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Aging represents the major risk factor for the development of cancer and

many other diseases. Recent findings show that normal tissues become rid-

dled with expanded clones that are frequently driven by cancer-associated

mutations in an aging-dependent fashion. Additional studies show how

aged tissue microenvironments promote the initiation and progression of

malignancies, while young healthy tissues actively suppress the outgrowth

of malignant clones. Here, we discuss conserved mechanisms that eliminate

poorly functioning or potentially malignant cells from our tissues to main-

tain organismal health and fitness. Natural selection acts to preserve tissue

function and prevent disease to maximize reproductive success but these

mechanisms wane as reproduction becomes less likely. The ensuing age-

dependent tissue decline can impact the shape and direction of clonal

somatic evolution, with lifestyle and exposures influencing its pace and

intensity. We also consider how aging- and exposure-dependent clonal

expansions of “oncogenic” mutations might both increase cancer risk late

in life and contribute to tissue decline and non-malignant disease. Still, we

can marvel at the ability of our bodies to avoid cancers and other diseases

despite the accumulation of billions of cells with cancer-associated muta-

tions.

1. Introduction

Cancer is thankfully relatively rare in humans before

the age of 50 but the odds of developing cancer rise

exponentially later in life [1]. The risk of many other

diseases (such as heart disease, kidney failure, and neu-

rodegeneration)—and of course death—also rises

exponentially later in life, often with similar kinetics
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[2]. Even deaths from infectious agents rise exponen-

tially later in life, due in large part to declining

immune function, as has become painfully apparent

during the COVID19 pandemic [3]. The same associa-

tions are seen in our domesticated pets, in laboratory

animals, such as mice, and in animals maintained in

zoos [4]. While senescent animals (who are undergoing

aging-dependent tissue dysfunction) are more rare,

given the much higher extrinsic mortality of animals in

the wild, studies have shown that cancer frequency

increases specifically at older ages [5–7].
Studies over the last decade have revealed the strik-

ing presence of cancer-associated mutations in what

appear to be healthy tissues [8], as first shown for

TET2 mutations in the blood of elderly people [9].

Additional studies have reported the presence of

numerous leukemia-associated mutations in the blood

of healthy individuals, and an exponential rise in the

fraction of leukocytes occupied by these mutant clones

at older ages (starting at � 40 years; reviewed in [10–
12]). When these clones are detected above a certain

threshold (typically, 2% of nucleated blood cells), this

condition is called Clonal Hematopoiesis of Indetermi-

nant Potential (CHIP) (Box 1) or Age-Related Clonal

Hematopoiesis (ARCH)—we refer to it as CHIP here.

CHIP is associated with substantial increases in the

risk of leukemia and of other cancers, as well as with

other aging-related diseases, such as heart disease, lung

diseases (such as chronic obstructive pulmonary dis-

ease), frailty, and overall mortality [11–13]. Recent

studies have shown that tissues throughout our body

become riddled with clones bearing cancer-associated

mutations, with their frequency increasing as we age

and varying by tissue (reviewed in refs [8,14,15]). In

fact, epithelial layers of the esophagus, endometrium,

and skin become dominated by mutant clones in older

individuals, with additional but differential contribu-

tions to colon, bladder, lung, liver, or neurons [8].

Strikingly, it appears that older individuals possess

over 100 billion cells with cancer-associated mutations

even though many tissues have yet to be analyzed and

clone detection is limited by the sensitivity and speci-

ficity of the sequencing methods used [8].

So, what are the implications of this astounding

observation? In this review, we discuss the potential

impacts of this age-related increase in cancer-

associated mutations for disease risk and for declining

tissue health. We discuss why somatic evolution

becomes more prevalent in old age and review the

many mechanisms that animals have evolved to keep

somatic evolution in check to maximize organismal fit-

ness. We also argue that somatic evolution is critical

for keeping pre-malignant (oncogenically initiated)

cells in check and for limiting the expansion or

pathogenicity of more-advanced malignancies. We dis-

cuss how eliminating malfunctioning cells from tissues

is important for maintaining functionality, and thus

youthful robustness and individual fitness. As such, we

propose that maintaining healthy (“youthful”) tissues

is vitally important for delaying tissue decline (tissue

senescence) and the increased risk of disease. We place

our discussions within the context of Life History the-

ory (Box 1) and the understanding that natural selec-

tion favors strategies that invest in the soma to the

extent that maximizes reproductive success [16]. This

perspective frames our understanding of how somatic

evolution can be disfavored, ignored, or even favored,

depending on how it impacts tissue health and disease

risk, and thus animal fitness, and how the limitations

of these strategies can contribute to disease risk, par-

ticularly as we age.

2. Somatic evolution—from neutral to
damaging and possibly beneficial

Somatic evolution encompasses the changes in the clo-

nal makeup of tissues, facilitated by mutations and

epigenetic changes that accumulate in cells with age as

well as tissue microenvironmental changes that influ-

ence somatic cell fitness (Fig. 1). A key first principle

of somatic evolution is that natural selection acts to

maximize reproductive success, and that soma have

evolved to maximize the chances of the germline being

passed to subsequent generations. We should also rec-

ognize that perfection (or any optimum) is never

achieved, as there are limitations to biological machin-

ery and mechanisms (e.g., mutation rates could never

be zero) and that trade-offs are involved (such as ener-

getic or other costs that exceed the provided benefits).

With this in mind, let us reframe our understanding of

somatic evolution from an evolutionary perspective:

how has natural selection over millions of years

sculpted developmental and tissue maintenance pro-

grams that minimize the fitness costs of somatic evolu-

tion, and perhaps even maximize the benefits?

2.1. The life-history framework

A life-history perspective is of vital importance for

understanding why we age and why the risk of many

diseases, including cancers, increases in our later years.

While modern humans in industrialized nations experi-

ence long lifespans, for most of our evolutionary his-

tory, we rarely lived and/or reproduced into our

“golden years.” For example, the Native American

people who buried their dead in the Dickson Mounds

3239Molecular Oncology 16 (2022) 3238–3258 � 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

F. Marongiu and J. DeGregori Somatic clonal evolution and our health



(in current-day Illinois) around the first millennium

AD rarely lived past 50 [17]. Similarly, the Meinarti

people of the 6-7th century, of what is now northern

Sudan or southern Egypt, rarely survived past 50 years

of age [18]. Additional fossil evidence indicates that

only � 10% of our African ancestors 50 000 years ago

lived to 40, and < 5% to 50 [19,20]. For much of

human history, each year of life brought a reasonable

chance of not surviving to the next; thus, one’s odds

of successful reproduction declined with age [21]. Of

course, survival into what is now considered to be old

age is also rare for other animals [22]. For example,

studies show that wild mice do not survive past 1 year

of age, and most are dead by 6 months [23], well

before most manifestations of aging or cancer develop-

ment can become evident (mice live for up to 2–
4 years in laboratories and have an increased risk of

cancer from 18 months of age) [24]. The reality is that

natural selection is unlikely to heavily invest in

maintaining the soma beyond the age of reproduction,

especially given the extrinsic factors that limit survival,

such as predation, starvation, cold, and disease. It is

important to point out, however, that somatic mainte-

nance is not suddenly turned off—instead, the invest-

ment wanes over time as the likelihood of contributing

to reproduction declines. As one example, parental

and grandparental care in human populations likely

extends the pressure for somatic maintenance well

beyond the age when an individual is still reproductive

[25].

