be speculated that GPs are
also involved in the physiology of those organs.

GPs and parts of their signaling pathway are present in
the pancreas. mRNA for GC-C and UGN are detected in the
cells of the exocrine part of the pancreas, and GN increases
intracellular cGMP via GC-C in a human pancreatic cell
line [118–120]. In pancreas, GPs could be involved in a
very demanding bicarbonate secretion necessary for acidity
neutralization in duodenum.
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In the liver, GN is located in the epithelial cells of
bile ducts and of the gallbladder. Other members of GC-
C signaling pathways of GPs (GC-C, PKG II, CFTR, and
anion exchanger Slc4a2) are located at the apical membrane
of the same cells suggesting physiological role of GN in
production of hepatic and cystic bile via regulation of water
and electrolyte transport by paracrine signaling pathway
[121]. mRNA for GC-C is present in fetuses and newborn rats,
after partial hepatectomies, and during liver regeneration
suggesting an additional role of GPs in those conditions
[79, 94, 122, 123].

Lungs are one of themost damaged organs in cystic fibro-
sis. In healthy individuals, GN is secreted by airways where it
activates a well-known GC-C signaling pathway and leads to
CFTR activation [70, 78, 79, 124, 125]. Furthermore, GPs relax
tracheal smooth muscle cells and mucus production in large
and small airways, which suggests UGN as a new treatment
of asthma [126, 127].

GPs and parts of the GC-C-dependent signaling pathway
are also found in sweat glands, the adrenal medulla, and
the male reproductive system [128–130]. Recently it was
discovered that UGN relaxes human corpus cavernosus and
could be used in the treatment of erectile dysfunction [131].
Even the appetite is proposed to be regulated by circulatory
pro-UGN secreted from the intestine and binding to GC-C
in hypothalamus [132].

According to this limited information on the effects
of GPs on various organs, the GC-C-dependent signaling
pathway seems to be the predominant signaling pathway
in most organs and only in the kidney does the signaling
involve different receptors and signaling mechanisms. Like it
is shown for the regulation of blood pressure byUGH, further
studies are necessary to determine the possible physiological
function of GC-C-independent signaling pathways of GPs in
extrarenal tissues.

10. Guanylin Peptides in Pathophysiology

The most investigated pathological conditions which are
involving GPs are intestinal tumors. GPs are less expressed
in colon adenocarcinoma, adenoma, and intestine polyps
in mouse and human compared to healthy individuals sug-
gesting involvement of GPs in the development of intestinal
tumors [133–135]. Indeed, GPs regulate proliferation and
differentiation, prolong the cell cycle, and induce apoptosis
of T84, CaCo-2 cells, and mouse intestinal cells, and oral
application ofUGN leads to a decrease in the number and size
of polyps in mice that develop intestinal polyposis [133, 136–
140]. Like UGN, nonsteroidal antiinflammatory drug as well
present their anticancer effects via increase in cellular levels of
cGMP [135, 141, 142]. Among other factors, like differences in
type and food processing, increased levels of cGMP induced
by frequent diarrhea in third world countries are presumed to
be protective against intestine cancers. Furthermore, ectopic
expression of GC-C could be used asmarker for development
of metastasis in lymphatic system of esophageal, stomach,
and colon cancer [143–146].

Cystic fibrosis (CF) is a genetic disease caused by muta-
tions of cystic fibrosis transmembrane conductance regulator
(CFTR) mostly affecting lungs, pancreas, liver, and intestine.
CFTR is chloride channel which regulates membrane con-
ductances of the affected cells for, as far as we know, chloride,
sodium, and bicarbonate; reduced amount of electrolytes in
lumen results in less water secretion and production of thick
mucus which blocks airways in the lung, pancreatic ducts,
and bile ducts in the liver and causes meconium ileus. This
intestinal obstruction in the newborn could be seen in CF
patients, is connected to mutations of the gene for guanylate
cyclase C [147]. Furthermore, GPs still stimulate bicarbonate
secretion in CFTR-deficient mice, and recently Slc26a4 (pen-
drin) was suggested as target for UGN-dependent chloride
transport in intercalated cells of kidney cortical collecting
duct suggesting the existence of CFTR-independent signaling
pathway for GPs in cystic fibrosis patients [64]. How GPs
help dilute thick mucous secretion in the intestine via GC-C-
dependent signaling but CFTR-independent signaling path-
way needs to be established. Although life span of patients
suffering from CF is significantly increased, the therapy is
still symptomatic. Since the GPs colocalize with CFTR, future
research should be done to determinewhetherGPs regulation
of water and electrolyte transport has any physiological effect
on the lung, pancreas, and intestine of CF patients (via GC-
C-independent signaling pathways) and could GPs effects on
ion transport be used as a new therapy approach in patients
with cystic fibrosis.

GPs are also involved in different kidney diseases. Con-
centrations in plasma GPs increase in patients with chronic
renal failure and glomerulonephritis and in patients on
hemodialysis [27, 29, 30, 40, 148]. In patients with nephritic
syndrome, UGN plasma concentration was higher and uri-
nary concentration was lower compared with values in
healthy volunteers possibly because kidney is damaged and
it has reduced capability to metabolize and excrete GPs [40].
Recently, in experimental nephrotic syndrome, changes in
UGN concentrations in urine and plasma corresponded to
changes in Na+ excretion; therefore, UGN could be used as
natriuretic peptide in nephritic syndrome [149, 150].

11. Conclusion

GPs are well known as intestinal natriuretic peptides with
well-established function in the intestine and the kidneys.
GN and UGN regulate electrolyte and water transport in the
intestine and cause kaliuresis, natriuresis, and diuresis in the
kidney. After a salty meal, GPs decrease sodium reabsorption
from the intestine and induce sodium secretion by the
kidneys and therefore prevent postprandial hypernatraemia
which could occur.

The main signaling pathway for GPs includes GC-C and
increase intracellular concentration of cGMP followed by
activation of PKG II, inhibition of Na+/H+ exchange, and
CFTR activation. Additional GC-C-independent signaling
pathway exists in intestine but is still not well understood;
however, this signaling pathway is more investigated in the
kidney, and it is suggested to be more important for GPs



12 ISRN Nephrology

action in the kidney than GC-C-dependent signaling path-
way. It is established that other signaling pathways involve G-
coupled receptors (probably GPR14), the molecular identity
receptors for GPs in the kidney and other extrarenal tissues
remain to be determined.

We have known that GPs and their signaling path-
ways exist in other organs like liver, pancreas, lung, sweat
glands, and male reproductive system and they are involved
in different pathological conditions like cystic fibrosis,
asthma, intestinal tumors, and kidney and heart failure.
Future research should investigate the importance of GC-
C-independent signaling pathways in extrarenal tissues and
determine new treatments for pathological conditions.
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