Thus, aging, with its associated increased risks of

disease and death, results from a waning investment in

somatic maintenance. So, what does this mean for

somatic evolution and for the increased incidence of

detectable clones in our tissues in later life, many of

which are driven by cancer-associated mutations? We

first need to consider the impacts of these expanding

clones on tissue function and organismal health, which

Box 1. Glossary.

Antagonistic pleiotropy: according to this evolutionary theory, some genetic variants can have multiple effects (pleio-

tropy), and in some cases, the effects can be antagonistic (one is beneficial, another one is detrimental for the organ-

ism). In the context of aging, specific variants can be positively selected because they increase overall fitness, such as

by increasing reproductive output and/or robustness in youth, while also contributing to aging or disease risks later

in life.

Clonal fixation: a phenomenon that occurs when a specific mutation becomes homogeneously present in a cell popula-

tion, following the clonal expansion of a mutated cell. In the context of colonic crypts, clonal fixation occurs when a

mutated stem cell slowly expands to replace neighbor stem cells so that the entire crypt eventually has that particular

mutation.

Clonal hematopoiesis (CHIP): an age-associated phenomenon in which the blood of healthy individuals exhibits a

fraction of leukocyte clones (typically defined as above 2%) bearing leukemia-associated mutations. This condition is

associated with an increased risk of leukemia and other aging-related diseases.

Driver mutation: a mutation within a gene that confers a selective growth advantage (greater somatic fitness), and thus

has the potential to contribute to cancer development.

Dysbiosis: an imbalance between different types of microorganisms normally present in an individual’s microflora

(e.g., in the gut) that can contribute to a range of diseases.

Life-History theory: a theory to study how natural selection leads to organismal traits such as size, age of maturity,

number of offspring, life span, etc., in order to maximize reproductive success, taking into account how environmen-

tal and intrinsic factors can selectively affect survival and reproduction.

Somatic fitness: the fitness of cells that make up the soma (the bulk of non-reproductive cells in our bodies), measur-

able as the ability of a particular cellular genotype or epigenotype to contribute to subsequent cellular generations in

that tissue. Somatic mutations or epigenetic changes that increase or decrease somatic fitness will increase or decrease

(respectively) the odds that that clone continues to contribute to the tissue over time.

Stabilizing selection: a type of natural selection in which genetic diversity decreases as the population stabilizes on

particular non-extreme trait values.
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fall into three categories: neutral, damaging, or advan-

tageous (from the organism’s perspective). At present,

despite the presence of hundreds of mutation-

associated expanding clones in our tissues [8], we do

not know which of these clones fall into the neutral

category. We speculate that these clones have a

minimal-to-no impact on tissue function and do not

confer a significant risk of malignancy or other dis-

eases. If a mutation that marks a clone is not found in

cancers arising from this tissue at a rate higher than

its presence in normal tissue, it is likely to be neutral

or nearly neutral in its impact on carcinogenesis. As

discussed below, the tissue microenvironment can also

minimize the phenotypic manifestations potentially

induced by mutations, even oncogenic mutations

[26,27]. Thus, a normal context can have a normalizing

influence on mutated clones, which can mitigate the

clones’ potential negative consequences. Nonetheless,

clones can reduce tissue function without contributing

to a malignancy. Important but unanswered questions

remain. For example, can a mutation confer a selective

advantage to a clone in a tissue without impacting the

functional attributes of the tissue’s cells? Does the

clone, including its more differentiated progeny, still

function as it should in the tissue? Positive selection

for a mutation may still lead to a clonal expansion

that is neutral with respect to its impact on the organ-

ism. We currently lack answers to these questions,

which require us to recreate identified mutations in

expanded clones in tissues of model organisms and

then analyze their impacts on the tissue (and not just

on malignant progression).

2.2. The impact of expanding clones on animal

fitness

Expanded clones can negatively impact tissue function

and thus individual fitness by either contributing to a

malignancy or by otherwise reducing tissue function.

By fitness, we are referring to the ability of an indi-

vidual to survive and reproduce. Healthy tissues in

youth are key to avoiding predation, to procuring

resources like food, to securing a mate, and surviving

uncertain environments. Natural selection has acted

over millions of years to engender tissue developmen-

tal and maintenance programs that maximize fitness.

We need to consider somatic evolution from this per-

spective.

Fig. 1. Clonal evolution of somatic cells is influenced by cues from the surrounding microenvironment. In the context of a normal tissue

landscape, cells harboring specific mutations are likely eliminated, or their proliferation is restrained, thus contributing to the maintenance of

tissue function and a tumor-suppressive environment. On the other hand, the expansion of the same mutated clone might be promoted in

the context of an altered surrounding microenvironment. The accumulation of clones harboring genetic and/or epigenetic changes might

directly contribute to oncogenesis and/or to progressively establishing a tissue landscape with perturbed function. Note that this figure is

likely oversimplified, and should not be interpreted to indicate that a mutant clone will never expand in a healthy tissue microenvironment,

but that altered microenvironments should promote the expansion of clones with mutations that provide an adaptation to that environment.

3241Molecular Oncology 16 (2022) 3238–3258 � 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

F. Marongiu and J. DeGregori Somatic clonal evolution and our health



2.2.1. The role of CHIP in cancer and disease

Expanded clones that contribute to disease risk can do

so by acting as cancer-initiating events and/or by

changing the tissue microenvironment. Such associa-

tions have been most clearly shown for CHIP and for

the subsequent development of acute myeloid leukemia

(AML). CHIP is frequently characterized by mutations

that are known to cause leukemias. In blood samples

of individuals obtained years before the onset of

AML, mutations were identified in the CHIP clone

that were then found in the subsequently developed

AML [28–30]. That said, we are unaware of systematic

analyses of the fraction of AML cases where CHIP

has been previously detected for which the identified

CHIP mutation was present in the AML. Still, it is

notable that CHIP is associated with a substantial

increase in the risk of all cancers (most of which will

be carcinomas) [10–12]. In such cases, the CHIP clone

is clearly not contributing directly to the cancer clone.

We propose two possible explanations. First, the

CHIP clone could promote oncogenesis by changing

the tissue microenvironment. For example, CHIP

clones marked by TET2 mutations lead to the produc-

tion of mature myeloid cells that produce inflamma-

tory cytokines [11], and inflammation is associated

with cancer evolution. Second, CHIP could be a mar-

ker of an aging or damaged soma, and thus could rep-

resent a common consequence of this somatic decline

(along with increased cancer risk). For example, cigar-

ette smoking is associated with an increased risk of

CHIP, lung cancer, heart disease, emphysema, and

other maladies [2,12,31]. But CHIP is unlikely to be

responsible for all of these other consequences of

smoking, although it may help to amplify some of

their negative consequences by increasing inflamma-

tion. Finally, studies have shown how inflammation

(such as via infections) can select for CHIP mutations,

including in TET2 [32–34], indicating the role of a pos-

itive feedback loop (Fig. 2).

Fig. 2. Clonal evolution and disease. Pathogenic clonal expansions can promote and be promoted by inflammation, and contribute to

multiple diseases of aging. While these clones can sometimes directly contribute to malignant disease, as clearly demonstrated for

leukemias with clonal hematopoiesis mutations (and also likely the case for mutations in solid tissues, such as in TP53 or PIK3CA),

evidence also reveals how clonal expansions can contribute indirectly to cancers and non-malignant diseases (like cardiovascular disease,

CVD, which is associated with CHIP) such as through the promotion of inflammation. Finally, although still poorly established, emerging evi-

dence suggests direct roles for clonal expansions in non-malignant disease such as for fibroblasts in pulmonary fibrosis or for vascular

smooth muscle cells in CVD [51].
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2.2.2. Mutant clones in solid tissues and disease

Clones in solid tissues are often driven by cancer-

associated mutations but we know less about how

these clones contribute to, or are a risk factor for, can-

cer. In part, their lack of association with disease likely

reflects that fewer samples have been analyzed in stud-

ies of clonal architecture in solid tissue. These studies

typically involve at most dozens of samples [8], as

opposed to the many tens of thousands of samples

analyzed for CHIP [10–12]. Still, it is notable that a

fraction of detected clones bear oncogenic mutations

that are common in cancers of that same tissue. Stud-

ies of the esophagus provide an informative example.

The most common mutations that appear to drive clo-

nal expansions in this tissue are in the NOTCH1 gene,

and these mutations are very similar to those found in

human cancers [35,36]. These NOTCH1 mutations are

present in well over half of esophageal epithelial cells

at older ages (and also become prevalent in the skin

epithelium [35,37], at least in the studied cohorts with

European ancestry). The frequency of these mutations

is therefore substantially higher in all epithelial cells

than in human esophageal cancers (10–15% of which

bear NOTCH1 mutations). Thus, cells with NOTCH1

mutations give rise to cancer at a rate that is substan-

tially less than would be expected by chance. In con-

trast, mutations in the TP53 gene are much less

frequent in the esophageal epithelium, and are mostly

present in older subjects. TP53 mutations are present

in � 90% of esophageal cancers, raising the question

as to whether these mutations in non-malignant eso-

phageal cells is a risk factor for carcinoma develop-

ment. While causative associations cannot at present

be made, these clonally expanded TP53 mutations are

known to contribute to carcinogenesis, such that their

presence “at the scene of the crime” makes them

strong suspects. Similarly, mutations in the PIK3CA

gene are detected in the endometrium, and can con-

tribute to endometrial cancers [38]. While these exam-

ples might provide insight into the earliest events in

malignant progression, we need to consider that most

of these mutation-bearing cells will never contribute to

a cancer. Indeed, most mutations associated with clo-

nal expansions in our tissues, while often identifiable

in some cancer(s), are most often variants that rarely

recur across cancers (see table S1 in ref. [8]). While

more research will be necessary to statistically contrast

mutational spectra in young and old individuals (with

a focus on malignant potential), we would speculate

that natural selection has led to tissues that are partic-

ularly good at preventing clonal expansion driven by

malignant mutations.

Accordingly, we should consider examples of onco-

genic driver mutations (Box 1) associated with cancer

in a particular tissue that are rarely detected in non-

malignant states. Colonic crypts provide a good exam-

ple. These crypts are known to drift to clonal fixation

(Box 1) every few years. As such, sequencing can iden-

tify clonal mutations that come to occupy the full

crypt. Notably, while mutations in APC, KRAS, and

TP53 are present in most colon cancers, they are

almost never found in normal human colonic crypts

[39]. Of note, APC mutations are known to initiate

colon carcinogenesis [40]. In contrast, known driver

mutations in ERBB2 and ERBB3 are common in nor-

mal crypts, but are rare in colon cancers. While only

� 1% of crypts contain driver mutations common in

colorectal cancer [39], a recent re-analyses of the data

from this study revealed that nearly all crypts contain

at least one mutation previously associated with any

human cancer, which is far greater than would be

expected by chance [8]. Again, most of these mutations

are rarely observed in colon cancers (and indeed are

not highly prevalent in other human cancers). Perhaps,

mutations in key drivers of colon cancers (such as in

the APC, KRAS, and TP53 genes) are strongly

selected against in crypt stem cells. That said, the mod-

eling of APC mutations in the mouse intestinal crypt

indicates that APC mutations confer an advantage to

intestinal stem cells [41–43]. Additional studies are

needed to resolve this conundrum.

While the focus of somatic evolution is typically on

oncogenesis, some mutations perturb tissue function,

by impairing differentiation, reducing functionality,

and by negatively impacting neighboring cells and tis-

sues. We have already discussed how CHIP (most

studied for clones driven by TET2 mutations) can alter

the function of myeloid cells, leading to heightened

inflammation and disease risks [11], with a notable

association with cardiovascular disease (CVD). In

mouse models, altered hematopoiesis caused by TET2-

and DNMT3A-mutation can potentiate CVD, coincid-

ing with the enhanced production of inflammatory

cytokines from mutant myeloid cells [44–47]. In epithe-

lial cells, as previously discussed, clones form contigu-

ous patches, as seen in the skin, esophagus, colon, and

endometrium [35–39] . Many clonally expanded muta-

tions in these tissues impact key signaling pathways

known to regulate the differentiation, function, and

survival of these cells, such as mutations in the Notch,

PI3K/Ras, and p53 pathways and in key regulators of

histone methylation (such as KMT2D). Do these

clones impact epithelial function or does the overall

tissue architecture exert a normalizing effect that sup-

presses negative outcomes? At present, we do not
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know. Still, given that several of these tissues (skin,

airways, digestive track) perform critically important

barrier functions, their perturbation by mutant patches

could produce systemic effects. For example, the

increased influx of bacteria and their products could

lead to systemic inflammation. Intestinal permeability

also increases in old age, promoting systemic inflam-

mation [48,49]. Future studies will need to determine

whether the aging-related expansion of clones with

oncogenic mutations in the epithelia contributes to this

loss of barrier function, leading to a major contributor

to human aging—inflammation. Notably, not all dam-

aging evolution is restricted in its impact to the soma.

With increasing frequency in older males, FGFR3 and

other mutations are selected for in seminiferous

tubules and can negatively impact fitness in offspring

[50].

Finally, as recently reviewed by Majeti and col-

leagues [51], clonal expansions are directly associated

with diseased tissues (beyond cancers), including

atherosclerosis and multiple fibrotic diseases, and com-

mon idiopathic pulmonary fibrosis. Additional studies

are needed to establish the extent to which clonal

expansions directly contribute to these diseased tissues,

the mutations or epigenetic changes associated with

these expansions, and what, if any, contexts drive

selection for these (epi)genetic changes. Notably, all of

these diseases are associated with inflammation, and

we can speculate that a positive reinforcement loop

exists in which inflammation and clonal expansion

each promote the other (Fig. 2).

2.2.3. Expanded clones and trade-offs

While somewhat more speculative, some expanded

clones may be driven by mutations that reduce the

risks of cancer. As mentioned above, the frequency of

NOTCH1 mutant clones in the esophagus outpaces

their frequency in associated carcinomas, indicating

selection against NOTCH1 disruption during cancer

evolution. Perhaps, clones with NOTCH1 mutations

confer a more benign alternative to more malignant

mutations, and tissue structures that select for such

clones as we age may have been favored by natural

selection in order to delay cancer development [52].

Another notable example is the high prevalence of

interleukin-17 (IL-17) and Toll-like receptor pathway

mutations such as in NFKBIZ, in patients with ulcera-

tive colitis [53–55]. There is clear evidence of strong

positive selection for NFKBIZ mutations in the colonic

epithelium, and a NFKBIZ mutation clone can expand

to encompass a substantial fraction of the tissue specif-

ically in individuals with colitis. IL-17 pathway

mutations confer resistance to the pro-apoptotic effects

of IL-17 signaling associated with colitis. Notably,

cells with NFKBIZ mutations are almost never found

in colon cancers, and mice with NFKBIZ genetic dis-

ruption are resistant to the induction of colon adeno-

carcinomas [53], indicating that such expansions

impede carcinogenesis. Conversely, others have argued

that IL-17 pathway disruption might contribute to

dysbiosis (Box 1) [55]. In the liver, cirrhosis drives the

selection of clones that have mutations adapted to this

context; their presence appears to improve liver func-

tion and regeneration [56]. On the other hand, clonal

expansions in FOXO1 are also evident in the livers of

those with chronic liver disease, and these mutant

clones are expected to negatively impact insulin-

dependent glucose and lipid metabolism [57]. Thus,

clonal expansions likely have both positive and nega-

tive health consequences. Finally, trade-offs might

have evolved in the maintenance of tissue function vs.

cancer risk. For example, a recent study [58] has

shown that pancreatitis-mediated epigenetic remodel-

ing promotes the selection of oncogenic KRAS muta-

tions, leading to reduced tissue damage in future bouts

of pancreatitis, while at the same time increasing the

risks of pancreatic cancer (which in humans mostly

occurs in old age).

In all, given the strong selective pressure to maintain

tissue health and to prevent cancers through reproduc-

tive ages, together with the observation that expanded

clones occur at younger adult ages [8] and that cancers

are rare at these ages, we can make two predictions:

(1) that clones that reduce tissue function or promote

malignancy will rise in frequency later in life when

reproductive success becomes progressively lower; and

(2) that clones that are more neutral or even beneficial

to tissues will arise earlier in life, as natural selection

has not acted to sculpt tissue programs that prevent

the advent of these clones and may even have sculpted

tissue landscapes that favor the beneficial ones. Given

the importance of avoiding detrimental somatic evolu-

tion to the extent that maximizes individual fitness, we

will discuss how aging can alter tissue landscapes to

facilitate damaging somatic evolution.

3. Altered adaptive landscapes in
aging or damaged tissues

Aging is a complex process characterized by the pro-

gressive accumulation of structural and functional

changes at the cell, tissue, and organ level [59]. Tissue

landscapes evolve over time, determining the shape

and direction of somatic evolution [60]. Lifestyle and

disease can drastically influence the pace and intensity
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at which these landscapes change and thus affect the

trajectories of somatic evolution [61]. Indeed, the selec-

tion of specific oncogenic events depends on context.

Several studies have now shown that the surrounding

tissue microenvironment plays a major role in deter-

mining the fate of altered cells [60,62–65]. While young

tissues are normally tumor suppressive and disfavor

the clonal expansion of initiated cells (i.e., under stabi-

lizing selection, Box 1), in aged tissue the widespread

reduction of fitness might provide an adaptive land-

scape that favors their selective proliferation (i.e., posi-

tive selection).

As a demonstration of context-dependent selection,

mouse hematopoietic stem and progenitor cells

(HSPCs) that bear oncogenic mutations are not

selected for when transplanted into the bone marrow

environment of a younger mouse, while the same

oncogenically initiated HSPCs selectively expand in

the hematopoietic environment of an aged mouse [66–
68]. Activating KRAS mutations in the mouse lung

also lead to more frequent and larger tumors in aged

compared to young mice [69]. In another example, the

liver microenvironment of old rats is clonogenic for

both normal and preneoplastic transplanted hepato-

cytes, compared to the liver of younger rats, where the

proliferation of these same cells is limited following

their transplantation [70,71]. These results reveal how

an aged tissue microenvironment allows for, and even

promotes, the competitive expansion of fitter cell

clones, whether bearing oncogenic mutations or not

[72]. A functional role of the aged microenvironment

in the development of cancer has been described in

several tissues, including in the skin [73], ovary [74],

mammary gland [75], prostate [76], and colon [64].

Although the emergence of mutated cells as we age

is unavoidable, we can influence their selection by

modulating the tissue microenvironments where they

reside. The increased burden of neoplastic disease in

the old can be partly ascribed to the widespread, low-

grade inflammation, commonly observed during aging

[66,69,77,78], although the mechanisms behind this

association are not fully elucidated. Notably, inhibiting

inflammation prevents the aging-associated selection of

oncogenic mutations in the mouse hematopoietic sys-

tem [66], highlighting the key role of the microenviron-

ment in dictating evolutionary trajectories. Similarly,

caloric restriction and time-restricted feeding both

reduce the emergence and expansion of pre-neoplastic

nodules in the liver, by delaying the onset of the

neoplastic-prone tissue landscape that is typical of

aging [79,80]. In this experimental setting, both inflam-

matory and cell competition mechanisms are involved

[81]. In fact, when normal young hepatocytes were

infused into the livers of rats with induced hepatocellu-

lar carcinoma, the selective proliferation of “healthy”

cells with a higher competitive fitness was able to delay

the growth of pre-neoplastic nodules and to limit their

progression to cancer [82]. This highlights once again

the importance of the surrounding microenvironment

for clonal evolution in tissues.

It is well established that major avoidable risk fac-

tors, such as smoking, alcohol consumption, and UV

light exposure, drastically increase the risk of cancer,

although the onset of disease remains strongly age-

dependent [1,83]. In addition to the direct mutagenic

impact that such exposures have on our cells, it is rea-

sonable to hypothesize that the ensuing chronic and

cumulative damage that affects the bulk of the tissue

sets the stage for the selective expansion of fitter

clones, including those at risk of transformation. In a

recent study on the effect of smoking on the bronchial

epithelium, at least 25% of bronchial epithelial cells

carried oncogenic driver mutations, vs. 4–14% in non-

smoking middle-aged individuals; each cell also had a

significantly higher number of mutations in smokers

([84]; see also [85]). Intriguingly, a small population of

lung epithelial progenitors was found to be spared

from smoking-promoted mutagenic events that could

repopulate the epithelium upon smoking cessation [84].

This suggests that the selective expansion of mutated

clones is highly dependent on the widespread toxicity

that smoking exerts on the tissue landscape and that,

upon elimination of the toxic insult, normal progeni-

tors selectively repopulate the lung.

Similarly, studies conducted on the esophageal

epithelium of transgenic mice show that rare Tp53

mutant progenitors are normally present in the muco-

sal compartment. However, their selective proliferation

over wild-type progenitors only occurs after their

exposure to low-dose ionizing radiation [86]. Most

importantly, upon administration of an antioxidant to

prevent oxidative damage, the fitness of wild-type pro-

genitor cells was restored, thus limiting the expansion

of TP53 mutant clones [86]. Similar observations have

been reported for UV light exposure in human skin

[87], highlighting the possible role of the photoaged

tissue microenvironment in the pathogenesis of mela-

noma [73].

In all, these studies reveal that youthful tissues can

suppress oncogenesis and cancer development, while

tissue impairment with age or damage can promote

tumorigenesis. In the next section, we will delve into

the mechanisms that we and other animals have

evolved to eliminate mutated cells which could other-

wise disrupt tissue function or contribute to malignant

evolution.
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4. Evolved mechanisms to deal with
somatically mutated clones

Complex organisms, such as humans, consist of an

enormous number of cells that are repeatedly exposed

to various insults and go through numerous rounds of

replication. Although each cell in our body, on aver-

age, accumulates about 20 mutations per year [88],

and each adult body consists of � 3 trillion nucleated

cells [89], most individuals live cancer-free for at least

half a century.

While our cells cooperate to maintain the structure

and function of tissues and organs, they are also con-

stantly scrutinized by multifaceted quality control sys-

tems. These sophisticated mechanisms have evolved to

minimize the propagation of non-functional or non-

cooperating cells, thus preserving architectural and

functional integrity while preventing oncogenesis

(Fig. 3). Evolution has favored genetic programs that

confer optimal cell function while being inherently

tumor suppressive [61]. As a result, when cells undergo

significant phenotypic change relative to wild type,

they are likely to be disfavored, resulting in their elimi-

nation [90].

Some of these quality control mechanisms are cell-

intrinsic (such as apoptosis and senescence), some rely

on interactions with the surrounding microenviron-

ment (such as in cell competition), while others are

mediated by tissue-extrinsic cells and factors (as in the

case of immune surveillance). While these mechanisms

have evolved to be at their most efficient during our

reproductive years, their effectiveness commonly decli-

nes later in life [83,91]. Understanding how these

maintenance programs are regulated and why they

wane with age will help us to develop strategies to pre-

vent or delay this decline.

Fig. 3. Mechanisms to maintain tissues through youth. Several maintenance programs contribute to maintain a youthful soma minimizing

the propagation of non-functional or non-cooperating cells. These include: genetic, cellular, and structural redundancy; cell intrinsic programs

such as DNA repair, apoptosis, and senescence; immune surveillance; tissue-intrinsic mechanisms such as cell competition and the pheno-

type normalization of cells with malignant potential by peer pressure.
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4.1. Cell-intrinsic programs to control mutated

clones

When affected by insults or stressors, our somatic cells

activate conserved mechanisms of cell-intrinsic repair

or adaptation. In most cases, minor damage is toler-

ated or rapidly fixed and resolved, however, more sig-

nificant acute, or chronically accumulated, damage is

less likely to be efficiently repaired. As a result, the

affected cells undergo either controlled death (apopto-

sis) or enter a state of irreversible replicative arrest (se-

nescence), thus reducing the chance that they will

undergo neoplastic transformation [92] (Fig. 3).

Apoptosis enables damaged cells to be rapidly and

effectively eliminated in a non-inflammatory and non-

disruptive manner [93]. Neighboring cells normally

take care of replacing the lost cell through compen-

satory proliferation [94]. In contrast, senescent cells

lose their ability to divide while retaining their viability

and functional abilities (as in wound healing [95]).

Importantly, senescence prevents the clonal expansion

of damaged cells and reduces the risk of their undergo-

ing oncogenic initiation [93]. Moreover, senescent cells

secrete active molecules (a state known as the

senescence-associated secretory phenotype or SASP),

which signal both to the surrounding tissue and the

immune system to activate tissue repair mechanisms

and to promote tissue regeneration [96].

Although both apoptosis and senescence can be acti-

vated under similar stress/damage circumstances, the

nature and intensity of an insult can sometimes deter-

mine which of these responses is activated [97]. For

example, several DNA damaging agents induce senes-

cence at low doses and apoptosis at higher ones

[98,99]. Other chemicals that form bulky DNA adducts

exclusively trigger senescence, irrespective of the dose

[100,101]. And depending on the affected cell types,

one mechanism might be favored over the other. For

example, ionizing radiation (IR) normally triggers

senescence in fibroblasts [100], while low IR doses

induce hematopoietic stem cells (HSC) to undergo

apoptosis [102]. This suggests that evolution has

allowed for cells like fibroblasts, which have minimal

transformation potential, to remain functional, albeit

mitotically blocked; by contrast, cells with a higher

risk of oncogenic transformation are more likely to be

eliminated.

Although apoptosis and senescence share many

molecular pathways of activation, they represent alter-

native fates for a cell [93]. One key factor involved in

the activation of apoptosis or senescence is p53, the

levels, kinetics, and transcriptional activity of which

determine how a cell will respond to various stressors

[103]. In particular, high p53 levels are associated with

apoptosis, while attenuated p53 signaling in even

severely damaged cells results in their avoiding pro-

grammed death and entering senescence [103,104].

Conversely, p21, which is a target gene of p53 and is

responsible for the initial cell cycle arrest that occurs

prior to either apoptosis or senescence, seems to have

an opposite role. High p21 levels are associated with

the persistent cell cycle arrest that is observed in senes-

cent cells (e.g., as occurs after treatment with a low

concentration of doxorubicin), while severely damaged

cells that are destined to undergo apoptosis (as occurs

after high doses of doxorubicin) have low levels of p21

expression [105,106]. Each of these two cell fates seems

to counteract the other, as evidence suggests that pro-

senescence stimuli are actively anti-apoptotic, and that

senescent cells are resistant to pro-apoptotic signals

[107–109].
Interestingly, both apoptosis and senescence are key

programs that are activated during embryogenesis and

involved in tissue patterning (reviewed in ref. [93]).

Similarly, in young individuals, these conserved mech-

anisms have evolved to be activated under cellular

stress and, together with the immune system, they effi-

ciently reduce cancer risk and promote tissue regenera-

tion [110,111]. During aging, we observe a progressive

accumulation of senescent cells, partly due to a

reduced ability to clear defective cells [112] and partly

because of the so-called bystander effect, whereby fac-

tors produced by the SASP can trigger senescence in

neighboring cells [113]. Progressive increases in SASP

signaling also contribute to the chronic low-grade

inflammatory state commonly associated with aging

(called inflammaging) [77], which can be detrimental to

tissue function and can in turn promote carcinogenesis

through different mechanisms [114].

4.2. Immune surveillance

Our cells and tissues possess conserved mechanisms

that signal the presence of danger (whether pathogen

or damage/stress-associated), and trigger inflammatory

and immune responses that promote repair and regen-

eration (Fig. 3). The elimination of senescent cells is

normally carried out by the immune system, both

through innate and adaptive mechanisms [115]. In a

recent study, during the initial stages of the mitotic

block that is imposed once senescence is initiated, it

was found that mouse hepatocytes were placed under

immunosurveillance via the activation of p21 signaling

[116]. Through the release of the chemokine, CXCL14

(a main component of the p21-activated secretory

phenotype or PASP), macrophages were promptly
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recruited and remained vigilant but inactive. If the

hepatocytes were unable to revert to a non-stress sta-

tus within a few days (in which p21 levels were nor-

malized), the macrophages polarized toward an M1

phenotype and cytotoxic T-lymphocytes arrived to

eliminate the target cells [116].

The clearance of senescent cells by natural killer

(NK) cells has also been described after both

oncogene- and DNA damage-induced senescence. The

overexpression of activating ligands on the surface of

senescent cells [namely, MHC class I polypeptide-

related sequence A (MICA) and UL16 binding protein

2 (ILBP2)] activates NK cell receptor, NKG2D, lead-

ing to the elimination of the target cell by NK cells

[117]. Another study has shown that the immuno-

surveillance and subsequent elimination of NRASG12V-

induced pre-malignant hepatocytes by macrophages is

mediated by antigen-specific CD4 T cells with a Th1-

phenotype [118]. Neoantigen-specific CD8 T-cell-

mediated elimination of cancer cells has also been doc-

umented, mainly for more advanced and aggressive

tumors [119].

While the immune system is particularly successful

at eliminating potentially oncogenic transformed cells

throughout our reproductive years, many of its com-

ponents gradually decline as we age, contributing to

the emergence of what is commonly known as “im-

munosenescence” [77]. A marked decrease in macro-

phage metabolic and immunological activity, as well as

a reduction in clearance and immunosurveillance

capacity is commonly observed during aging [120].

Moreover, macrophages themselves become senescent

in old mice, and contribute to inflammaging through

SASP [121]. Adaptive immunity response is also less

efficient in older individuals, owing in part to the

reduced number of tissue-resident antigen-presenting

cells and their reduced capacity to migrate and stimu-

late T cell activation in secondary lymphoid tissues

[122]. Indeed, the decline of the adaptive immune sys-

tem is mirrored by an increase in systemic inflamma-

tion as we age [77]. The activation of a proper

adaptive response is also compromised by an intrinsic

reduction of proteostasis and in mitochondrial activity,

partly due to genetic and epigenetic alterations, which

in turn, trigger senescence [123].

Finally, we also need to consider the importance of

avoiding the autoimmune attack of our tissues, neces-

sitating a balancing act that might limit the ability of

the immune system to cull potentially oncogenically

mutated cells. Considering that our bodies can contain

well over 100 billion cells with cancer-associated muta-

tions that are predicted to disrupt protein function [8],

many of which are likely to create new immune

epitopes, we can speculate on the importance of ignor-

ing these new epitopes for avoiding autoimmunity.

Tolerance to these mutations may result from recogni-

tion of the new epitope without the co-stimulatory sig-

nals necessary for T-cell activation (among many other

potential mechanisms). Still, this beneficial “standing

down” of the immune system when faced with so

many mutant clones, while allowing us to get to old

age with a lowered risk of autoimmunity, might also

result in pre-existing tolerance to some mutations that

eventually contribute to a full-blown cancer.

4.3. Tissue-intrinsic control mechanisms

Our tissues are finely organized such that a defined

number of cells cooperate to ensure correct tissue func-

tion and structure. One evolved mechanism of tumor

suppression resides in the hierarchical organization of

tissue maintenance and repair systems [83]. Many of

our tissues consist of a large fraction of short-lived dif-

ferentiated cells that are maintained by a limited num-

ber of stem/progenitor cells, which only proliferate to

replace lost or damaged cells, as is evident in dermal,

hematopoietic, and intestinal tissues, which have high

turnover rates [61]. This limited number of stem and

early progenitor cells represents a small target for

oncogenic initiation. By contrast, mutations in differ-

entiated cells represent a limited risk for oncogenesis

as these cells have shorter lifespans and a limited abil-

ity to proliferate. For example, mutations that occur

in the abundant, mature epithelial cells of the skin or

intestines are likely to be eliminated and shed from the

body within weeks [124].

Tissue integrity is also guaranteed by direct cell

competition between homotypic cells [125] (Fig. 3).

Among differentiated cells, the cells with higher rela-

tive fitness are considered to be the winners and will

outcompete and actively eliminate cells with lower rel-

ative fitness (the losers) [126,127]. While selecting the

fittest cells to maximize tissue function, cell-

competition mechanisms also can prevent the clonal

expansion of potentially oncogenic phenotypes. The

relative fitness of our cells can be altered, compared to

wild-type, when key cellular functions are affected

either by genetic or epigenetic changes [126]. For

example, as shown in Drosophila melanogaster, cells

with reduced levels of the MYC oncogene become

losers and are selectively eliminated, whereas cells that

overexpress MYC (albeit not excessively) behave as

supercompetitors taking over surrounding wild-type

cells [128–130]. One key cellular function that determi-

nes competitiveness is protein translation, with reduc-

tions in translation leading to clonal elimination in
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different models from flies to mice [131]. Interestingly,

in mouse HSCs, both increased and decreased transla-

tion reduces HSC fitness (leading to clonal elimina-

tion) [132]. Thus, maximal HSC fitness requires “just

right” levels of translation, which will serve to facili-

tate the elimination of both poorly functioning and

potentially transformed HSCs (as many oncogenic

events are known to promote translation [133]). Cell

competition mechanisms are based on the ability of

our cells to sense the fitness levels of neighboring cells

[126]. At the molecular level, several surface molecules

are involved in this type of communication. The

Flower protein is one of the most characterized sen-

sors of cell fitness: three different Flower isoforms can

signal for the survival of the winner and/or for the

apoptosis of the loser, depending on their relative

levels of expression on the cell surface [134,135]. In

fact, mutations that impair or promote cell competi-

tion mechanisms have been shown to reduce or

increase, respectively, lifespan in flies [136]. In young

and healthy tissues, cell competition represents a suc-

cessful strategy to limit the survival and expansion of

pre-neoplastic cells [137,138]. In mammalian epithelial

tissues, for example, oncogenically mutated cells can

be actively eliminated by neighboring healthy cells

through a tissue intrinsic cell competition-based mech-

anism, referred to as EDAC (epithelial defense against

cancer) [139].

Another risk factor that cells can sense is loss of

architectural integrity. Mutations that lead to the loss

of cell polarity and tissue patterning can reduce func-

tion and trigger cancer initiation [125,140]. Such phe-

notypes are normally considered losers, and the

selective elimination of these cells by neighboring

wild-type counterparts has been described [140]. In

the skin, for example, defective basal epidermal stem

cells are actively induced by surrounding cells to

downregulate the expression of collagen COL17A1,

thus reducing the formation of hemidesmosomes with

the basement membrane. This leads to the extrusion

of damaged cells from the skin epithelium, thus pre-

serving tissue homeostasis and preventing cancer initi-

ation [141].

The above evidence strongly suggests that, even for

a potentially oncogenic cell, the surrounding microen-

vironment is key to determining its fate [62,83]. Classic

studies from Beatrice Mintz (who passed away in 2022

at the age of 100) and colleagues showed that when

embryonal carcinoma cells were injected into an early

embryo, they contributed to many normal tissues;

when transplanted into an adult mouse, they grew into

cancers [27]. The tissue microenvironment is not only

defined by the quality of resident cells but also by the

extracellular components that help to establish that

particular tissue architecture. The correct deposition

and organization of extracellular matrix (ECM) com-

ponents are crucial for determining cell behavior and,

consequently, for correct structure and function [26].

When the ECM is disrupted, potentially tumorigenic

cells have a higher chance of proliferating and pro-

gressing into cancer. As elegantly shown by Mina Bis-

sel and colleagues, correct ECM formation can also

influence the behavior of cancer cells and revert their

malignant phenotype to a normal one [142]. Thus, not

only does normal tissue architecture lead to the elimi-

nation of misbehaving cells, but healthy tissues also

apply a form of peer pressure to normalize the behav-

ior of cells that have malignant potential (Fig. 3).

Other mechanisms are also likely to limit the pheno-

typic manifestation of mutated clones, including for

the billions of cells that bear cancer-associated muta-

tions in our bodies [8]. Pathways, such as those medi-

ated by the HSP90 chaperone, can result in phenotypic

buffering, whereby the phenotypic manifestation of a

mutant is limited [143,144]. This buffering maintains a

more normal phenotype and enables genotypic diversi-

fication (which is otherwise typically deleterious).

When environments change, new phenotypes can then

be revealed, as HSP90 functions are altered by envi-

ronmental perturbations. Thus, the robustness pro-

vided by phenotypic buffering can enable evolvability

[145]. These evolutionary concepts could be relevant to

somatic evolution, whereby accumulating clones are

kept phenotypically in check while providing adaptive

solutions to changing tissue environments as we age or

due to insults, such as smoking. Whether phenotypic

buffering enables cells with cancer-associated muta-

tions to persist in our bodies, and whether oncogenic

phenotypes are revealed as tissue environments change,

are questions that remain to be determined.

While this review focuses on the abundant clonal

expansions in our tissues that are largely driven by sin-

gle mutations, we must also consider the mechanisms

that help to eliminate early tumors, like carcinomas.

Carcinomas in situ are very common in tissues like the

prostate, breast, and thyroid in old adults, far outpac-

ing the frequency of the associated cancers [146]. It is

therefore important to determine what keeps these car-

cinomas in check. In mouse skin, clones with reduced

functionality are extruded from the epithelium, as are

clones with mutations in which the HRAS or the Wnt/

b-catenin pathway are activated, helping to preserve

tissue homeostasis and the avoidance of cancer [147].

Moreover, recent studies have shown how mutant

clones (such as in the Notch pathway) in the esopha-

geal epithelium can outcompete and eliminate early

3249Molecular Oncology 16 (2022) 3238–3258 � 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

F. Marongiu and J. DeGregori Somatic clonal evolution and our health



tumors [148], providing additional evidence that some

expanding clones could be beneficial in reducing the

evolution of cancers.

All of these mechanisms allow our body to remain

largely cancer-free through our reproductive years: our

cells maintain a near-optimal fitness level and create

and preserve normal tissue structure and function

(Fig. 4, top). Of course, natural selection has not cre-

ated perfect tissues or individuals, and there are trade-

offs associated with protective mechanisms (such as

energetic costs). While a young person is much less

likely to get cancer than is an old individual, such

cases do occur, even for people without clear risk fac-

tors. And of course, beyond inherited factors, lifestyle

factors, exposures, and even “bad luck” play impor-

tant roles [149]. Moreover, as we age, a growing num-

ber of cells in our body progressively accumulate

damage, which likely reduces their ability to function,

compete (lower fitness), and to correctly interact and

cooperate with the surrounding microenvironment. In

this scenario, there is a higher chance for mutated phe-

notypes to confer a higher fitness, independently pro-

liferate and initiate oncogenesis (Fig. 4, bottom).

5. Aging, somatic evolution, and
cancer: the inexorable link

Previous authors have argued that aging is the cost of

tumor suppression (e.g., [150,151]), with the claim that

preventing cancer during youth requires mechanisms,

such as limited telomere maintenance, that contribute

to aging phenotypes at older ages. While such antago-

nistic pleiotropy (Box 1) could indeed allow some

tumor suppressive mechanisms to contribute to aging

phenotypes, it is notable that most interventions that

delay aging also reduce cancer risks (like caloric

restriction or exercise), while lifestyles that reduce lifes-

pans (like smoking) increase cancer risks [152,153].

And, of course, the risk of many diseases, including

cancers, CVD, and infections rises exponentially as

Robust elimina�on of 
malfunc�onal clones Tissue health

↑investment in 
soma in youth

↑individual fitness

Pathogenic 
soma�c evolu�on

Cancer

Youth

Weak elimina�on of 
malfunc�onal clones Impaired �ssue health

↓investment in 
soma in old age

↓individual fitness

Smoking, obesity, 
exposures, etc.

Cancer

Old age
(and/or poor lifestyle)

Pathogenic 
soma�c evolu�on

Fig. 4. Positive reinforcement of tissue robustness in youth and its reversal in old age. In youth, poorly functioning or potentially malignant

cells are eliminated from tissues, preserving tissue health and competitiveness. In old age, reduced tissue health impairs cell competition

and the elimination of cells with altered functions, in a feedforward mechanism that further reduces tissue health. These mechanisms

reflect investments in the soma through reproductive years and the waning of this investment in later years.
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humans age [2,154]. We argue that cancers and other

diseases of aging are linked in multiple ways. First, as

discussed above, we experience an increased risk of

disease and death late in life due to the waning of pro-

tective mechanisms at ages where we are less likely to

contribute to future generations. Thus, the impact that

diseases of old age have on our fitness is minimized.

Second, there are common factors (like inflammation)

and common conditions in addition to old age (such

as smoking, exercise, diet, alcohol consumption, and

obesity) that influence the risk of developing multiple

diseases, from cancers to CVD.

Could there also be common vulnerabilities in our

defense or maintenance systems that lead to systemic

declines in old age, with the associated multiple disease

risks? We discussed above how reduced intestinal bar-

rier function with age could represent such a tipping

point, leading to systemic inflammation. The mainte-

nance of the enormous intestinal epithelial layer in our

bodies is clearly a large investment. We can surmise

that such an investment would only be allocated

through the years that we are most likely to contribute

to subsequent generations. We also speculated that the

abundance of colonic crypts with fixed cancer-

associated variants could contribute to the loss of this

barrier function. Indeed, cancer-associated mutant

clones elsewhere in the body might also contribute to

this loss. In fact, in mice, Tet2 mutant hematopoiesis

has been shown to reduce barrier function, leading to

more systemic inflammation [34]. While we understand

that aging causes oncogenesis (whether due to increas-

ing numbers of mutations and/or to changing tissue

microenvironments), “oncogenesis”—in the form of

clonal expansions in apparently normal tissues—might

also cause aging or at least contribute to it (Fig. 5).

We have placed oncogenesis in quotes because the vast

majority of clones with cancer-associated mutations

will never contribute to a malignancy. We have also

discussed how mutant clones (such as those with

TET2 mutations) produce increased levels of inflam-

matory cytokines. Clonal hematopoiesis driven by

TET2 and other mutations is evidently associated with

multiple disease risks, from cancer to CVD to chronic

obstructive pulmonary disease, as reviewed above. In

addition to TET2-driven hematopoiesis, NRAS and

BCR-ABL oncogenic mutations promote inflammation

and enhance malignant progression [66,155,156].

While there is a clear association between oncogene-

driven clonal expansion in the blood and disease, there

is not a similarly clear association between clonal

expansion in solid tissues and disease, likely due to the

paucity of samples analyzed. Still, such associations

are likely to be forthcoming. We can also ask why nat-

ural selection appears to have differentially disfavored

such clones in different tissues. Why are such clones

dominant in the esophagus, but much rarer in the

liver? Does this relate to tissue turnover rates? Or

could this reflect a greater fragility of some tissues, in

that clonal expansions might more easily disrupt the

function of these tissues, and thus natural selection has

favored landscapes in these tissues that are more resis-

tant to such expansions?

Thus, a substantial amount of research is still

needed to add “mutation-driven clonal expansions” to

the list of likely suspects that cause the common pat-

terns of multiple diseases across ages and individuals.

6. Conclusions and perspectives

In this review, we have discussed how natural selection

has acted to prevent the expansion of mutation-

bearing clones that could lead to cancer or otherwise

Fig. 5. Aging promotes clonal evolution, and clonal evolution can promote aging. In this feedforward loop, the aged phenotype can promote

clonal evolution through several mechanisms including the accumulation of mutations, establishing altered adaptive landscapes, and altering

immune function to a more inflammatory phenotype. In turn, clonal evolution can contribute to establishing the aged phenotype, for

example, promoting a pro-inflammatory environment, reducing barrier function and, more generally, leading to tissue dysfunction.
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disrupt tissue function, and how this pressure wanes at

older ages when our chances of reproducing are reduced.

We have also reviewed some of the mechanisms that

have evolved to eliminate clones with mutations that dis-

rupt cell function, which act to maintain tissue health

(youthful fitness) and to impede cancer development.

Emerging but still incomplete evidence points to a con-

vergence between evolutionary theories of aging and

cancer, with common mechanisms preventing aging and

cancer during youth and then enabling aging-associated

tissue decline and cancer in old age. As discussed here,

evidence also highlights connections between tissue

decline and somatic evolution; tissue landscapes altered

by old age or other insults can promote somatic evolu-

tion, which can sometimes lead to cancers. Importantly,

expanding and mutation-bearing clones that disrupt key

cell fate pathways are also likely to reduce tissue func-

tion independently of malignant progression. Thus,

aging promotes somatic evolution, which itself might

also promote aging, establishing a feedforward loop that

might contribute to our accelerating decline at older

ages. Finally, while incomplete, a picture is emerging in

which most mutations seen in clonal expansions in

human tissues, particularly in younger individuals, are

rarely observed in human cancers, even though many

are cataloged in the Cancer Gene Consensus database as

having been observed at least once in a cancer [8]. In

contrast, the mutations most commonly observed in

human cancers are rarely observed in normal human tis-

sues, particularly in younger individuals [8]. Thus, the

selective pressure to limit the positive selection of a

mutation appears to be proportional to its malignant

potential (and perhaps also to its tissue-damaging

potential), consistent with predictions from theoretical

and computational modeling [157]. Natural selection

has not acted to prevent all somatic evolution, just the

clonal expansions that could limit individual fitness.

In all, we can begin to recognize that there are inex-

orable links between aging, somatic evolution, cancers,

and other diseases, both through functional links

within our tissues and by the converging forces of nat-

ural selection across millennia. This new perspective

should help to guide strategies for the prevention and

treatment of diseases of aging, such as by engendering

tissue landscapes that promote benign clonal evolution

while impeding damaging clonal expansions.
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